@article { , title = {Soft-bound synaptic plasticity increases storage capacity}, abstract = {Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18\% over hard-bound plasticity, and likely maximizes the storage capacity of synapses.}, doi = {10.1371/journal.pcbi.1002836}, eissn = {1553-7358}, issn = {1553-734X}, issue = {12}, journal = {PLoS Computational Biology}, publicationstatus = {Published}, publisher = {Public Library of Science}, url = {https://nottingham-repository.worktribe.com/output/712458}, volume = {8}, year = {2012}, author = {van Rossum, Mark C.W. and Shippi, Maria and Barrett, Adam B.} }