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Resisting reductionism in mathematics pedagogy

Colin Foster*

School of Education, University of Nottingham, Nottingham, UK

Although breaking down a mathematical problem into smaller parts
can often be an effective solution strategy, when the same reductionist
approach is applied to mathematics pedagogy the effects are far from
beneficial for students. Mathematics pedagogy in UK schools is
gaining an increasingly reductionist flavour, as seen in an excessive
focus on bite-sized learning objectives and a tendency for mathematics
teachers to path-smooth their students’ learning. I argue that a reduc-
tionist mathematics pedagogy severely restricts students’ opportuni-
ties to engage in authentic mathematical thinking and deprives them
of the enjoyment of solving richer, more worthwhile problems, which
would forge connections across diverse areas of the subject. I attribute
the rise of a reductionist mathematics pedagogy partly to an assess-
ment-dominated curriculum and partly to a systemic de-
professionalisation of teachers through a performative accountability
culture in which they are constantly required to prove to non-
specialist managers that they are effective. I argue that pedagogical
reductionism in mathematics must be resisted in favour of a more
holistic approach, in which students are able to bring a variety of
mathematical knowledge and skills to bear on rich, challenging and
non-routine mathematical tasks. Some principles for achieving this
are outlined and some examples are given.

Keywords: complexity theory; holism; mathematics curriculum; math-
ematics education; pedagogy; reductionism; task design; teacher
accountability; teacher professionalism

How do you eat an elephant?
One slice at a time! (Anon)

1. Introduction

In this paper, I take reductionism to be the general belief that the best way
to analyse complicated phenomena is to look for simpler underlying fea-
tures. Descartes saw the world as being like a clockwork machine, which
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could be best understood by dismantling it and examining the individual
components (Baker & Morris, 2002), and this mechanistic reductionism
paved the way for the modern scientific approach, so that now, according
to Wilson (1999, p. 59), ‘reductionism is the primary and essential activity
of science’. Likewise, in mathematics, when facing complexity, it may be
second nature for the experienced problem-solver to seek to reduce the
problem (P�olya, 1990). This may be to a previously solved ‘known’ prob-
lem type (i.e., transforming the problem into a more familiar context) or
merely to a smaller problem that it is hoped may be initially more tracta-
ble. As Ainley (1995) puts it:

One way of responding to a task you see as being difficult is to break it
down into smaller bits that you feel more confident that you can tackle suc-
cessfully. This technique is often used by mathematicians to good effect.
(Ainley, 1995, p. 10)

Such an approach is implicit in the common description of mathematical
problems as ‘multi-step’ (Clement & Konold, 1989); the mathematician
often prefers to turn a large problem into a linear list of smaller stages,
and then process them one by one.

However, while reductionism has much to offer the processes of math-
ematical problem solving, it is much less clear that a reductionist
approach to mathematics pedagogy is beneficial. In a reductionist peda-
gogical paradigm, the subject is broken down into numerous tiny skills
and pieces of knowledge, which are then taught separately and sequen-
tially. The unstated assumption is that mastering these elements is equiva-
lent to (but more manageable than) learning the original structure. Yet it
is widely lamented that, when taught in this way, students often fail to see
the purpose of these piecemeal bits of learning, quickly lose the various
fragments and struggle to select appropriate ones and combine them
when called on to solve more substantial problems (Holt, 1990). By break-
ing down the mathematics for the student, the teacher attempts to make it
easier to learn. However, I argue in this paper that in so doing important
transformations take place which drastically curtail the potential benefits
that students can derive from their study. When reduction takes place for
the student, rather than by the student, it may be experienced as danger-
ously disempowering.

In this paper, I consider the problems with reductionism, particularly
when applied to mathematics pedagogy, highlighting that the genuine
power of the reductive approach when working on mathematics risks
blinding mathematics educators to its dangers when controlling their
pedagogy. I explore possible factors contributing to pedagogical reduc-
tionism and argue for a more holistic pedagogical perspective which
allows students to engage productively with complexity in more authenti-
cally mathematical experiences. I conclude that reductive approaches in
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the teaching of mathematics are unduly constraining for students and I
offer some holistic alternatives.

2. Reductionism and mathematics

Reductionist ideas can be traced back to the Greek philosopher
Thales, who believed that everything was made up of water, and to
his pre-Socratic successors, through to Democritus, who thought that
the notion that all matter was composed of atoms would enable every-
thing in nature, even the soul, to be explained (Russell, 2006). How-
ever, this was soon followed in Aristotle’s Metaphysics by the famous
statement that ‘The whole is more than the sum of its parts’, evidence
that a dichotomy between reductionism and antireductionism goes
back a long way (Vega, Hern�andez, & Rivaud, 2003). Aristotle’s
approach to the problem of universals was to seek them in what he
called the essence of things. A simple example of mathematical reduc-
tion would be reducing a fraction such as 8

10
to its lowest terms, 4

5
. This

reduced fraction has the same value but is expressed using smaller inte-
gers, and might be regarded as seeking the essence of what the number
is. The assumption is that nothing of value is lost in the process; on the
contrary, a purer, simpler, ‘better’ form of what was initially present is
obtained. To take another example, when confronted with an unfamiliar
integer, a mathematician might choose to prime factorise it, just as a
chemist might put an unknown compound into a mass spectrometer to
break it down into its separate fragments. There may be a feeling that
until you have done this you have not really probed what it is that you
are dealing with.

This essence seeking is embodied in the ubiquitous practice of seeing a
mathematical object as an example of a deeper, simpler generalisation
(Watson & Mason, 2005), leading to the classification of mathematical
problems into types. Consequently, students have tables of formulae for
every conceivable eventuality, and such things as ‘standard integrals’,
each of which encompasses countless special cases but can be handled in a
single well-characterised way (Merzbach & Boyer, 2011). As a result,
great savings can be made, in that relatively few tools are sufficient for
doing much varied work. Moving from a number of special cases to an
overall generalisation involves capturing the essence of what they are all
about. In one sense this is reductive, since there is a simplification result-
ing from ‘throwing away’ details, but without seeming to lose the core.
On the other hand, it may be viewed in the opposite way, as standing
back and seeing ‘the bigger picture’. The expression ‘seeing the wood for
the trees’ nicely encapsulates this ambiguity: does our perception of a tree
bring to light the entire ‘wood’ (i.e., the forest) that it is part of, or the
‘wood’ (i.e., the material) that each individual tree is composed of?
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3. Problems with reductionism

Despite its evident successes, a reductionist paradigm is nonetheless
severely limited. As Sheldrake (2012, pp. 46–47) starkly puts it in the
realm of science, ‘Attempts to explain organisms in terms of their chemi-
cal constituents are rather like trying to understand a computer by grind-
ing it up and analysing its component elements . . .’. Dennett (1995) refers
to ventures such as radical behaviourism, which seek to reduce the com-
plexity of human behaviour to mere sequences of actions, as ‘greedy
reductionism’, which explain away rather than explain. As Sheldrake
(2012) remarks:

It is relatively easy to break things up and analyse the parts. The problem is
to understand the whole; not just the parts but also their interactions need
to be understood. And these interactions are not contained in the parts
themselves. (Sheldrake, 2012, p. 146)

For Jones (2000, p. 17), the limitations of reductionism ‘are seen in a
phrase once notorious in British politics, the late [sic] Prime Minister Mrs
Thatcher’s statement that “There is no such thing as society, there are
only individuals.”’ Dismissing society as merely individuals or human
beings as merely social animals is a gross over-simplification. According
to Raman (2005, p. 251), ‘Reductionism reveals what are underneath
everything, much more than how they converge into something very dif-
ferent. It reveals the being part of the world, but not always the becoming
aspect.’ Reduction to fundamentals may trap a static elemental view but
miss a more dynamic and complete picture.

The fallacy that the reduction contains everything of importance has
been ridiculed by Medawar (1961) as ‘nothing buttery’. In such a view,
psychology is ‘nothing but’ biology, which itself is ‘nothing but’ chemis-
try, which is ‘nothing but’ the physics of sub-atomic particles. Indeed,
some go further and say that physics is ‘nothing but’ mathematics
(Tegmark, 2007, 2008). This kind of reduction would seem to be quite dif-
ferent from Aristotle’s essence seeking. Here, as the microscope zooms in
closer and closer, an increasingly limited image appears, with important
(perhaps the most important) factors missing. The statement, for instance,
that the human brain is ‘nothing but’ atoms and molecules is no doubt
true in the sense that if you took away the atoms and molecules there
would be nothing left, but it is equally clear that it is false if it is taken to
mean that the human brain has no properties other than those possessed
by atoms and molecules. Consequently, complexity scientists have begun
to acknowledge more explicitly the importance of emergent properties
(Bedau, 2002), which arise gradually as complexity grows but cannot be
identified with specific small-scale features. These are the properties that
slip through reductionism’s fingers.
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In mathematics, the axioms of Euclidean geometry do not in them-
selves capture the entirety of the subject. Likewise, as Suppes (1978) com-
ments, the attempt to reduce all of mathematics to set theory has:

a kind of barren formality about it . . . Moreover, as we have reached for a
deeper understanding of the foundations of mathematics we have come to
realize that the foundations are not to be built on a bedrock of certainty
but that, in many ways, developed parts of mathematics are much better
understood than the foundations themselves. (Suppes, 1978, p. 8)

A reduced version does not have identical properties in kind to the less
reduced version, simply to a different degree; it can be different in crucial,
qualitative ways. As Davis and Sumara (2008, p. 49) put it, ‘with certain
phenomena, “more” is not simply “more,” but “different”’.

Mathematical objects frequently possess emergent properties that are
not features of any of their constituents. For instance, an equilateral trian-
gle is composed of three equal sides, but the triangle has rotational sym-
metry of order 3, whereas none of the sides does. Similarly, Baas and
Emmeche (1997, p. 9) ask ‘in a knot – where is the knottedness? It is a
global property, having no meaning locally. Or in a Moebius band –
where is the twist?’ You can go round and round looking for it, but it can-
not be identified with any specific location. In arithmetic, divisibility by 4,
for instance, is a property of the number 8, but if 8 is partitioned into 2
and 6, neither of those is divisible by 4 – the divisibility emerges when the
2 and the 6 are added (Vega et al., 2003). In this case a different reduction,
to 4 and 4, would preserve the divisibility, so which properties are retained
or lost in a reductive process depends on the details of the particular
reduction.

An important area of modern mathematics for illuminating some of
the possible problems of reductionism is fractal geometry. A key feature
of a fractal is that it is self-similar, appearing equally detailed and com-
plex at every scale – zooming in does not afford a simplification. As Davis
and Sumara (2008) comment:

Perhaps the most significant contribution of fractal geometry has been con-
ceptual, as a source of new images and metaphors. Complex phenomena, it
seems, are much more fractal-like than Euclidean. They are incompressible,
recursively elaborated, often surprising. Further, fractal geometry presents
a challenge to the pervasive assumption of linearity that has long been
inscribed in analytic science. (Davis & Sumara, 2008, p. 45)

If the structure of mathematics itself has fractal qualities, then we cannot
assume that a reduced version preserves the most important features and
can be unproblematically scaled back up. Thoughtlessly reductive
approaches are like peeling off the layers of an onion in an attempt to
expose the core – by the time you have finished, there is nothing left

The Curriculum Journal 567

D
ow

nl
oa

de
d 

by
 [

86
.8

.1
09

.1
96

] 
at

 1
6:

49
 1

7 
M

ar
ch

 2
01

4 



(Fuenmayor, 1991). Much of importance may be lost when mathematics
is dismantled into its so-called fundamental parts.

4. Reasons for pedagogical reductionism

There are clearly considerable practical difficulties in converting the rich
complexities of a discipline such as mathematics into a curriculum which
can be accommodated within the artificial school experience of learning,
where days are fragmented into discrete lessons of up to an hour or so.
Yet mathematics teaching can become excessively fragmented beyond
this. Ollerton (1994) condemns fragmented teaching where:

for one or two lessons children are responding to a set of short questions in
an exercise, such as ‘solve the following equations’, and then the following
day or week they are working on another skill such as adding fractions or
working out areas of triangles. (Ollerton, 1994, p. 63)

He likens the meaninglessness of such an experience to that described
in Henry Reed’s poem ‘Naming of Parts’ (Ricks, 1999, p. 619). These
comments echo the concerns of the Cockcroft report, which lamented
that:

Mathematics lessons in secondary schools are very often not about any-
thing. You collect like terms, or learn the laws of indices, with no perception
of why anyone needs to do such things. There is excessive preoccupation
with a sequence of skills and quite inadequate opportunity to see the skills
emerging from the solution of problems. (DES, 1982, para 462, p. 141)

The report urged teachers to ‘relate the content of the mathematics course
to pupils’ experience of everyday life’ (DES, 1982, p. 142). The treatment
of isolated skills risks locking students into a technical view of the subject,
divorced from its applications. Explanatory reductionism, the idea that
mathematics is best learned by beginning with ‘building blocks’ and
assembling them into secondary structures, constitutes a misunderstand-
ing of constructivism (Simon, 1995).

There is little doubt that UK mathematics teaching is still dominated
by traditional triple-X lessons: explanation, examples, exercises (Swain &
Swan, 2007), in which mathematics has been broken down into piecemeal
facts and skills (Gates, 2006). The almost universality of the term ‘exercise
books’ in UK mathematics classrooms, for instance, seems socially and
psychologically programmed to constrain the kinds of activity that will
take place, emphasising the routine repetition of procedures to develop
facility over and above anything richer. ACME (2012) stresses the need
for greater depth and richness in the UK mathematics curriculum, point-
ing to the lack of challenge currently offered to many of the highest
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achievers. According to the most recent Ofsted mathematics report (2012,
p. 9), schools are aware of ‘the need to improve pupils’ problem-solving
and investigative skills, but such activities were rarely integral to learning’.
They report a continued emphasis on students completing short, closed
exercises – the ultimate reductive approach.

I suggest below that there are two important and related reasons for
the prevalence of pedagogical reductionism in mathematics education: the
backwash effects of high-stakes assessments and a systemic de-
professionalisation of teachers through a performative accountability
culture.

4.1. Backwash effects of assessment

It is frequently stated that ‘what you test is what you get, and . . . how you
test is how it gets taught’ (Taleporos, 2005). In the UK educational cul-
ture of high-stakes mathematics examinations consisting of short, closed
questions, it would be surprising if teachers did not feel under pressure to
form their teaching accordingly. For Watson (1999):

Assessment both contributes to, and is partly formed by, the classroom cul-
ture as a whole. The mechanisms of assessment reflect what is valued by
teachers and others, explicate such values, bestow status and also shape
classroom activities so that valued behaviour is generated. (Watson, 1999,
p. 106)

An assessment system that focuses on bite-sized pieces of mathematics,
because they are quick and easy to test and score, is bound to encourage
such reductive practices in the classroom. In their most recent report,
Ofsted (2012, p. 18) generally observed few ‘lessons that were helping
pupils to gain a better understanding of mathematics’, as opposed to
those with ‘a strong focus in teaching to the next examination’.

Tarrant (2000, p. 78) summarises epistemological, ethical and political
objections to the ‘competency model’, criticising ‘a crude behaviourism
that equates knowing with a performance’ and stressing the crucial nature
of ‘underpinning knowledge’. For him, it is naive to assume knowledge
on the evidence of behaviour: ‘For example, the student may have con-
nected the correct wires [in a practical electrical problem] on the basis of a
lucky guess, or because he or she was told which wires to connect by a
course member in the corridor’. Tarrant (2000, p. 79) argues that, ‘the ten-
dency to bifurcate knowledge of how to do something and knowledge that
something is the case arises when too many examples of very basic practi-
cal skills are selected for analysis’. Knowledge and skills must be seen as a
unity, otherwise understanding is only instrumental (Skemp, 1976) and is
developed only to the point where the particular action can be carried out
correctly. In this way, mathematical knowledge becomes the means to a
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performative end and not the focus of the learning process. One example
of the sort of difficulties that arise would be the attempt to itemise the var-
ious forms of knowledge required for teaching mathematics, so as to test
teaching ability (Hill, Schilling, & Ball, 2004).

4.2. De-professionalisation of teachers

Intertwined with an increasingly assessment-heavy curriculum is a
systemic political de-professionalisation of teachers. Beck (2008)
describes the ‘coercive accountability’ which is fundamental to this de-
professionalisation:

[T]he now dominant common-sense, after three decades of intensifying gov-
ernment prescription, audit and managerialism, is one which takes the
prioritising of instrumental purposes in education for granted, and which
has no time for conceptions of accountability except those that require
teachers to ‘measure up’ to externally imposed performativity demands.
(Beck, 2008, p. 10)

In such an ‘audit culture’, teachers are constantly required, just in order
to survive, to prove to their schools that they are ‘effective’. Often this is
to non-specialist school managers who may have little knowledge of
mathematics-specific pedagogy beyond that inferred from experiences in
their own schooldays. Thus, whenever the teacher’s lesson is observed –
perhaps at no or very little notice – there must be obvious markers of
students’ ‘progress’ during the lesson. The senior teacher who ‘pops in’
might have time only for a 15-minute visit, in which they will make judge-
ments that can have serious consequences for the teacher. So an under-
standable defensive strategy for the teacher against these intrusions is to
break up the lesson into episodes of no longer than 15 minutes, during
each of which some superficial public student assessment takes place,
which no observer can fail to miss, and which highlights what students
have achieved during this period. It is hard to see how such a highly
oppressive constraint can fail to disconnect the students’ learning of
mathematics into fragmented ‘moments’ in which some technical fact or
skill is acquired. Unless trust can be rediscovered, many of the recommen-
dations of mathematics education research will simply be ruled out by
teachers inhabiting this system as just too risky.

5. Consequences of pedagogical reductionism

In this section, I draw attention to two consequences of pedagogical
reductionism in mathematics education: the prioritising of short-term eas-
ily measured learning objectives in the classroom and teachers’ desire to
path-smooth their students’ learning.
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5.1. Micro-learning objectives agenda

One very common feature of lessons in UK schools is a strong emphasis
on highly specific learning objectives for each lesson, which students
frequently spend the beginning of the lesson copying into their books.
Noyes (2007, p. 125) comments that, ‘Writing the Learning Objective on
a little whiteboard, normally about 1 metre to the side of the larger white-
board, is de rigueur – like a talisman that somehow ensures quality
learning.’ This narrow vision of what constitutes mathematical learning
leads to a focus on small units of ‘competence’; in the extreme this is
reduced to binary yes/no measures of performance and proficiency, dimin-
ishing the student to the status of a technician (Talbot, 2004). Thus math-
ematics is diminished to a minimalist set of procedural skills to be
mastered sequentially. Where students have difficulties in achieving a par-
ticular micro-objective, these are diagnosed as pathologies and extra prac-
tice may be prescribed as a ‘magic bullet’ to tackle that one specific
deficient area (Prestage & Perks, 2006).

The frequent institutional requirement to specify objectives before-
hand, and communicate them to students, can discourage teachers from
using rich, open tasks, where the outcome for any particular learner will
be less certain. Moreover, when objectives are tightly specified, the possi-
bility arises of achieving them in ways that were not anticipated by the
teacher: the widespread phenomenon of ‘hitting the target but missing the
point’ in education has been commented on extensively (Foster, 2006).
Mason (2000, p. 97) describes the dilemma at the heart of the ‘didactic
contract’ as: ‘the more clearly the teacher indicates the behaviour sought,
the easier it is for students to display that behaviour without generating it
from understanding’. In such circumstances, all sense of why students are
being asked to complete particular tasks may be lost. Gray (2002) even
goes so far as to suggest that self-awareness of goals can be
counterproductive:

Self-awareness is as much a disability as a power. The most accomplished pia-
nist is not the one who is most aware of her movements when she plays. . . .
Very often we are at our most skilful when we are least self-aware. . . . In
Japan, archers are taught that they will hit the target only when they no
longer think of it – or themselves. The meditative states that have long been
cultivated in Eastern traditions are often described as techniques for
heightening consciousness. In fact they are ways of bypassing it . . . Subliminal
perception – perception that occurs without conscious awareness – is not an
anomaly but the norm. (Gray, 2002, pp. 62–63)

Skilful action does not always benefit from being conscious of its aims
(Atkinson & Claxton, 2003).

It is not necessary, or perhaps even possible, for students to know in
detail what they are going to learn before they start; such attempted
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predictions may simply be a distraction. In a setting where significant and
complex learning is taking place, trying to specify the details of what will
happen in advance will unduly constrain the learning process for both stu-
dent and teacher. Rodd (1995, p. 238) remarks that ‘the school environ-
ment tends to reinforce an “atomistic” view as teachers are required to
“deliver items” of the National Curriculum’. Prestage and Perks (2006, p.
69) have reported one consequence of this as being an excessive amount
of ‘practising the finished product’. A bitty, fragmented curriculum is
more convenient to administer and test and easier for non-specialists to
‘deliver’. It may also correspond to ‘safe’ common-sense notions of ‘keep
it simple’, doing one thing at a time (Adamson, 2006).

A topic such as trigonometry can be seen to embrace many diverse
aspects of elementary mathematics: angles, approximation, enlargement,
equations, measurement, proportion, ratio, etc. But it is much more than
simply the sum total of those things. Attempting to tick off each of them
in isolation will not give students an experience of trigonometry. As
Mason (2010, p. 32) comments, ‘a succession of experiences does not add
up to an experience of that succession . . . Just because I engage in mathe-
matical activity, it does not follow that I am aware of the activity itself as
a whole.’ Reductionism leads to ‘topics’ such as ‘collecting terms’ or
learning the ‘order of operations’, which can be difficult to justify as
worthwhile objects in their own right. These become isolated ‘tricks’,
which students are required to perform on demand merely to satisfy a
teacher or examiner. Consequently, students do not sufficiently appreciate
mathematical connections and coherence (Steinbring, 1991).

In the teaching of physical education, for instance, very careful judge-
ments may be made regarding whether to train a behaviour by ‘breaking
it down’ into sub-elements or whether to persevere working with the
whole movement (Coker, 2006). It may sometimes be helpful to ‘go back-
wards in order to go forwards’ and perhaps to invite a learner who, for
instance, is apparently working well on fairly advanced mathematics to
take some time to review procedures concerning a more ‘basic’ topic such
as algebraic fractions in order to support their current learning. However,
determining whether identified areas of weakness are better addressed as
incidental elements of large-scale tasks or by focusing entirely on them is
a matter for the teacher’s wise judgement. There would seem to be much
potential for similar research and discussion in mathematics education.
Currently, there is too great a tendency to assume that if a student can be
trained to do the ‘component parts’, they will automatically, inevitably be
successful at ‘the whole’. The familiar experience of a young child who
spells out ‘c. . .a. . .t’ phonetically but who, despite repeating the separate
sounds, cannot merge them fluently into the word ‘cat’ (Smith, 1992)
might be seen as a simple example where competent performance at the
micro-level does not guarantee larger-scale proficiency. Too often,
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developing mathematical fluency on particular technical skills is seen as a
prerequisite for tackling more complex problems. Instead, rich problems
might provide more motivating and meaningful contexts for developing
the desired fluencies (Foster, 2013a).

Ariely (2010) laments some aspects of the ‘division of labour’ prevalent
in modern society:

Modern IT infrastructure allows us to break projects into very small, dis-
crete parts and assign each person to do only one of the many parts. In so
doing, companies run the risk of taking away employees’ sense of the big
picture, purpose, and sense of completion. (Ariely, 2010, p. 79)

It would seem that much the same thing can happen on an individual
basis, when a student loses sight of the bigger mathematical picture
through being given tiny one-step procedures to perform, perhaps leading
to some self-alienation from the content (Boaler, William, & Zevenbergen,
2000): students simply do not know why they are doing what they are
doing (Duffin & Simpson, 1993).

5.2. Path-smoothing of learning

A second consequence of pedagogical reductionism is the tendency for
teachers to attempt to micromanage the details of the students’ learning;
in particular, to make the path ‘smooth’ (Wigley, 1992). Baas and
Emmeche (1997) point to emergent phenomena within the subjective expe-
rience of doing mathematics:

[I]t is a common experience of mathematicians to have sudden ‘flashes of
insights’ . . . The sudden ‘flash’ is experienced as the appearance of the solu-
tion as a new structure, that in a sense can be observed at once, but never-
theless has to be worked out deductively in great detail and tested formally
before it can be trusted. (Baas & Emmeche, 1997, p. 16)

The discontinuous nature of such accounts stands in stark contrast to
the supposedly gradual, accumulative way in which mathematics is com-
monly thought to be learned. It follows that when students have difficul-
ties with mathematics, these will not necessarily be easily located in one
‘step’ or idea; they may be more global in nature. When a teacher tries to
help students understand some mathematics which they ‘don’t get’, one
often hears the teacher ask: ‘Which step is it that you don’t understand?’
Yet the problem that the student is having may be less easily pinned down
than that.

Having mathematics broken down for you is a very different experi-
ence from doing it for yourself. When faced with a student who is stuck,
mathematics teachers may hope that by breaking down the problem they
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may help the student to develop the ability to do this for themselves. But
Ainley (1995, p. 10) comments that although this approach ‘is deeply
rooted in the pedagogic tradition of mathematics education . . . [i]t is less
clear that it is an effective technique for supporting children’s mathemati-
cal learning’. For reduction to be a powerful mathematical process, it
must increasingly reside under the student’s control rather than be
imposed from outside. If reducing mathematical problems for students is
a helpful scaffold, then it must fade (Collins, Brown, & Holum, 1991).

Henningsen and Stein (1997) found that teachers sometimes
reduced the complexity of high-level mathematics tasks when students
appeared to struggle and, in the context of working with student
teachers, Rodd (1995) describes what she calls the ‘holistic-atomistic’
tension as a need to be:

mindful that pressure to ‘break things down’ so that the pupils only have to
understand a small piece of new mathematics at a time, does not result in a
fragmentary conception of mathematics for the pupil. (Rodd, 1995, p. 237)

When teachers path-smooth the process, they assist the student in solv-
ing that particular problem on that particular occasion, but may be ham-
pering the student’s more long-term development (Wigley, 1992). Students
who find mathematics bewildering may be appreciative of teachers who
appear to simplify the subject for them by offering bite-sized pieces
in a palatable order. For example, Corbett and Wilson (2002, p. 20) report
a teenage student who praised teachers who ‘feed it into our head real
good; they do it step-by-step and they break it down’. Such encouragement
confirms the teacher in their behaviour, and a mutual dependency
‘enabling’ relationship may be set up, to the detriment of mathematical
learning for the student and developing pedagogy for the teacher
(D’Errico, Leone, & Poggi, 2010). Holt (1990, p. 199) warns against think-
ing that, ‘guiding children to answers by carefully chosen leading questions
is in any important respect different from just telling them the answers in
the first place’. Employing ‘funnelling questions’ (Bauersfeld, 1995) may
result in the student ‘going through the motions’ but not leave them
empowered to tackle future problems, even of a very similar type.

In such circumstances, it is easy for a mathematics teacher to under-
estimate the significance of their intervention. A teacher assisting a stu-
dent to solve a mathematical problem may believe that in separating out
the distinct elements and itemising them they are simply keeping track of
what is going on while the student does the real work of dealing with each
part. However, the student may find themselves unable to proceed with-
out such help, and this may perplex them both. For example, the
exchange below was observed in a UK secondary mathematics classroom,
following a teacher giving some one-to-one help:
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Student I can do it when you’re with me but I can’t do it by myself!
Teacher Of course you can! You don’t need me. I wasn’t really doing

anything – you did all the maths!
Student I only know how to do it if you tell me what to do.

Here, the teacher perceives the challenge solely in terms of the individual
mathematical steps, which the student has carried out largely unaided (‘you
did all the maths’), whereas the student’s inability to decompose the prob-
lem into appropriate units or identify their nature prevents them from mak-
ing progress alone. Perhaps because the teacher’s prior teaching has tended
to focus on the isolated mathematical techniques, she now assumes that one
of these must be where the student is having difficulty. Or the teacher may
suppose that the problem is more psychological than mathematical, and
that the student merely wants a reassuring ‘crutch’ by their side. It does not
seem to occur to the teacher that the difficulty could be more global and to
do with the student’s problem in managing large-scale aspects, such as
breaking down the task for themselves. When understanding a worked
example, more important than ‘knowing the next step’ may be how the stu-
dent knew tomake that the next step (Atkinson, Derry, Renkl, &Wortham,
2000) – having it ‘come to mind’ (Mason & Spence, 1999).

The term zone of proximal development (ZPD) (Vygotsky, 1978) has
sometimes been misused to defend teachers forcing their approaches onto
students and pushing them into mathematical actions that they would
never do if left to themselves. This is not what Bruner (1986) meant by
‘consciousness for two’. Levykh (2008) comments that:

the dynamic process of establishing and maintaining the ZPD is successful
only when emotionally laden reciprocal relations between the learner and
the instructor allow for participants’ comfort and trust, which are mani-
fested in constant negotiation of the subject of inquiry and the way it is pre-
sented and acquired. (Levykh, 2008, p. 97)

What Vygotsky seems to have meant by the ZPD is the student’s pro-
gression from being able to do something with help to being able to do it
unaided (van der Veer & Valsiner, 1991), which has since been further con-
ceptualised as ‘scaffolding with fading’ (Collins et al., 1991). The principle
‘only do for people what they cannot yet do for themselves’ (Mason, 2000,
p. 101), though difficult to apply, remains a worthy goal. An invalid may
appreciate having their food cut up for them, but to do this for a normally
able child would risk severely de-skilling them and inculcating a ‘learned
helplessness’ (Peterson, Maier, & Seligman, 1995).

Path-smoothing approaches are seen as particularly important for stu-
dents who are socially constructed by teachers and school managers as
‘low achievers’. In the context of advice for dealing with ‘slow students’,
for instance, Hoffman (1968, p. 89) advises helping ‘students to analyze
an algorithm or a process of computation and break it down into its basic
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parts’. But, particularly in special educational needs teaching, it is neces-
sary to eschew quick fixes and stop-gap measures; frequently, short-term
resolutions (such as getting the student as painlessly as possible through
one particular mathematical problem) are in conflict with longer-term
benefits (Watson, 2006b). Watson, De Geest, and Prestage (2003, p. 37)
found that successful teachers of students socially constructed as ‘low-
attaining’ ‘did not simplify mathematics for students, nor did they fudge
difficult issues. Instead they saw their job as helping students learn mathe-
matics, with all its complexities.’ It is easy for teachers unwittingly to
over-help students from the best of intentions (D’Errico et al., 2010).
Some teacher interventions are limiting, constraining, preventing student
action, closing down possibilities, removing complexity, reducing chal-
lenge and making problems easier. The move towards increasingly highly
structured examination questions in post-16 mathematics assessment has
been an attempt to improve accessibility and cater for a wider spread of
attainment, but is thought by many to have reduced the demands and led
to ‘dumbing down’ (Kounine, Marks, & Truss, 2008). Schoenfeld (1988)
describes students who gave up when they could not solve a problem
quickly, because they assumed that this meant that they must have misun-
derstood something and were therefore doomed to fail.

6. A more holistic approach

The dominance of a reductionist pedagogical paradigm is increasingly
being challenged by the rise of complexity thinking, which advocates a
more holistic viewpoint (Davis & Simmt, 2003). Davis and Sumara (2008,
p. xi) regard this as offering, ‘a powerful alternative to the linear, reduc-
tionist approaches to inquiry that have dominated the sciences for half a
millennium – and educational research for more than a century’. We
know that mathematics is not learned in a linear, unidirectional, ladder-
like fashion (Denvir & Brown, 1986). The Pirie-Kieren model of growth
of understanding, where students move back and forth between onion-
like layers of thinking, is much more realistic (Kieren, Pirie, & Gordon
Calvert, 1999), and a helpful development of Bruner’s notion of spiral
learning. So given what we know it seems completely inappropriate to
take a reductionist approach to mathematical pedagogy.

If learning is nonlinear, then pedagogy must be also. According to
Strogatz (2004, p. 182), the ‘synergistic character of nonlinear systems
is precisely what makes them so difficult to analyze. They can’t be
taken apart. The whole system has to be examined all at once, as a
coherent entity.’ A systems approach to pedagogy would reflect devel-
opments in social science research, where ‘sterile’ laboratory condi-
tions do not always lead to the simplest or most useful outcomes, and
the complexity of real-life situations is increasingly embraced (Cohen,
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Manion, & Morrison, 2011). Davis and Sumara (2008, p. 53) propose
reframing, ‘the architecture of mathematics . . . in terms of a nested,
scale-free network . . . [in order to] prompt attentions away from
assumptions of universal basics and linear progress toward notions of
highly connected ideas/nodes and neighborhoods of ideas’. Working
more holistically in the mathematics classroom means to some extent
relinquishing teacher control (‘teacher lust’) over micromanaging every
detail (Boole, 1931; Tyminski, 2010). It also entails a classroom
focused on longer timescales. Ollerton (1994, p. 63) describes holistic
mathematics teaching as, ‘planning modules of work that can be sus-
tained for two, three or four weeks, rather than in deconstructed and
fragmented ways’. Watson et al. (2003, p. 23) found that:

Rather than rushing through topics, [effective] teachers gave extended time
for learning . . . Some teachers extended a single topic over several weeks, in
order to use many different representations, to ensure progression in the
topic . . .Deep progress was ensured by such extended tasks.

Ausubel distinguishes between rote learning, where new information
is uncritically accumulated in the memory and meaningful learning,
where new ideas are analytically evaluated and integrated into what
the student already knows (Novak, 2002). Viewed in this way, learn-
ing cannot be meaningful if ideas are encountered only one at a time.
E. M. Forster said that ‘Only what is seen sideways sinks deep’ (For-
ster & Gardner, 1985), and it would seem that tackling multiple cur-
riculum areas simultaneously gives students the opportunity to
examine familiar and unfamiliar material from various angles, poten-
tially leading to new insights. Bell (1993, p. 7) advocates that mathe-
matics teaching should be designed so that, ‘the pupils’ main lesson
experience should be of genuine and substantial mathematical activi-
ties, which bring into play general mathematical strategies such as
abstracting, representing, symbolizing, generalizing, proving, and for-
mulating new questions’. In a related way, Sfard (1998) contrasts
metaphors of acquisition and of participation, the latter being a more
active and persistent process involving deeper engagement with subject
content and with other people in the learning process. All of this is
the very antithesis to a reductive approach.

Features of working more holistically could include:

� giving students richer, more complex mathematical problems with a
deeper degree of challenge, so that solutions are not straightforward
or obvious;

� deliberately using problems which simultaneously call on a range of
different areas of the curriculum, encouraging students to ‘see side-
ways’ and make connections;
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� using ‘open’ tasks, where students can exercise a significant degree of
choice about how they define the task and how they approach it –
importantly, the teacher does not have one fixed outcome in mind;

� giving students sufficient time to explore different pathways without
the pressure to arrive at ‘an answer’ quickly;

� encouraging a view that being stuck or confused and not knowing
what to do is normal and can be productive, that ambiguities can be
beneficial for a time (Foster, 2011a), and that seeking not to ‘move
students on’ too quickly can deepen their opportunities to learn
(Dweck, 2000).

Various endeavours in mathematical task design have attempted to
meet some or all of these criteria. The Unified Science and Mathemat-
ics for Elementary Schools (USMES) project in the USA in the 1970s
aimed to integrate science and mathematics education. In their evalua-
tion, Shann, Reali, Bender, Aiello, and Hench (1975, p. 10) found that
‘there were indications that children felt capable of dealing with their
environment, and that teachers, through less directive teaching, were
encouraging children to solve their own problems’. In the UK in the
1980s, the establishment by the Association of Teachers of Mathe-
matics of a ‘100% coursework’ mathematics qualification (SEG, 1988)
embodied many desirable features of student-centred holistic mathe-
matics learning (Ollerton & Watson, 2007; Watson, 2006a). The Cen-
tre for Research in Mathematics Education at the University of
Nottingham (also known as the Shell Centre) has a long tradition of
rich, innovative task design in which more holistic principles have
been adopted (Swan, 2006), and the Bowland Maths project has led to
extended tasks addressing a multitude of curriculum areas, which
have proved highly popular (Thompson, 2011). There are also
indications that some of the newer ‘Use of Mathematics’ Advanced
Subsidiary (AS) specifications are leading to resources that are much
richer and better at encouraging deep mathematical thinking.

One example of a more holistic mathematics task, suitable for students
aged 11–14, begins with students being invited to imagine receiving a large
sum of money, such as UK £1 million (Foster, 2013b). After discussing
what they might do with it, the students are told that the money is going
to be provided in £1 coins, and they are invited to pose mathematical
questions. Typical questions involve asking whether all the coins would fit
in their classroom or bedroom, how many trips a student would have to
make to get them home (or to the bank) one backpack at a time or what
kind of vehicle would be most suitable and how many trips it would have
to make. Details of the mass and size of the coins can be provided or
determined experimentally by the students. Students sometimes pose
additional questions such as how much their own body weight in pound
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coins or in gold would be worth or how big a gold coin (not necessarily
cylindrical) would have to be in order to be worth £1 (Foster, 2005,
2011b, 2013b). This task involves students in making choices, being
creative, asking ‘What if?’ questions about the scenario given, and bring-
ing to bear their knowledge from topics such as circles, volume/density/
mass, scale factors, estimation, rounding, units, large numbers and even
trigonometry. More confident students can ask and answer more demand-
ing questions drawing on more sophisticated knowledge and skills.

Another example of a holistic mathematical task involves the
teacher producing a cup of lolly sticks, each stick with a different
student’s name written on it, one for each member of the class
(Foster, 2013c). The teacher begins by asking the students questions
about the use of the lolly sticks, choosing the student to answer each
time by removing a lolly stick and reading the name. Eventually the
teacher poses the question, ‘When I pick out a lolly stick and someone
answers a question, do you think I should put the stick back in the
cup or not? Why?’ (Foster, 2013c). This question provides students
with the opportunity to engage with the teacher’s possible purposes in
using the lolly sticks for asking questions as well as with the nature of
probability. Eventually, students are asked to suppose that the sticks
are replaced each time and are invited to work out how many lessons
it will take, on average, before everyone has answered at least one
question. Students can explore this experimentally, perhaps with dif-
ferent groups of students working with different total numbers of lolly
sticks and then comparing their results. They can also examine the
problem theoretically (Foster, 2013c). This task, based on the
‘coupon-collecting problem’, naturally extends across several lessons.
Such rich tasks as the two described here seek to encourage a deeper,
more connected understanding of mathematics and give students
much greater scope to use their mathematical powers.

7. Conclusion

Reductionist approaches have an important role to play for the mathema-
tician when seeking to simplify a complex problem, yet their prevalence in
mathematics pedagogy is highly limiting for the student. Raman (2005,
p. 252) suggests that ‘Reductionism and holism are like the microscope
and the telescope’ – different but equally important tools. In a related
way, Mason (2003) refers to two different forms, states or structures of
attention as ‘holding the whole’ and ‘discerning details’. For fluent mathe-
matical thinking, students need to be able to move comfortably between
them. However, the overriding emphasis currently in the UK seems to be
on a reduction that is done for the student, rather than under their own
control, and which consequently is disempowering rather than beneficial.
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Currently, many mathematics lessons have very meagre intentions.
Feynman (2005) captures the problem well in the context of arithmetic:

What we have been doing in the past is teaching just one fixed way to do
arithmetic problems, instead of teaching flexibility of mind – the various
possible ways of writing down a problem, the possible ways of thinking
about it, and the possible ways of getting at the problem. (Feynman, 2005,
p. 448)

He describes such a flexible ‘attitude of mind’ as belonging both to users
of mathematics and to truly creative pure mathematicians. Because it is
not obvious in final proofs, which are polished conclusions, it is easily
overlooked. For Feynman (2005, p. 448), ‘mathematical thinking . . . is a
free, intuitive business’.

With ‘lossy’ data compression in information technology, the
amount of data that needs to be kept is reduced by discarding some –
often quite a large amount (Sayood, 2000) – so that it is impossible to
recover the entirety of the original. If, as I have argued here, it is the
case that mathematics too is not divisible without loss, then the com-
mon practice of reducing the curriculum into component pieces risks
throwing away the very connections that are fundamental to the sub-
ject. We know that teachers who stress mathematical connections are
more effective (Askew, Brown, Rhodes, Johnson, & Wiliam, 1997).
Taking a holistic approach to the learning of mathematics has the
potential to build on students’ innate mathematical powers and lead
to an experience in classrooms that is far more authentically
mathematical.

Attempts at holistic mathematics education will always come with the
feeling of swimming against the tide of more traditional approaches
(Wright, 2012). Operating in more meaningful ways may take longer, be
less predictable and can initially be uncomfortable – frightening, even –
for students and teachers who are not used to facing complex mathemat-
ics and being unsure and stuck for extended periods of time. Skovsmose
(2011, p. 48) regards the ‘exercise paradigm’ as contributing to predict-
ability and providing a comfort zone for both the teacher and the stu-
dents, yet advocates entering instead a ‘risk zone’, commenting that
‘Dealing with risk also means creating new possibilities’. It is essential
that mathematics educators continue to combat reductionist pedagogical
pressures so that students can experience real mathematics in all its won-
der and complexity.
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