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Abstract
We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the
literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback
environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic
feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consider-
ation of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner
during feedback operation.
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Introduction
Scanning probe microscopy (SPM) imaging relies on feedback
loops to maintain a constant interaction between the tip and the
sample [1,2]. Many well known artefacts can arise from
improper feedback settings [3-5]. Thus, for reliable SPM opera-
tion and analysis the characteristics and behaviour of such feed-
back loops must be considered [6,7]. SPM feedback loops
usually employ a proportional-integral (PI) controller, equiva-
lent to the common proportional-integral-differential (PID)
controller with the differential gain set to zero to avoid amplifi-
cation of noise. Other groups have successfully modelled and

implemented proportional-differential controllers [8], but these
are not commonly used. Previous work has used control theory
to analyse the behaviour of PI and PID feedback loops in the
context of SPM [9-12], and these models are still being applied
in the current literature [13]. However, the details of the opera-
tion of the feedback loop have been incorrectly modelled, which
results in a decreased stability and an exaggerated ringing at the
resonant frequency of the piezoelectric actuator (z-piezo). Due
to these errors, the feedback controller often cannot maintain
tracking without a high derivative component [13], which is
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entirely at odds with experimental observations. This paper
employs analysis of specific SPM PI controllers to provide a
more appropriate method for modelling such systems.

Results and Discussion
When modelling an SPM feedback loop we must first consider
the workings of the PI controller under perfect conditions. First,
assume that the tip is stationary above a sample at a position Z,
and that the z-piezoelectric actuator for tip positioning is
extended by X (Figure 1). For this perfect model X is consid-
ered to be directly the output of the PI controller; consideration
of amplifier bandwidths and mechanical resonances is added
later. For our original simplified model we will consider a
generic SPM which tracks to a set-point tip–sample distance
(Note that the exact mechanism to detect this distance is not
relevant). Referring to the set-point distance as P, and the
tip–sample distance as Z – X, then the error signal input to the
PI controller, E, is equal to

(1)

After a time t in feedback the output of a standard PI controller
would be

(2)

where Kp and Ki are the proportional and integral gains of the PI
controller respectively and τ is a dummy integration variable.
For this standard PI controller the output of the first term is
proportional to the instantaneous error, and the output of the
second term is proportional to the error that was integrated since
the start of the experiment. It is clear that such a system is
intrinsically unstable, by considering the case that E(t0) = 0. As
the tip–sample distance is equal to the set-point distance there
should be no movement. However, evaluating Equation 2 the
output to the piezo X(t0 + dt) will be zero (where the dt is used
to clarify that the system was not initiated at 0 but the first
output after initiation will be zero.). Thus, the tip will return to
the zero piezo extension position, rather than stay static
(because the error signal is zero). At the next time step, there
will be a large error signal and the tip will move back towards
its correct position. This rudimentary problem has apparently
gone unnoticed to date because it has been ‘disguised’ by the
more complicated modelling of the response of the various
other electrical and electromechanical components of the SPM
(amplifiers, piezoelectric actuators).

It is helpful to draw an analogy with the most commonly
considered control system, namely a temperature controller. A

Figure 1: Schematic showing coordinates for sample position, Z, and
scanner extension, X. The tip–sample distance can then be calculated
as Z – X.

conventional PI controller in essence calculates the heat to be
added to the system under control. If the set-point matches the
measured temperature an output of zero is required. However,
an SPM directly controls the extension of the piezoelectric actu-
ator, which is analogous to directly controlling the temperature.
To correct for this one must consider that the output of a PI
controller in an SPM is the change in the extension. Thus, for
the final output of the feedback controller to be the extension
we must integrate the PI controller output since the start of the
experiment (with X(0) = 0):

(3)

where t* is another dummy integration variable. This integra-
tion effectively stores all previous feedback response. Com-
paring to Equation 2 we see that if initiated under the same
conditions, where X(0) = 0, the integral term does store previous
response as a proportional controller (i.e., the second term of
Equation 2 is equivalent to the first term of Equation 3). Thus,
the controller implemented by Equation 2 would perform as a
proportional-differential controller.

Figure 2 directly compares the response of Equation 2 and
Equation 3 to a unit step, analytically solved by using a Laplace
transform with a set-point of zero. For a PI controller,
Figure 2a, modelled by using Equation 2 there is a disconti-
nuity in the extension at the time of the step, this results from
the incorrectly modelled proportional controller that acts as a
derivative controller. This discontinuity can go unnoticed if the
equations are solved numerically, if a frequency cut-off is
modelled [9], or if the mechanical response of the z-piezo is
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Figure 2: Direct comparison of our model (Equation 3, red and green lines) with the model from the current literature (Equation 2, blue and pink lines),
without modelling of electrical or mechanical components. The comparison is performed for a full PI controller (a) and a simple proportional controller
(b), where the grey area represents the surface being tracked with a set-point of 0. Equation 2 shows unexpected discontinuities and does not tract
the set-point for a proportional controller. Instead it only reacts to the initial impulse. Equation 3 produces the expected results from elementary control
theory. All gain units are arbitrary.

modelled. Additionally, the controller modelled by using
Equation 2 does not experience the expected overshoot of the
set-point for a PI controller, this can also go unnoticed when
mechanical response of the z-piezo is modelled as its resonance
can be mistaken for feedback ringing [9]. By further examining
Equation 2 for a proportional controller (Ki = 0), we see
(Figure 2b) that in addition to the discontinuity the controller
settles to a value that is a 1/(Kp + 1) of the required extension.
This has previously been mistaken as a steady-state error
common to proportional controllers [9]. However, when plotted
without any modelling of other components it becomes clear
that it results from the controller that only acts to the initial
impulse.

From Figure 2b it becomes apparent that there will be no
steady-state offset when evaluating the response of Equation 3
to a static surface (Z(t) = E + X + P = constant), for a simple
proportional controller (Ki = 0). This initially appears at odds
with both experiments and elementary control theory. However,
this is due to the simplicity of the system we are modelling.
Again considering our analogous temperature controller it is
well known that the cause of the steady-state error is the fact
that the heat input into the system is equal to the heat lost to (or
gained from) outside the system. Now we see that steady-state
errors in SPM feedback result from a sample drift in the z-direc-
tion or from scanning a sample with a tilt. Thus, any system that
does not model z-drift or sample tilt should not expect a steady-
state error.

Complete model of SPM feedback
Before running simulations of our simplified SPM system we
will first derive the model for the full SPM feedback system,
and then set the transfer functions of unmodelled components to
unity, to reduce the possibility for errors following their intro-
duction. To avoid unnecessary generalisations we will discuss
the feedback loop as it applies to the scanning tunnelling micro-
scope (STM). The results are, however, equally applicable to
other forms of SPM. For analysis of the full feedback loop of an
STM (Figure 3) we start by considering that at any time t the tip
will be above a particular area of the sample with height Z.
Thus, the tip encounters the topography as a of the time Z(t). By
using the extension of the z-axis of the piezoelectric scanner
(z-piezo), X(t) (note that when modelling a complete SPM X(t)
is no longer simply the output of the PI controller, as described
in Equation 7), we can express the tip–sample distance, D(t), as

(4)

The measured tunnelling current is a function of the distance
D(t), and also of the properties of the current-to-voltage (I–V)
amplifier of the STM. As the tunnel current depends exponen-
tially on the tip–sample distance the logarithm of the tunnel
current is used for the feedback to improve the linearity of the
feedback response. We shall refer to this log tunnel current as

(5)
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Figure 3: Schematic of an STM feedback loop. Z(t) and X(t) represent the sample height and z-piezo extension at time t respectively, and P is the
set-point current. Other SPM systems can be modelled using the same feedback system by replacing the operator , with an operator that
describes the tip–sample interaction and signal amplification of the SPM to be modelled.

where  is the time dependent operator fully describing
the tunnel junction, the I–V amplifier, and the logarithm opera-
tion.

The feedback controller then compares I(t) with a set-point, P,
and tries to correct for discrepancies by modifying the output,
O(t), to the z-piezo. We can write the feedback controller as the
time-dependent operator , and hence

(6)

Finally, we can link the z-piezo extension to the feedback
controller output with an operator, . This describes both
the high voltage amplifier use for the piezoelectric actuator and
the mechanical response of the z-piezo itself:

(7)

As the set-point acts as only a linear offset to the system we can
set P = 0. Thus, combining Equation 5 and Equation 6 under
this condition we get

(8)

Combining this with Equation 7 gives

(9)

Here we apply a Laplace transform so that the transfer func-
tions of the feedback components can be easily combined. This
gives

(10)

where  and  is the Laplace transform. Some
minor rearrangement gives

(11)

We are interested, however, in the output signal to the z-piezo,
not its physical extension, as this is what the SPM controller
records for the image. By simply considering the Laplace trans-
form of Equation 7 ( ) we arrive at a final
result of

(12)

For this paper we are working in arbitrary units. Thus, the simu-
lation needs to provide the relative response to change in gain
settings rather than a response in physical units. Thus, we can
set  ( ) as the logarithm should cancel
the exponential dependence of the tunnel junction, and the gain
of the I–V amplifier is simply linear, which is irrelevant if we
are working in arbitrary units. To specifically consider the
effect of the bandwidth of the SPM pre-amplifier, the func-
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tional form of  must be considered in more detail. More
detail on modelling of such electrical components is given in
the final section. Under this condition we can simplify
Equation 12 to

(13)

By applying the same argument used to derive Equation 3 we
can write the operator for the PI-controller acting on an arbi-
trary function f(t) as

(14)

and thus in s-space this becomes

(15)

Feedback performance without mechanical
modelling
Initially we will study the stability of the STM feedback without
modelling the mechanical resonances of the SPM system. For
this we can substitute  = 1 and Equation 15 into
Equation 13. The feedback behaviour has been studied for four
simulated surfaces:

(16)

(17)

(18)

(19)

which correspond to a unit step, a ramp added to a unit step, a
ramp, and a smooth topographical feature respectively. The
results for a range of different feedback parameters are plotted
in Figure 4. As the system is modelled in arbitrary units, time
and x-position are equivalent if the tip is moving at a constant
speed in x. It is clear from Figure 4 that the system behaves as
expected. Steady state offsets appear for proportional only
controllers if there is a z-ramp present, but is corrected by an
integral controller.

When discussing the stability of the system, qualitatively one
can see that tracking is maintained for a wide range of propor-
tional and integral gains. For large integral gains the system
oscillates, as expected. For all plotted gains oscillations always

ring-off, never resulting in positive feedback. To further investi-
gate the stability in the case of the unit step (Equation 16) the
full system output in s-space can be analysed for poles. The
final output in s-space is:

(20)

which results in three poles:

(21)

From this it is clear that if Kp and Ki are always positive (true
for a feedback loop) no pole ever has a positive real value, and
thus the system is always stable. We can also calculate that the
feedback output will not oscillate if .

Feedback performance with mechanical and
electrical modelling
For a more realistic model of SPM feedback one should also
model the response of electrical and mechanical components.
Equations for such extra components should be tested individu-
ally and added sequentially to reduce the possibility of error as
equations in s-space are rarely intuitive. To build up a full elec-
trical and mechanical model of an arbitrary system is of little
use when discussing stability as the system becomes too
complicated to analytically derive the poles. Instead the above
equations should be used in conjunction with real physical
values from a SPM system to understand its stability.

As an example we will include a mechanical resonance for the
z-piezo relative to its equilibrium position at its input voltage

(22)

where Q is the quality factor of the resonance and ω0 is the
angular eigenfrequency. It is important to note that this equa-
tion differs from that used in Reference [9], as this text mistak-
enly uses the mechanical response to a force rather than to a
coupled mechanical offset. It is possible to model the transfer
function of the z-piezo for an input voltage by replacing the
numerator with the relevant piezoelectric coefficient. This is not
done as it has no effect for a model in arbitrary units, and also
as in this form Equation 22 can equally be used as the response
of an AFM cantilever. It is, however, important to note that for
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Figure 4: The feedback response of an SPM, without the inclusion of mechanical resonances, calculated for four different topographies, and for a
range of feedback gains. Topographies in (a)–(d) correspond to Equation 16–Equation 19 respectively. Not all gains are plotted for all topographies to
avoid overcrowding.

(23)

some geometries of piezoelectric scanners, such as the tube
scanner, the motion of the principle eigenmode is perpendicular
to the z-axis [14], and thus cannot be included into our one
dimensional model.

Substituting Equation 22 and Equation 15 into Equation 13,
along with the equation for a unit step, the response of the full
system in s-space is given by

As the denominator is fifth order there are five poles. One pole
at s = 0 shows the final response to the step. The functional
form of the other four poles is too long to be qualitatively
useful. However, the trend in pole positions can be qualita-
tively understood. Two poles correspond to the ringing oscilla-
tions from the system without the mechanical resonance, though
the frequency and decay times are affected by the modelled
resonance. Two further poles represent the excitation of the
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Figure 5: The feedback response of an SPM, including mechanical resonance. (a) Shows the evolution of the feedback output for varying eigenfre-
quency of the mechanical resonance. The stability improves for increasing resonant frequency. For all plots the bandwidth of the HV amplifier is infi-
nite and the Q of the resonance does not vary. (b) Shows similar evolution in feedback output for varying Q of the resonance at a constant eigenfunc-
tion, with lower Q values stabilising the output. The cyan line shows the same resonance properties as the pink line, however by limiting the band-
width of the HV amplifier to near that of the resonance, the stability is improved significantly. Both insets are zooms of the most important region of
their respective plots.

mechanical resonance. These poles can move into the unstable
region if excited by high gains. The system can be made stable
under higher gains by increasing the eigenfrequency or
decreasing the Q of the resonator. For these reasons compo-
nents with a high quality factor and a low resonant frequency
are unsuitable as part of the SPM scanners.

In Figure 5a the PI controller output for a range of mechanical
eigenfrequencies with a constant quality factor is plotted against
time. Arbitrary units are used for both time and the PI output as
the evolution under increasing eigenfrequency is valid for any
magnitude. The y-axis is labelled PI output, not extension, as
these are no longer equivalent when mechanical resonance is
modelled. For all plotted outputs the bandwidth of the high
voltage (HV) amplifier driving the z-piezo was assumed to be
infinite, and hence Equation 22 was used without modification.

The evolution of the output under varying Q of the mechanical
resonance is shown in Figure 5b. Again, in agreement with the
polar analysis, the stability increases for lower Q. For higher Q
the resulting instability can be diminished or eradicated by
reducing the bandwidth of the HV amplifier. The transfer func-
tion of an amplifier with a finite bandwidth can be accurately
modelled as a first order low-pass filter [15]

(24)

where ωc is the cut-off angular frequency (3-dB point) of the
amplifier. As we are working in arbitrary units this amplifier
has a gain of 1, the numerator of the transfer function can be
replaced with the desired gain if needed. Including this, the full
transfer function of the amplifier and piezo becomes

(25)

The cyan line in 5b shows the significant improvement in
stability resulting from a cut-off frequency just above that of the
mechanical eigenfrequency. This, however, comes at the cost of
an increased overshoot. One also must be careful not to lower
the cut-off frequency below the resonance, nor to used an over-
damped (Q < 1/2) mechanical component as this can introduce a
significant phase lag, causing new instabilities. The MATLAB
code used to generate the data for Figure 4 and Figure 5 is
included as Supporting Information File 1. This can be used to
further explore the parameter space of the SPM PI controller.

The only component in Figure 3 that is not modelled, is the
tunnel junction and the logarithmic amplifier, . Consid-
ering the tunnel junction as an exponential decay with distance
produces a current that is first amplified by an I–V preamplifier
with a finite bandwidth. The logarithm of this output voltage is
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then taken either by a logarithmic amplifier or calculated
numerically by the SPM controller. This results in a functional
form for the time-domain operator action on the tunnel gap D(t)
being

(26)

where κ is the characteristic decay length of the tunnel junction,
and  is the time-domain operator corresponding to the
transfer function in Equation 24.

To calculate the s-space transfer function of Equation 26, one
would need to calculate the Laplace transform of the exponen-
tial of an arbitrary function D(t). This may be possible for the
specific functional forms of D(t) but is not generally applicable.
One can approximate  under the approximation that the
logarithm and  commute:

(27)

In arbitrary units, κ can be ignored and the transfer function of
the tunnel junction approximates to . Under
this approximation we ignore the effect of higher harmonics of
frequencies present in D(t) being generated by the exponential
dependence in the tunnel junction.

Conclusion
We have derived an appropriate updated model to understand
SPM feedback in the context of control theory. This model
shows the intrinsic stability of the SPM feedback controller in
an ideal environment. We further discuss methods to include
modelling of mechanical resonances showing low frequency
and high Q components to cause instabilities. By introducing
amplifiers with bandwidths just above the mechanical eigenfre-
quency these instabilities can be controlled. The method
presented here uses arbitrary units to show a generalised ap-
proach. The equations presented, however, can be used with
real parameters from SPM systems to understand and model
performance under a range of conditions.

Supporting Information
Supporting Information File 1
MATLAB code used to simulate the presented feedback
model.
[http://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-5-38-S1.zip]
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