@article { , title = {Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator}, abstract = {3-hydroxypropionic acid (3-HP) is an important platform chemical used as a precursor for production of added-value compounds such as acrylic acid. Metabolically engineered yeast, Escherichia coli, cyanobacteria and other microorganisms have been developed for the biosynthesis of 3-HP. Attempts to overproduce this compound in recombinant Pseudomonas denitrificans revealed that 3-HP is consumed by this microorganism using the catabolic enzymes encoded by genes hpdH, hbdH and mmsA. 3-HP-inducible systems controlling the expression of these genes have been predicted in proteobacteria and actinobacteria. In this study, we identify and characterise 3-HP-inducible promoters and their corresponding LysR-type transcriptional regulators from Pseudomonas putida KT2440. A newly-developed modular reporter system proved possible to demonstrate that PpMmsR/PmmsA and PpHpdR/PhpdH are orthogonal and highly inducible by 3-HP in E. coli (12.3- and 23.3-fold, respectively) and Cupriavidus necator (51.5- and 516.6-fold, respectively). Bioinformatics and mutagenesis analyses revealed a conserved 40-nucleotide sequence in the hpdH promoter, which plays a key role in HpdR-mediated transcription activation. We investigate the kinetics and dynamics of the PpHpdR/PhpdH switchable system in response to 3-HP and show that it is also induced by both enantiomers of 3-hydroxybutyrate. These findings pave the way for use of the 3-HP-inducible system in synthetic biology and biotechnology applications.}, doi = {10.1038/s41598-017-01850-w}, eissn = {2045-2322}, journal = {Scientific Reports}, publicationstatus = {Published}, publisher = {Nature Publishing Group}, url = {https://nottingham-repository.worktribe.com/output/860256}, volume = {7}, author = {Hanko, Erik K.R. and Minton, Nigel P. and Malys, Naglis} }