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Discrete element modelling has been used to investigate the micro mechanics of isotropic normal
compression. One-dimensional (1D) normal compression has previously been modelled in three
dimensions using an oedometer and a large number of particles and without the use of agglomerates,
and it was shown that the compression index was solely related to the strengths of the particles as a
function of size. The same procedure is used here to model isotropic normal compression. The
fracture of a particle is governed by the octahedral shear stress within the particle (due to the multiple
contacts) and a Weibull distribution of strengths. The octahedral shear stresses, due to local
anisotropic stresses within a sample with isotropic boundary stresses, are shown to give rise to a
normal compression line (NCL) and the evolution of a distribution of particle sizes. The compression
line is parallel to the 1D NCL in log e–log p space, in agreement with traditional critical state soil
mechanics and confirming that the compression index is solely a function of the size effect on
average particle strength, which determines the hardening law for the material. The paper shows, for
the first time, how local octahedral shear stresses induced in the particles within the sample generate
an isotropic normal (clastic) compression line.
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NOTATION

b size effect on strength for a material
D fractal dimension
d particle size (diameter)

d0 initial particle size
e voids ratio

ey voids ratio corresponding to the yield stress on
the linear log e–log s plot

F force
F(c)

j force at a contact
L particle size
m Weibull modulus
N number of particles

Nc number of contacts on a particle
p mean stress
q octahedral shear stress in a particle

qm mean octahedral shear stress
q0 value of octahedral shear stress such that 37% of

particles are stronger for a given particle size
V volume of a particle

xi
(c) location of the contact

xi
(p) location of the particle
s stress
sf tensile stress at failure
sij stress tensor for a particle
sm mean strength
s0 value of tensile stress such that 37% of particles

are stronger for a given particle size
s1 major principal stress in a particle
s2 intermediate principal stress in a particle
s3 minor principal stress in a particle
sy yield stress on the log e–log s plot

INTRODUCTION
Crushing has generally been modelled using the discrete
element method (DEM) via the two alternative methods of

N replacing ‘breaking’ grains with new, smaller fragments,
generally in two-dimensions (Åström & Herrmann,
1998; Tsoungui et al., 1999; Lobo-Guerrero & Vallejo,
2005; Ben-Nun & Einav, 2010; Ben-Nun et al., 2010)

N using three-dimensional (3D) agglomerates (McDowell &
Harireche, 2002; Cheng et al., 2003; Bolton et al., 2008).
In the latter method, no consideration was given to the

complex distribution of loads on each particle at its
multiple contacts. This issue has recently been addressed
by McDowell & de Bono (2013) who allowed particles to
fracture without the use of agglomerates and by consider-
ing the stresses induced in a particle due to the multiple
contacts. McDowell & de Bono (2013) allowed each
particle to split into new fragments, without loss of mass
when the value of the induced particle stress was found to
be greater than or equal to its strength. The new sphere
fragments overlap enough to be contained within the
bounding parent sphere (in the case of two fragments, for
example, the axis joining the centres of the new spheres is
aligned along the direction of the minor principal stress).
This produces local pressure spikes during breakage;
however, the overlap causes the fragments to move along
the direction of the minor principal stress for the original
particle, just as would occur for a single particle crushed
between platens, and the excess energy is transferred to the
surrounding particles. Although conservation of energy is
not observed in this case, the goal was to achieve an
effective breakage mechanism that was as simple and
realistic as possible. As several authors (e.g. Åström &
Herrmann, 1998) have conjectured, it is not possible to
simulate perfectly realistic fracture using self-similar frag-
ments. To ensure sample stability, McDowell & de Bono
(2013) updated particle breakages at once (for the whole
sample) after a minimum required number of computational
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timesteps to allow the artificially induced energy to dissipate;
full details can be found in McDowell & de Bono (2013).

The compression of sand is associated with the evolution
of a particle size distribution; this has been linked in the
past to work equations that account for the dissipation of
energy via friction, the creation of surface resulting from
breakage (e.g. McDowell & Bolton, 1998) and the
redistribution of loads (e.g. Russell, 2011; Ovalle et al.,
2013). Crushing during shearing has long been associated
with the evolution of fractal particle size distributions (e.g.
Turcotte, 1986; McDowell & Daniell, 2001), and both
McDowell & Bolton (1998) and Russell (2011) linked the
linear slope (in e–log s space) of the normal compression
line (NCL) to the theory of fractal crushing using their
respective energy equations.

McDowell (2005) used the kinematics of particle fracture
and the associated void collapse along with fractal crushing
theory to show, analytically, that the one-dimensional (1D)
NCL should actually be linear in log e–log s space, which was
validated by McDowell & de Bono (2013) who used the DEM
to link the compression of sand to the evolution of a fractal
distribution of particles. The influence of the mechanics of
fracture on the slope of the NCL was thoroughly investigated,
and is briefly described here, and the model therein applied to
the isotropic compression of aggregates.

PARTICLE STRENGTHS
McDowell & Amon (2000) demonstrated that Weibull
(1951) statistics can successfully be applied to the fracture
of soil grains. It is widely accepted that the failure of a
spherical particle under pure compression is tensile, and
that fractures initiate from existing flaws and the associated
stress concentrations. Assuming that failure of particles
occurs by fast fracture under induced tensile stresses,
McDowell & Amon (2000) obtained the survival prob-
ability for a particle under diametral compression by
integration of the probability function as a function of
induced tensile stress over the volume of the particle
under tension; they showed that the Weibull size effect is
still valid for such loading, assuming that particles are
similar in shape and are loaded in the same way. Jaeger
(1967) proposed that the tensile strength of grains could
be measured by diametral compression between flat
platens as

sf~
F

d2
(1)

where sf is the tensile stress at failure, F is the diametral
compressive force applied by the platens and d is the
diameter of the grain at failure. Using this equation,
McDowell & Bolton (1998) reported that the tensile
strengths obtained from single particles of various
sizes crushed between flat platens could be related to size
by

sm!db (2)

where sm is the mean strength and b describes the size-
hardening law (after Billam, 1972; Lee, 1992). Weibull
distributions are described by two parameters – one
defining the shape of the distribution, usually termed the
Weibull modulus m, which is related directly to the
coefficient of variation, and the other defining the scale,
which is a characteristic value of the distribution such that
37% (i.e. exp(21)) of random variables are greater (in the
case of particle strengths this determines the 37% survival
probability), and is proportional to the mean. For a given
37% strength, increasing the Weibull modulus decreases the

variability in strengths. From Weibull’s survival probabil-
ity for a block of material under tension, it is possible to
derive the following relation

s0!d{3=m (3)

where s0 is the value of tensile stress at which 37% of the
total number of particles of size d survive and m is the
Weibull modulus (assuming bulk fracture dominates and
Weibull therefore gives a volume ‘effect’ on particle
strength (McDowell & Bolton, 1998)). McDowell &
Amon (2000) and McDowell (2002) confirmed that
equation (3) could be applied to sand particles by single
particle crushing tests.

In the two-dimensional models mentioned earlier,
various fracture criteria were used; some authors used a
measure of shear stress (e.g. Tsoungui et al., 1999; Lobo-
Guerrero & Vallejo, 2005) while Åström & Herrmann
(1998) and Ben-Nun & Einav (2010) additionally investi-
gated using a measure of the compressive stress on a grain
(although both reported that the final particle size
distributions from their simulations were largely unaffected
by the fracture criterion). Russell et al. (2009), on the other
hand, presented an analysis of idealised, regular granular
assemblies and suggested that the failure criterion for
brittle materials is related to the maximum single contact
force. In 3D work using agglomerates (e.g. Lim &
McDowell, 2004; Bolton et al., 2008), although agglomer-
ates could break under complex distributions of loads, no
consideration was given to the stress induced by multiple
contacts. McDowell et al. (1996) showed that, for fractal
crushing, it is the coordination number that is the
dominant factor influencing the probability of fracture
for a particle (the likelihood of fracture increasing with
reducing coordination number). McDowell & de Bono
(2013) therefore decided that if a particle is loaded
uniformly over its surface and is under a high hydrostatic
stress but low deviatoric stress, it would be unlikely to
break. They stated that it would therefore not be realistic to
use the mean stress to establish whether a particle would
break or not (or the maximum principal stress), as this
would mean the fracture criterion would be unaffected even
if the other principal stresses were of equal magnitude.
They decided to use the average octahedral shear stress
induced within each sphere to determine whether fracture
should occur or not. The octahedral shear stress is derived
from the average principal stresses within a particle and is
given by

q~
1

3
s1{s2ð Þ2z s2{s3ð Þ3z s1{s3ð Þ2

h i1=2

(4)

This means that if a particle is, for example under
diametral point loads, equal in three mutually orthogonal
directions, then the particle would not break under this
hydrostatic stress (q 5 0). Although the stresses in a
spherical particle vary as a function of position within the
volume of the particle (e.g. Jaeger, 1967; Russell et al.,
2009), the simplification of using the average octahedral
shear stress provides a simple criterion to facilitate
breakage, taking into account multiple contacts and
different contact forces on a particle surface while
avoiding the use of agglomerates. In this paper it will be
shown that even for isotropic boundary stresses, local
anisotropic stresses give rise to crushing, according to
equation (4). In PFC3D (Itasca, 2005), the average stress
tensor in a particle is

sij~
1

V

X
Nc

x
cð Þ

i {x
pð Þ

i

��� ���n c,pð Þ
i F

cð Þ
j (5)
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where V is the volume of the particle, Nc is the number of
contacts, xi

(c) and xi
(p) are the locations of the contact and

particle respectively, ni
(c,p) is the unit-normal vector

directed from the particle centroid to the contact location
and Fj

(c) is the force at the contact (Itasca, 2005). For the
case of a particle compressed diametrically between
platens, the major principal stress is

s11~
1

p=6ð Þd3
F

d

2
2~

6

p

F

d2
(6)

From equation (4), it can be seen that the value of
octahedral shear stress q for a sphere compressed
diametrically between two walls is then given by

q~
21=2

3

6

p

F

d2

� �
~0:9

F

d2
(7)

which is the value of q returned by PFC3D for a sphere
compressed between two walls; hence the average
octahedral shear stress in a particle is proportional to
equation (1). Therefore, McDowell & de Bono (2013)
assumed that for particles loaded under multiple contacts,
the particle would break if the octahedral shear stress was
greater than or equal to its ‘strength’, where the strengths
of the particles satisfy a Weibull distribution of q values
and thus a size effect on 37% strength according to
equation (3)

q0!d{3=m (8)

ONE-DIMENSIONAL NORMAL COMPRESSION
McDowell & de Bono (2013) used a mono-disperse sample
of 620 spheres of diameter 2 mm, created in a scaled-down
oedometer (diameter 30 mm, height 7 mm). The sample
was loaded one-dimensionally. Different strength charac-
teristics, hardening laws and mechanisms of fracture were
used to investigate their influence on the particle size
distribution resulting from crushing and the slope of the
NCL for the simulations. The initial sample was created
using the radii expansion technique (Itasca, 2005), resulting
in a dense, random packing that was subjected to a number
of explicit time-stepping cycles to remove any locked-in
forces or overlap. Using a larger sample with more particles
appeared to give the same compression behaviour, but
simulations were unable to reach high pressures due to the
large number of particles covering such a wide range of
scales. McDowell & de Bono (2013) investigated the initial
characteristic strength of the particles q0, the initial grading
(hence particle size), the fracture mechanism and the
distribution of strengths (assuming that the size effect on
average strength was governed separately) – all of which

had no influence on the compressibility index or the final
particle size distributions. Most significantly, McDowell &
de Bono (2013) examined a range of hardening laws and
showed that if the mean particle strength qm is related to
size d by a law of the form

qm!d{b (9)

then 1D compression can be described by

log e~log ey{
1

2b
log

s

sy

(10)

where ey is the value on the linear log–log plot at a stress
corresponding to the yield stress sy, and sy is proportional
to the average particle strength. They showed that this was
consistent with the evolution of a fractal distribution of
particle sizes with a fractal dimension of 2?5 and that
equation (10) holds irrespective of the distribution of
strengths for a given size; for a given value of b in equation
(9), the distribution of strengths simply governs the rate of
onset of yield onto the NCL.

McDowell & de Bono (2013) modelled the 1D
compression of silica sand studied earlier by McDowell
(2002) using the parameters given in Table 1 and the
simple splitting mechanism shown in Fig. 1; these are also
used here for isotropic normal compression. The resulting
1D compression line is shown in Fig. 2, plotted on log e–
log s axes. The slope is given by the size-hardening law
and, in this case, from Table 1, b 5 3/m 5 3/3?3 according
to equation (8), so the slope of the NCL is about 0?5, in
agreement with the experimental data of McDowell
(2002).

ISOTROPIC NORMAL COMPRESSION
The current study takes the same sample as in McDowell &
de Bono (2013) and the same crushing criteria as in
equation (4) to investigate

N whether the localised anisotropic stresses within an
isotropically compressed sample would be sufficient to
cause crushing and the development of an isotropic
NCL

Table 1. DEM parameters for simulations of 1D and isotropic
normal compression

Particle diameter, d0: mm 2
Particle density: kg/m3 2650
Initial number of particles 620
Voids ratio, e0 0?82
Shear modulus, G: GPa 28
Poisson’s ratio, n 0?25
Particle friction coefficient 0?5
Wall friction coefficient 0
Weibull modulus, m 3?3
37% strength, q0: MPa 37?5

1

1

3
3

Fig. 1. Equal diametral splitting mechanism
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N whether such a line might be parallel to the 1D NCL
when the logarithm of voids ratio is plotted against the
logarithm of mean effective stress

N how high the required boundary stresses might be to
cause crushing and normal compression.
The initial sample, identical to that used by McDowell &

de Bono (2013), is shown in Fig. 3.
Figure 4 shows the NCL generated for the simulation of

the isotropic compression test on silica sand. The NCL for
the McDowell & de Bono (2013) 1D simulation is also
shown in the same figure (in this case plotted against the
logarithm of mean effective stress). It is clear that the
isotropic NCL generated using the octahedral shear stress
crushing criterion is parallel to the 1D NCL in log e–log p
space, and both lines have a slope of 0?5. This is reassuring
and confirms the proposal made by McDowell & de Bono
(2013) that the slope should be a function of the hardening

law for the size effect on particle strength, and this should
be independent of the loading conditions. The yield stress
for the isotropic sample is about 11 MPa, compared with
about 8 MPa for the one-dimensionally compressed
sample.

The evolution of the particle size distribution was also
measured in terms of the percentage of mass of particles
smaller than a given size plotted against the logarithm of
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Fig. 2. Compression plots for silica sand: (a) from McDowell
(2002); (b) from numerical simulation plotted on log e–log stress
axes (McDowell & de Bono, 2013)

Fig. 3. Initial sample before compression
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Fig. 4. Isotropic normal compression and 1D normal compres-
sion plots (on a log–log scale) for simulation on silica sand using
the parameters in Table 1
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Micro mechanics of isotropic normal compression 169



Offprint provided courtesy of www.icevirtuallibrary.com 
     Author copy for personal use, not for distribution

that size, in the traditional way as shown in Fig. 5(a), and
also by the percentage of number of particles greater than a
given size plotted against size on a log–log scale (Fig. 5(b)).
The equations shown in Fig. 5(b) are for the linear parts of
the curves (i.e. the last two data points on each plot), and
the exponent gives the fractal dimension assuming that the
last two data points correspond to a fractal distribution
such that

N Lwdð Þ!d{D (11)

where N is the number of particles of size L greater than
size d, and D is the fractal dimension (Turcotte, 1986). A
fractal particle size distribution appears to emerge, with an
ultimate fractal dimension of 2?5 approached as crushing
occurs. This is further illustrated in Fig. 6, which shows

how the calculated fractal dimension evolves as the stress
level is increased; it is consistent with the findings of
McDowell & de Bono (2013) for 1D conditions.

To gain further insight into the micro mechanics of
isotropic compression and how it relates to the micro
mechanics of 1D normal compression, it was decided to
take a point (A) on the 1D NCL and a point (B) on the
isotropic NCL at the same voids ratio and compare the
particle size distributions. A further point (C) on the 1D
NCL at the same mean effective stress as point B was also
chosen to compare the particle size distribution with that at
points A and B. These points are shown schematically in
Fig. 7. This procedure was repeated for a further set of
points, D, E and F (group 2), and all six data points are
summarised in Table 2.
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Table 2. Data points chosen to compare the particle size distributions

Group 1 Group 2

Point A B C D E F
NCL 1D Isotropic 1D 1D Isotropic 1D
Voids
ratio, e

0?565 0?565 0?485 0?525 0?521 0?464

Mean
stress, p:
MPa

17?0 21?3 21?3 20?0 24?3 24?3
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Fig. 8. Evolving particle size distributions for points A, B and
C: (a) percent by mass of particles finer than size d plotted
against d on the traditional linear–log scale; (b) percent by
number of particles greater than size d plotted against d on log–
log axes

170 McDowell, de Bono, Yue and Yu



Offprint provided courtesy of www.icevirtuallibrary.com 
     Author copy for personal use, not for distribution

Figure 8 shows the particle size distributions for the first
set of data points A, B and C (group 1); the particle size
distributions for D, E and F (group 2) are shown in Fig. 9.
Both figures illustrate that the points at the same voids
ratio on the 1D and isotropic NCLs (i.e. points A and B
from group 1 and points D and E from group 2) have
particle size distributions that appear to coincide. The
distribution of non-zero q values for all particles is shown
for points A and B in Fig. 10(a) and for D and E in
Fig. 10(b). Figure 10 demonstrates that when the particle
distributions coincide (when the 1D and isotropic simula-
tions reach the same voids ratio), the particles are
approximately under the same distribution of local
octahedral shear stresses – the distributions of octahedral
shear stresses in the particles are similar for pairs A and B
and D and E. The figures show that in the new simulations
presented in this paper, despite the sample being loaded
isotropically, significant local octahedral shear stresses are
induced; these are what appear to give rise to crushing and
produce the isotropic NCL, parallel to the 1D NCL and
with similar particle size distributions at the same voids
ratio. Further work will focus on the evolution of the
particle size distribution under a wide range of stress
paths.

CONCLUSIONS
Discrete element modelling has been used to investigate the
micro mechanics of isotropic normal compression. The

fracture of a particle is governed by the average octahedral
shear stress within the particle due to the multiple contacts
and a Weibull distribution of strengths. The octahedral
shear stresses, due to local anisotropic stresses within a
sample with isotropic boundary stresses, have been shown
to give rise to an isotropic NCL and the evolution of a
distribution of particle sizes. The compression line is
parallel to the 1D NCL in log e–log p space, in agreement
with traditional critical state soil mechanics and with a
slope of 0?5 for the simulated silica sand, as proposed by
McDowell (2005) and McDowell & de Bono (2013). This
also reinforces the earlier proposition (McDowell & de
Bono, 2013) that the compression index should be solely
determined by the hardening law for the average particle
strength as a function of size, and this should be
independent of the loading configurations of the particles
for different macroscopic stress ratios. It has therefore been
shown – for the first time – how local octahedral shear
stresses within an isotropically compressed sample generate
an isotropic normal (clastic) compression line.
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crushable aggregates. Géotechnique 48, No. 5, 667–679.

McDowell, G. R. & Daniell, C. M. (2001). Fractal compression of
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To discuss this paper, please email up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion.

172 McDowell, de Bono, Yue and Yu


	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 2
	Figure 8
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Figure 9
	Figure 10
	Reference 5
	Reference 6
	Reference 9
	Reference 10
	Reference 11
	Reference 29
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27



