@article { , title = {Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data}, abstract = {Modelling river temperature at the catchment scale is needed to understand how aquatic communities may adapt to current and projected climate change. In small and medium rivers, riparian vegetation can greatly reduce maximum water temperature by providing shade. It is thus important that river temperature models are able to correctly characterise the impact of this riparian shading. In this study, we describe the use of a spatially-explicit method using LiDAR-derived data for computing the riparian shading on direct and diffuse solar radiation. The resulting data are used in the T-NET one-dimensional stream temperature model to simulate water temperature from August 2007 to July 2014 for 270 km of the Loir River, an indirect tributary of the Loire River (France). Validation is achieved with 4 temperature monitoring stations spread along the Loir River. The vegetation characterised with the LiDAR approach provides a cooling effect on maximum daily temperature (Tmax) ranging from 3.0 °C (upstream) to 1.3 °C (downstream) in late August 2009. Compared to two other riparian shading routines that are less computationally-intensive, the use of our LiDAR-based methodology improves the bias of Tmax simulated by the T-NET model by 0.62 °C on average between April and September. However, difference between the shading routines reaches up to 2 °C (monthly average) at the upstream-most station. Standard deviation of errors on Tmax is not improved. Computing the impact of riparian vegetation at the hourly timescale using reach-averaged parameters provides results close to the LiDAR-based approach, as long as it is supplied with accurate vegetation cover data. Improving the quality of riparian vegetation data should therefore be a priority to increase the accuracy of stream temperature modelling at the regional scale.}, doi = {10.1016/j.scitotenv.2017.12.129}, eissn = {1879-1026}, issn = {0048-9697}, journal = {Science of The Total Environment}, pages = {480-490}, publicationstatus = {Published}, publisher = {Elsevier}, url = {https://nottingham-repository.worktribe.com/output/1302667}, volume = {624}, year = {2018}, author = {Loicq, Pierre and Moatar, Florentina and Jullian, Yann and Dugdale, Stephen J. and Hannah, David M.} }