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Abstract

This study proposes cascade neural networks to estimate the model

parameters of the Cox-Ross-Rubinstein risk-neutral approach, which, in

turn, explain the risk-return pro�le of �rms at venture capital and initial

public o�ering �nancing rounds. Combining the two methods provides

better estimation accuracy than risk-adjusted valuation approaches, con-

ventional neural networks, and linear benchmark models. The �ndings

are persistent across in-sample and out-of-sample tests using 3,926 ven-

ture capital and 1,360 US initial public o�ering �nancing rounds between

January, 1989 and December 2008. More accurate estimates of the risk-

return pro�le are due to less heterogeneous risk-free rates of return from

the risk-neutral framework. Cascade neural networks nest both the linear

and nonlinear functional estimation form in addition to taking account of

variable interaction e�ects. Better estimation accuracy of the risk-return

pro�le is desirable for investors so they can make a more informed judge-

ment before committing capital at di�erent stages of development and

various �nancing rounds.
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1 Introduction

This study proposes cascade neural networks to estimate the model parameters

of the Cox-Ross-Rubinstein (1979) risk-neutral approach, which, in turn, ex-

plain the risk-return pro�le of �rms at venture capital and initial public o�ering

�nancing rounds. Cascade neural networks nest both the linear and nonlinear

functional estimation form. In this study, I combine the risk-neutral approach

with the cascade neural network technique and compare the estimation accuracy

with the risk-adjusted valuation approaches, conventional neural networks, and

linear benchmark models.

Estimating the risk-return pro�le of privately held �rms at various stages

of development and �nancing rounds is di�cult. The use of traditional risk-

adjusted valuation techniques is problematic because conventional asset pricing

models such as the Capital Asset Pricing Model (CAPM) rely on stock market

trading data. However, privately held �rms do not have a stock market listing.

Also, the risk-return pro�le of new ventures changes as they advance through

di�erent stages of development and various �nancing rounds. Privately owned

�rms have no obligation to disclose information on the amount of capital injected

and their valuation at �nancing rounds. Published estimates of risk-adjusted

rates of return are rare. Ruhnka and Young (1987, 1991) and Wetzel (1981) are

among the few studies to publish estimates of the risk-adjusted rates of return

for various stages of development.

To overcome the limitations associated with conventional risk-adjusted val-

uation approaches, the literature documents alternative ways of estimating the

risk-return pro�le of venture capital and initial public o�ering �nancing rounds.

One strand of the literature focuses on staged �nancing. Staged �nancing is a

prominent feature as new venture �rms advance through di�erent development

stages. In staged �nancing, investors have an option, but not an obligation to

commit capital at consecutive �nancing rounds.1 Having option-like features

enables investors to share risk with �rms, minimise agency costs and informa-

tion asymmetry, while retaining some control over the �rm. These option-like

features enable this study to estimate the risk-return pro�le with the help of the

Cox-Ross-Rubinstein risk-neutral framework. This approach has several bene-

�ts. The risk-free rate of return is less subjective than estimates of the risk-

adjusted rates of return for di�erent stages of development and various �nancing

rounds.2 Therefore, the risk-neutral approach should have lower estimation er-

rors because the risk-free rates of return are less heterogeneous compared to
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the risk-adjusted rates of return. These assertions are consistent with �ndings

in the literature; for example, Seppä and Laamanen (2001). In their study,

the estimation accuracy of the risk-neutral approach is, in general, better when

compared to the risk-adjusted approach.3

Ideally, the features likely to impact on the model parameters of the Cox-

Ross-Rubinstein approach should be based on variables available to investors

at �nancing rounds. For example, Seppä and Laamanen (2001) use the stages

of development, the number of �nancing rounds prior to the current round, the

amount of capital injected, and the length of time between the �nancing rounds.

Casamatta and Haritchabalet (2007) note that the level of investor syndication

improves the screening process and thus helps to mitigate information asymme-

try about �rm value at �nancing rounds. Accordingly, Admati and P�eiderer

(1994) use the level of syndication to certify �rm value and risk. Hanley (1993)

uses the partial adjustment in the o�er price between the �ling of the prelimi-

nary and the �nal prospectus, to explain the mispricing at initial public o�ering

�nancing rounds. Gompers and Lerner (2000) �nd a correlation between the

valuation of private equity transactions and the performance of the aggregate

stock market. Loughran and Ritter (2004), Lowry (2003), and Yung, Çolak and

Wei (2008) identify two stylised facts from the IPO literature. Firstly, under-

pricing and issue volume are highly autocorrelated. Secondly, there is a positive

correlation between the two series.

Traditionally, the literature uses multivariate linear regressions to estimate

the risk-return pro�le. These studies rule out the possibility of nonlinearity. No

previous study has applied arti�cial neural networks in the present context de-

spite their widespread appeal as data driven, universal function approximators

in option pricing.4 For example, Hutchinson, Lo and Poggio (1994) use neural

networks to `learn' the Black-Scholes option pricing formula. In their analysis,

arti�cial neural networks provide more accurate valuation estimates when the

underlying asset pricing dynamics are unknown or when the option pricing for-

mula cannot be solved analytically. We also know from the literature that the

cascade neural network architecture can potentially provide better estimation

accuracy. For example, Malik and Nasereddin (2006) report that cascade neu-

ral networks have smaller estimation errors than conventional arti�cial neural

networks when estimating the gross domestic product of an economy.

Neither the application of the Cox-Ross Rubinstein framework nor the use

of cascade neural networks is novel. The contribution of the present study

lies in the combination of these two methods. This novel approach provides
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better estimation accuracy of the risk-return pro�le at �nancing rounds than

benchmark models. Better estimation accuracy is desirable for investors so they

can make a more informed judgement before committing capital at di�erent

�nancing rounds.

I use the Cox-Ross-Rubinstein approach to estimate the risk-neutral proba-

bility of an up-movement in �rm value between consecutive �nancing rounds. It

is surprising that the risk-neutral framework has not attracted more attention

in the literature despite the bene�ts of relying on risk-free rates of return. They

are less subjective and less heterogeneous than estimates of the risk-adjusted

rates of return.

In this paper, I use previously untested cascade neural networks to estimate

the Cox-Ross-Rubinstein model parameters. In the cascade architecture, the

researcher does not enforce the hidden nodes. They are determined by the

data endogenously following the true spirit of neural network learning. Neural

learning lets the data decide what the `true' underlying relationship is between

variables. I compare the estimation accuracy of the cascade neural networks to

conventional neural networks and linear benchmark models. Linear regression

models do not account for nonlinearity and variable interaction e�ects unless

they are speci�ed a priori. In this study, the neural networks leave the functional

form unrestricted and let the data determine what the `true' functional form is.

`Thick' models are neural networks, which rely on di�erent neuron connections,

number of neurons, starting values at network initialisation, and trimmed mean

estimates.5

In contrast to prior studies, I perform out-of-sample tests to assess the risk-

return estimation accuracy of the di�erent approaches using ex ante and ex

post values. Seppä and Laamanen (2001) only use in-sample comparisons to

assess estimation accuracy. This limited approach could undermine the validity

their �ndings. Therefore, the present study provides a truly acid test on model

performance by using unseen data, which are not part of the estimation set.

Moreover, I use a unique US dataset of 3,926 venture capital and 1,360 ini-

tial public o�erings �nancing rounds that have obtained a listing on a US stock

exchange between January, 1986 and December, 2008. This sample therefore

exceeds both the absolute number of observations and the period under in-

vestigation in Seppä and Laamanen (2001).6 My sample represents 39 industry

sectors using the 48-industry classi�cation of Fama and French (1997).7 In addi-

tion, the present study segments the data into venture capital and initial public

o�ering �nancing rounds to re�ect the di�erent risk-return pro�le. This allows
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the present analysis to include previously untested variables relating to the par-

tial adjustment of o�er prices in Hanley (1993) and the level of syndication in

Admati and P�eiderer (1994).

Generally, my �ndings show that combining the risk-neutral approach with

the cascade neural network methodology provides better estimation accuracy

of the risk-return pro�le than risk-adjusted valuation approaches, conventional

neural networks, and linear benchmark models. The �ndings are persistent

across in-sample and out-of sample tests.

2 The Cox-Ross-Rubinstein model

I use the Cox-Ross-Rubinstein method and the ex post �rm value to derive

the risk-return pro�le at �nancing rounds. The ex post �rm value re�ects the

post-money valuation and includes the capital injected at each �nancing round.

Firm value Vt,s at the beginning of stage s can increase to V u or decrease to V d

over one period (t, T ). The de�nition of the up-movement in �rm value us is:

us =
V uT,s
V dT,s

(1)

provided that us > 1. The down-movement is ds = 1/us and must satisfy 0 <

ds < 1. u and d allows calculating the implied risk-neutral success probability

of an up-movement p for each stage s:

ps =
erf,s(T−t)s − ds

us − ds
0 ≤ ps ≤ 1 (2)

where rf,s denotes the continuously compounded risk-free Treasury-bill rate.

Eq. (2) implies that higher returns have lower risk-neutral probabilities. Firm

value at the beginning of stage s is the discounted expectation under the risk-

neutral probability distribution (ps, 1− ps) of the �rm value in the up or the

down states at time T :

Vt,s = e−rf,s(T−t)s
(
psV

u
T,s + (1− ps)V dT,s

)
(3)

Discounting is at the risk-free rate of return over the period (t, T ). The risk-

neutral probability ps is the proxy measure for risk, while the up-movement in

�rm value us is the proxy measure for return.

The Cox-Ross-Rubinstein framework is useful in the present context. First,
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the model allows separating consecutive �nancing rounds into individual bino-

mial steps. The voluntary disclosure requirement of pre-IPO �nancing rounds

brings about the problem of incomplete information on capital transactions and

�rm valuations. Incomplete information for consecutive �nancing rounds makes

the analysis of compound option pricing models unfeasible. Second, �rms do not

follow an identical �nancing pattern as they advance through di�erent stages of

development. Some �rms are successful in raising su�cient �nance to skip entire

stages of development, whereas other �rms require several injections of capital

for a single stage of development. The binomial framework can be adapted to

suit any number of �nancing rounds. Third, the Cox-Ross-Rubinstein frame-

work operates in discrete time steps. This is a necessary condition for the

present analysis, because the valuation at consecutive �nancing rounds is only

observable at discrete points in time.

To validate the estimation accuracy of the Cox-Ross-Rubinstein framework,

I calculate the ex ante return û for each stage s by re-arranging Eq. (2):

ûs =
erf,s(T−t)s +

(
e2rf.s(T−t)s − 4p̂s (1− p̂s)

)0.5
2p̂s

(4)

where p̂s is the �tted risk-neutral probability. First, I have to estimate the value

of p̂s before I can calculate ûs. The �tted risk-neutral probability p̂s comes from

the �tted model parameters and the value of the independent variables obtained

from the in-sample estimation. For the linear regression model, the regression

coe�cients are the �tted model parameters. In the case of the neural networks,

the connection weights obtained during the neural learning (training) are the

�tted model parameters.

The independent variables used to estimate the risk-neutral probabilities at

each �nancing round includes the stage of development, the number of prior

�nancing rounds, the length of time between �nancing rounds, and the level

of investor syndication. The o�er price and the partial adjustment in the of-

fer price, are two additional independent variables to explain the risk-neutral

probabilities at initial public o�ering �nancing rounds. The return on the stock

market, the aggregate average underpricing, and the aggregate number of initial

public o�erings, control for the market conditions. To validate the estimation

accuracy of the Cox-Ross-Rubinstein framework, I repeat the calculations in

Eq. (2) and Eq. (4) with estimates of the risk-adjusted rates of return from

Ruhnka and Young (1987, 1991).

6



3 Data

Thomson Reuters' VentureExpert and New Issues database contain the data

on venture capital and initial public o�ering �nancing rounds. VentureXpert

provides the data on venture capital deals, including the post-money valua-

tions, the capital injected, the number of venture capital investors, the industry

classi�cation of the �rm, and the dates for each �nancing round. In addition,

VentureXpert supplies the classi�cation for the di�erent stages of development.

They are early stage, expansion, and later stage of development. Early-stage

investments normally provide capital for the initial product development, man-

ufacturing, sales and marketing. Investments at the expansion stage supply

capital to expand the current operations of �rms. Later-stage investments nor-

mally provide capital to �rms with established products or services. This round

typically constitutes the last source of funding before venture capital �rms exit

from their investment through a trade sale or initial public o�ering.

The New Issues database supplies the data on initial public o�erings, in-

cluding the o�er price, the relative change between the actual o�er price and

the expected price from the preliminary prospectus o�er price range. Thomson

Reuters provides 3,926 United States pre-IPO venture capital �nancing rounds

of 1,360 venture capital-backed �rms, which obtained a listing between January,

1986 and December, 2008. Jay Ritter's web page provides the monthly average

underpricing and the number of initial public o�erings.8 Thomson Financial

Datastream provides the equity market (Nasdaq) return and the risk-free rate

of return. The estimates of the risk-adjusted rates of return at di�erent stages

of development are from Ruhnka and Young (1987, 1991). The rates are 54.8%

for early stage, 42.2% for expansion, and 35.0% for later stage of development.

Table 1 presents the annual sample distribution of the sample �nancing

rounds.

[ Table 1 ]

Columns [2] and [3] report the number and the percentage of venture capital

�nancing rounds by calendar year. The number of venture capital �nancing

rounds increases from 1986 onwards, peaks in 1999, and then subsequently de-

creases again. Columns [4] to [9] report the number and the percentage of

venture capital rounds across the early, the expansion, and the later stage of

development. The expansion stage accounts for 42.46% of the total venture
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capital �nancing rounds, followed by the early stage (28.96%), and the later

stage (28.58%) of development. The annual distributions of rounds across the

di�erent stages of development follow a similar pattern to that of the total ven-

ture capital �nancing rounds. Columns [10] and [11] list the number and the

percentage of initial public o�ering �nancing rounds by calendar year. The dis-

tribution of the initial public o�erings is similar to the venture capital �nancing

rounds.

Table 2 shows the sample distribution of �nancing rounds across the Fama

and French (1997) 48-industry classi�cation. Column [1] lists the industry. 39

out of 48 industries (81.25%) have attracted venture capital investments and

funding from initial public o�erings.

[ Table 2 ]

Columns [2] and [3] report the total number and the percentage of venture

capital �nancing rounds. Venture capital �nancing rounds show a high con-

centration in a few industries and re�ect the characteristics of venture capi-

tal investments. The top �ve industries include Business Services (34.46%),

Pharmaceutical Products, (15.94%), Electronic Equipment (10.62%), Medical

Equipment (9.32%), and Computers (5.30%). These sectors account for more

than a combined 75% of all venture capital �nancing rounds. Columns between

[4] and [9] list the number and the percentage of the early stage, the expansion,

and the later stages of development. Columns [10] and [11] state the number

and the percentage of initial public o�erings across industries. The concentra-

tion of initial public o�erings follows a similar pattern to that of venture capital

�nancing rounds.

Table 3 lists the variables and Table 4 presents the summary statistics. The

sample �rms have a mean risk-neutral probability p of 33.38% for venture capital

�nancing rounds and 28.73% for initial public o�ering �nancing rounds. In

contrast, the mean risk-adjusted probability q is 45.05% for venture capital

�nancing rounds and 39.42% for initial public o�ering �nancing rounds. The

mean risk-adjusted rate of return is at least six times that of the risk-free rate

of return across the �nancing rounds. The mean multiplier on �rm value u

is 3.5 and 4.9 for venture capital and initial public o�ering �nancing rounds,

respectively. u has a high variation and re�ects the high growth potential of the

sample �rms across the di�erent stages of development. In this study, the risk-
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neutral probability p and the risk-adjusted probability q are the proxy measures

for risk, while the multiplier on �rm value u between consecutive �nancing

rounds is the proxy measure for return.

[ Table 3 ]

[ Table 4 ]

A zero-one dummy variable captures the early stage of development of the pre-

vous �nancing round. This variable features only in the risk-return estimation

of venture capital �nancing rounds. The random allocation of observations to

training, validation and test data sets for neural network estimation does not

always guarantee su�cient variation in the values of this variable. My sample

�rms have a mean of 2.6 �nancing rounds prior to the current round, whereas

initial public o�ering �nancings have a higher mean of 3.3 �nancing rounds

prior to the current round. Investors have injected a mean of US$ 32.3 million

at venture capital �nancing rounds. The mean capital raised at the initial pub-

lic o�ering �nancing round is US$ 71.7 and hence more than twice the amount

for venture capital �nancing rounds. It takes an average of 1.0 year and 1.3

years between �nancing rounds for venture capital and initial public o�erings,

respectively. A mean of 4.0 investors injected venture capital at the �nancing

round prior to the current round. The number of investors captures the level

of syndication. An average of 4.5 investors injected capital prior to the IPO

�nancing round. The mean o�er price per share is US$13.03. 5.82% is the

relative price change between the actual IPO price and the expected price from

the preliminary prospectus o�er price range. The remaining variables capture

equity market and new issues market conditions. The mean Nasdaq return be-

tween consecutive �nancing rounds is 18.04% for venture capital and 20.04% for

initial public o�ering �nancing rounds. The mean underpricing of �rms obtain-

ing a stock market listing is similar for �rms at venture capital or initial public

o�ering rounds. An average of 40.0 �rms have obtained a stock market listing

during the month of the current venture capital �nancing round, whereas the

mean is 4.5 for initial public o�ering rounds.

However, the dataset used in this study does have limitations. All sample

�rms have obtained venture capital investments and gone through a successful

initial public o�ering. Therefore, the sample �rms are more likely to have an

increase in value leading up to the initial public o�ering. This upward trend
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could potentially bias the �ndings of the present study. A more balanced sample

with decreasing �rm value between �nancing rounds could overcome this bias.

Unfortunately, privately held �rms are more likely to disclose information on

deals and valuation if �rm value increases. It is much more common to conceal

information on decreases in �rm value between �nancing rounds.9 Decreases

in �rm value could discourage future venture capital investments. Nevertheless,

the VentureXpert database represents one of the best publicly available datasets.

4 Estimation models

This section provides an overview of the di�erent models to estimate the Cox-

Ross-Rubinstein model parameters. In this study, I use linear regression mod-

els, conventional multilayer perceptron neural networks, and cascade neural net-

works. The multilayer perceptron is a pure nonlinear estimation model, whereas

the cascade neural network nests both the linear and nonlinear functional esti-

mation form.

4.1 Linear regression (Linear)

A simple linear ordinary least squares regression is the �rst benchmark model:

ps = β0 +

i∗∑
i=1

βixi,s + εs (5)

where p is the risk-neutral probability for each �nancing round s. x is the set of

explanatory variables i = 1, ..., i∗. β0 is the constant term, βi are the regression
coe�cients, and ε is the error term. The Jarque-Bera (1980) test for normality

and White's (1980) test for heteroskedasticity show that the regression residuals

are not well-behaved. Variable transformations cannot alleviate the problem and

hence the t-statistics use White's (1980) heteroskedasticity consistent standard

errors and covariances. The Lee-White-Granger (1993) test identi�es neglected

nonlinearity in the regression residuals. Therefore, since the functional form

of the nonlinearity is unknown, the present study resorts to arti�cial neural

networks.
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4.2 Multilayer perceptron neural network (MLP)

The conventional multilayer perceptron neural network (Rosenblatt, 1961; Rumel-

hart, Hinton and Williams, 1986) is the second benchmark model. Neural net-

works detect patterns from the underlying data through processing elements

connected together. These processing elements (known as neurons) are arranged

in two layers: the input and output layer. The number of neurons in the in-

put layer corresponds to the number of input (independent) variables, whereas

the number of output neurons in the output layer corresponds to the number of

output (dependent) variables. Between the input and output layer is the hidden

layer, which also has neurons. The purpose of the hidden layer is to identify the

nonlinear pattern and interaction e�ects between the input and output vari-

ables. Each neuron in the hidden layer and the output layer receives signals

from other neurons, whereas the input layer neurons receive their signals from

the input variables. The strength of the input signals from each neuron is stored

in the connection weights. A nonlinear transfer function is then applied to the

sum of the input connection weights to form the output signal of a neuron.

Accordingly, the multilayer perceptron has the following form:

nk,s = ωk,0 +

i∗∑
i=1

ωk,sxi,s (6)

Nk,s = T (nk,s) =
enk,s − e−nk,s

enk,s + e−nk,s
(7)

ps = γ0 +

k∗∑
k=1

γkNk,s + εs (8)

where T (nk,s) is the tansig activation function, i∗ are the input variables x,

and k∗ is the number of neurons. A linear combination of the input variables

xi,s, i = 1, ..., i∗, for each stage s, which the input weights ωk,i, i = 1, ..., i∗ and
the constant weight bias wk,0 form the variable nk,s. The activation function

squashes the nk,s variable to take on a value of Nk,s for each observation s. γ0

is the weight bias of the output neuron.

Neural learning (or training) determines the optimal value of the intercon-

nection weights to minimise the estimation error between the input and output

variables. Learning starts from initial randomised weights. The learning algo-

rithm adjusts the weights repeatedly to minimise the di�erence between the out-

put produced and the output desired of the dependent variable. In accordance
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with common practice, I divide the data into a training set, cross-validation set,

and test set.

The purpose of the training set is to estimate the connection weights. The

cross-validation set monitors the learning progress and terminates the training

as soon as the estimation error increases, to avoid over�tting a model to the

data. Finally, the test set evaluates the estimation performance on previously

unseen data.

However, a challenge arises in the multilayer perceptron architecture because

the researcher needs to decide on the connectivity of the neurons in the hidden

layer. Deciding on this connectivity directly a�ects the estimation performance.

The cascade neural network architecture determines the connectivity of neurons

from the data rather than having it enforced by the researcher.

4.3 Cascade neural network (Cascade)

I use the cascade neural network architecture as advocated in Fahlman and

Lebiere (1990). In this architecture, the input variables are not only linked

through the hidden layer of the squashed tansig functions, but also have direct

linear links to the output variable.10

nk,s = ωk,0 +

i∗∑
i=1

ωk,sxi,s (9)

Nk,s = T (nk,s) =
enk,s − e−nk,s

enk,s + e−nk,s
(10)

ps = γ0 +

k∗∑
k=1

γkNk,s +

i∗∑
i=1

βixi,s + εs (11)

The cascade architecture nests both the multilayer perceptron and the linear

model. This con�guration allows for the possibility of combined linear and non-

linear functional components. Cascade neural networks are particularly useful

in situations where there is no clear a priori expectation about the underlying

functional form. In the conventional multilayer perceptron neural network, the

researcher needs to determine the number of hidden nodes and their connectivity

to minimise the estimation error. In the cascade architecture, the hidden nodes

are determined by the data endogenously and not enforced by the researcher.

Cascade learning starts o� with no hidden neurons. The only connections are

12



the direct ones between the neurons in the input and the output layer. Hidden

nodes are added one at the time and the estimation error re-calculated. The

cascade algorithm adds additional hidden nodes until no further improvement

in the estimation performance takes place.

4.4 Model performance

In this paper, I use the Hannan and Quinn (1979) information criterion (HQIFC)

in the model building process to test the estimation accuracy. The HQIFC mea-

sure penalises the estimation error for the number of model parameters. More

complex neural network models have an increasing number of model parameters

when compared to the linear regression models. The HQIFC measure, there-

fore, allows for a better estimation comparison between di�erent model com-

plexities. I use Granger and Jeon's (2004) `thick' modelling technique which

relies on trimmed mean estimates of repeatedly trained neural networks. This

approach provides stable estimates across di�erent architectures. In addition to

the HQIFC measure, I also use traditional performance measures, including the

sum of squared errors (SSE), the mean squared error (MSE), and the coe�cient

of determination (R-squared).

4.5 Variable signi�cance testing

In this study, I perform variable signi�cance testing to assess the relevance of the

explanatory variables across all estimation models. In nonlinear relationships,

the functional form between the explanatory and the dependent variables only

requires that the conditional expectation varies with an increasing value in the

independent variable. The approach in variable signi�cance testing used in lin-

ear regression analysis is, therefore, not useful in detecting symmetric or periodic

nonlinear functions. Instead, I analyse the impact of the explanatory variables

on the sensitivity of the model �tness as advocated in Refenes and Zapranis

(1999). I use the HQIFC as the model-�tness sensitivity measure. An explana-

tory variable is signi�cant only if its inclusion leads to an improvement in the

HQIFC. I calculate the HQIFC sample variance by means of re-sampling with

replacement (bootstrap) to obtain empirical probability density functions. Test-

ing that variable xi is statistically signi�cant takes the form of H0: HQIFC(xi)

= HQIFC against the alternative HA: HQIFC(xi) < HQIFC and involves a
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t-test.

4.6 Out-of-sample testing

I apply the 0.632 bootstrap method to validate the estimation the error of the

di�erent models. This approach is based on Efron (1979, 1983).11 I estimate the

in-sample estimation error ê2 as the di�erence between the actual and the �tted

values from the di�erent model parameters and their functional approximations

f , as

ê2 =
1

n

n∑
i=1

(
yi − f

(
xi, b̂

))2
(12)

where yi is the actual value, f (·) is the estimated value of yi from the �tted

regression parameters b̂ and the independent variables xi using the sample length

n of the entire estimation set. The bootstrapping procedure involves drawing n

observations with replacement from the original sample length n and allocating

these observations to the new estimation set Q. I use Q to estimate the model

parameters b̂. Some of the observations in Q will be repeated, while others

will not have been picked. Unselected observations are allocated to the out-of-

sample test dataset. I then estimate the error ê(0) for those observations, which

appear in the test dataset from m bootstrap replications,

ê(0) =
1

m

m∑
j=1

1

# (i /∈ Q)

∑
i/∈Q

(
yi − f

(
xi, b̂(Q)

))2
(13)

To calculate the 0.632 bootstrap error, I take account of the in-sample bias

adjustment,

ω̂(0.632) = 0.632
(
ê(0) − ê2

)
(14)

to calculate ê(0.632),

ê(0.632) = ê2 + ω̂(0.632) (15)

or, equivalently,

ê(0.632) = 0.368
(
ê2
)
+ 0.632

(
ê(0)
)

(16)
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The weighting of 0.632 and 0.368 comes from the probability of observations

ending up in the estimation or the out-of-sample datasets. For example, a

particular observation has a probability of (1− 1/n) not being picked for the

estimation set. Therefore, for a large dataset, the probability of ending up in

the out-of-sample dataset after n draws with replacement is approximately(
1− 1

n

)n
≈ e−1 ≈ 0.368 (17)

It follows from Eq. (17) that approximately 63.2% of the observations end

up in the estimation dataset for any one bootstrap replication. Unfortunately,

the 0.632 error estimate does not follow a well-de�ned distribution. Therefore, I

cannot test if êτ(0.632)from model τ is signi�cantly di�erent from êυ(0.632) of model

υ.

I calculate the 0.632 bootstrap ratio (BR) to measure the `thick' estimation

errors relative to the ones obtained from the linear benchmark models. A BR

value of less than one indicates a gain for the `thick' models over the linear

benchmark regressions. In addition to the BR measure, I use the sum of squared

estimation errors (SSE), the mean squared error (MSE), the root mean squared

error (RMSQ), the mean absolute error (MAE), and the correlation coe�cient

(R) between the ex ante and ex post values.

I use the estimation models presented in this section to estimate the prob-

abilities of an up-movement in �rm value. An accurate approximation of the

success probabilities is an important intermediary step. The �tted probabilities

are used to calculate the ex ante returns from the Cox-Ross-Rubinstein model

in Eq. (4).

5 Findings

In this paper, I argue that estimating the Cox-Ross-Rubinstein model param-

eters with cascade neural networks provides better estimation accuracy of the

risk-return pro�le than risk-adjusted valuation approaches, conventional neu-

ral networks, and linear benchmark models. The �ndings are persistent across

in-sample and out-of-sample tests using 3,926 venture capital and 1,360 US

initial public o�ering �nancing rounds between January, 1989 and December

2008. However, the estimation error across the di�erent performance measures

remains relatively high. High estimation errors are consistent with common ob-
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servations of new venture investments which can have extreme outcomes in risk

and return.

5.1 In-sample performance

Table 5 presents the in-sample model performances of the estimation models

to explain the risk-neutral probabilities of an up-movement in �rm value at

�nancing rounds.

[ Table 5 ]

The cascade neural network (Cascade) estimates are more accurate than

those of the multilayer perceptron (MLP) and the linear benchmark model (Lin-

ear). This �nding is not surprising since the cascade neural networks nest both

the linear and nonlinear estimation models.

The outperformance of the cascade neural networks is compelling across all

venture capital �nancing rounds (Panel A) and initial public o�ering �nancing

rounds (Panel B). The Hannnan-Quinn information criterion (HQIFC), the sum

of squared error (SSE) and the mean squared error (MSE) have the smallest

values, while the coe�cient of determination (R-squared) has the highest values.

The coe�cients of determination have similar values to the R-squared reported

in Seppä and Laamanen (2001).12 The mean squared error (MSE) con�rms that

the partial adjustment in the o�er price (Hanley, 1993) improves the estimation

accuracy if we compare the initial public o�ering �nancing rounds (Panel B)

with the venture capital �nancing rounds (Panel A).

Both the Lee-White-Granger and the Jarque-Bera test indicate that the

residuals are not well behaved across all estimation models. The Lee-White-

Granger test indicates the presence of neglected nonlinearity in the residuals

of the linear regression models. In Panel A, we can reject linearity outright,

while in Panel B, 302 out of the one thousand randomly generated nonlinear

combinations of the predictor variables are statistically signi�cant in explain-

ing the residuals of the linear benchmark model. The Jarque-Bera test rejects

normality of the residuals across all estimation models. This result re�ects the

actual nature of the risk-return pro�le of venture capital and initial public of-

fering �nancing rounds. The variation in the risk-return pro�le for this type of

�rms is very high.
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Table 6 shows the results of the variable signi�cance testing. The risk-

neutral approach is consistent with the model predictions on the risk-return

characteristics of venture capital and initial public o�ering �nancing rounds.

All variables in the estimation models are statistically signi�cant at the 10%

level. For those variables, which are not statistically signi�cant, variable deletion

tests show deterioration in the estimation accuracy when excluded. Therefore,

these variables remain in the �nal model. Although the neural networks have

fewer predictor variables, the estimates of these models are more accurate than

the estimates of the linear regressions. The better performance of the cascade

neural network is due to its ability to take account of variable interaction e�ects

together with the nonlinear and linear functional form.

[ Table 6 ]

The signi�cance of the variables is, by and large, consistent with the ex-

tant knowledge of venture capital and initial public o�ering �nancing rounds.

Knowing the statistical signi�cance of the independent variables is an important

intermediary step in estimating the ex ante probabilities and, in turn, the ex

ante up-movement in �rm value.

Only regression analysis allows statements to be made about the direction

of the relationship between the risk-neutral probabilities and the independent

variables. Testing of the variable signi�cance in neural networks involves testing

the null hypothesis of no underlying pattern and the variable wrongly entering

the estimation models.

Early-stage investments have higher implied risk than �rms at higher stages

of development. More frequent �nancing rounds, an increasing number of in-

vestors, and larger amounts of capital injected have lower risk. The risk reduces

for an increasing length of time between two consecutive �nancing rounds. Posi-

tive adjustments in the initial public o�ering prices between the preliminary and

the actual o�er price have smaller risk-neutral probabilities. Higher o�er prices

also have smaller risk-neutral probabilities. Consistent with the risk-neutral

framework, the market return has a negative correlation with the risk-neutral

probabilities. The market return has a negative association with the risk-neutral

success probabilities. The number of initial public o�erings during the month

of the current �nancing round has a negative correlation with the risk-neutral

success probabilities. The relationship between the IPO return of companies
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during the month of the current �nancing round and the risk-neutral success

probabilities is inconclusive. The association is positive in the case of venture

capital investments and negative in the case of initial public o�ering �nancing

rounds. This reversed direction of the relationship could be an indication of an

over-speci�ed linear model. However, the variable in�ation factors (VIF) do not

raise any concerns for the problem of multicollinearity.

5.2 Out-of-sample performance

Table 7 presents the out-of-sample tests on the estimation accuracy of the suc-

cess probabilities on the up-movement in �rm value between two consecutive

�nancing rounds, the proxy measure for risk.

[ Table 7 ]

Overall, the estimation errors of the risk-neutral framework are smaller than

the risk-adjusted approach across the performance measures. There is only one

exception in which the correlation coe�cient (R) shows a better �t for the risk-

adjusted framework when compared to the risk-neutral framework. The major-

ity of the performance measures which compare the di�erent estimation models

favour the cascade neural networks (Cascade) compared to the benchmark mod-

els. There are only three exceptions in which the multilayer perceptron provides

more accurate estimates. These exceptions are for the correlation coe�cient (R)

in the risk-neutral framework (in Panel A), the 0.632 bootstrap ratio (BR) in

the risk-neutral and risk-adjusted framework (in Panel B).

Table 8 presents the estimation accuracy of the up-movements in �rm value

based on the �tted probabilities for each of the estimation models. The up-

movement in �rm value is the proxy measure for return.

[ Table 8 ]

Overall, the risk-neutral framework provides more accurate estimates in the up-

movement in �rm value between consecutive �nancing rounds when compared

to the risk-adjusted approach. There are only two exceptions. The correla-

tion coe�cient between the ex ante and the ex post values for the risk-neutral
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framework are lower for the multilayer perceptron (MLP) and the cascade neu-

ral networks (Cascade) in Panel B. The majority of performance measures show

that the cascade neural networks (Cascade) outperform their benchmark mod-

els. There are, again, only two exceptions to the rule. In Panel A, the correlation

coe�cient (R) and the mean absolute error (MAE) have higher estimation errors

in the case of the Cascade model than the MLP model.

The smaller estimation errors of the risk-neutral approach that relies on the

parameter estimation using cascade neural networks are likely to come from the

lower heterogeneity in the risk-free rates of return than the risk-adjusted rates

of return, and the estimation �exibility of cascade neural networks. Cascade

neural networks nest both the linear and nonlinear functional estimation form.

They also take account of any variable interaction e�ects without having to

model them a priori.

6 Extensions

There are many ways to extend this study. My selection of the Cox-Ross-

Rubinstein (1979) is crude. More sophisticated or alternative risk-neutral ap-

proaches may be available to improve the risk-return estimation accuracy. How-

ever, these techniques need to be able to overcome some of the challenges when

using large samples. For example, the length of the time between consecutive �-

nancing rounds di�er and new venture �rms do not follow an identical sequential

pattern in �nancing rounds to fund key development stages.

More sophisticated estimation techniques could also improve the risk-return

estimation accuracy. However, I do not claim that the `thick' neural network

models are the only alternative to linear regressions or indeed superior to other

estimation techniques per se. Neural networks are appealing because they can

approximate any functional form without theoretical guidance or prior knowl-

edge. My analysis shows that cascade neural networks which nest both the linear

and nonlinear functional form provide the most accurate estimates of the risk-

return pro�le at �nancing rounds. However, more sophisticated neural network

architectures or alternative estimation techniques are possible directions for fu-

ture research. Some of these estimation techniques could also try and consider

possible structural breaks between venture capital and initial public o�erings.

Some of the variable signi�cance tests imply that the linear benchmark models
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are overspeci�ed. Parsimonious `thick' models with fewer independent variables

provide more accurate forecasts.
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Notes

1Sahlman (1993) identi�es three options for venture capital �rms: the option
to re-value an investment, the option to inject additional capital, and the option
to abandon an investment.

2Estimates of the risk-adjusted rates of return in Ruhnka and Young (1987,
1991) are: 54.8% for early stage, 42.2% for expansion stage, 35.0% for later
stage of development of venture capital investments.

3The following example illustrates the two approaches. Say there is an equal
probability that cash �ow payouts of a �rm are $1 or $0 after one period. Assume
that these cash �ow payouts are risky. If the risk-adjusted discount rate is 20%
the expected �rm value is (0.5× $1 + 0.5× $0) × e−0.2×1 = $0.41. This is the
risk-adjusted expected �rm value in present dollars. We can also obtain the
$0.41 from the same original payouts, but risk-adjusting the probabilities of
occurrence of each payout which we then discount at the risk-free rate. Suppose
that the risk-free rate is 2.5%. We can calculate the expected $0.41 by solving
the risk-neutral probability p in (p× $1 + (1− p)× $0) × e−0.025×1 = $0.41
which is 42%.

4See, for example, Hornick, Stinchcombe, and White (1989) and Cooper
(1999) for details on the neural network methodology. Zhang, Patuwo, and Hu
(1998) provide a survey of the literature on arti�cial neural networks.

5See, for example, Billio, Sartore and To�ano (2000), Dunis, Laws and Evans
(2008), and Franses and van Dijk (2000) for descriptions of this methodology.

6Their sample consists of 597 observations of which 421 are venture capital
�nancing rounds and 176 represent initial public o�ering �nancing rounds. The
sample period only covers 1998 and 1999.

7The sample distribution across industries is unclear in Seppä and Laamanen
(2001) and could cast doubt on the generalizability and validity of their �ndings.

8I thank Jai Ritter for making this data publicly available on http://bear.
warrington.u�.edu/ritter/ipodata.htm.

9The sample �rms show a decrease in �rm value in 170 out of 3,926 (4.3%)
venture capital �nancing rounds, and 60 out of 1,360 (4.4%) initial public o�er-
ing �nancing rounds.

10For applications see, for example, AlFuhaid and El-Sayed (1997) and Mc-
Nelis and Yoshino (2004).

11For a detailed discussion of the bootstrap method see, for example, Efron
and Tibshirani (1993) or Hall (1995). Studies applying bootstrapping include,
for example, Brock, Lakonishok and LeBaron (1992), Kosowski, Naik and Teo
(2007), Kothari and Shanken (1997), Kothari and Warner (1997), etc.

12They report a coe�cient of determination of 0.22 to explain the risk-neutral
probabilities.
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Table 1: Sample distribution across calendar year
This table presents the sample distribution of the venture capital and initial public

o�ering �nancing rounds across the calendar years. The sample consists of 3,926 ven-

ture capital �nancing rounds and 1,360 initial public o�ering �nancing rounds between

January, 1986 and December, 2008, identi�ed from Thomson Reuters' VentureXpert

and New Issues database. Column [1] reports the calendar year. Columns [2] and

[3] report the number and the percentage of venture capital �nancing rounds by cal-

endar year. Columns [4] and [5] state the number and the percentage of early stage

�nancing rounds in relation to the total venture capital �nancing rounds. Columns [6]

and [7] describe the number and the percentage of expansion stage �nancing rounds

in relation to the total venture capital �nancing rounds. Columns [8] and [9] convey

the number and the percentage of later stage �nancing rounds in relation to the to-

tal venture capital �nancing rounds. The early stage, expansion, and later stages of

development classi�cation of �nancing rounds are from the VentureXpert database.

Columns [10] and [11] report the number and the percentage of initial public o�ering

�nancing rounds in relation to the total initial public o�ering �nancing rounds by

calendar year.

Total Early stage Expansion Later stage IPO

Year N % N % N % N % N %

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

1986 6 0.15 3 50.00 2 33.33 1 16.67 0 0.00

1987 4 0.10 3 75.00 1 25.00 0 0.00 0 0.00

1988 9 0.23 5 55.56 2 22.22 2 22.22 1 0.07

1989 17 0.43 13 76.47 3 17.65 1 5.88 0 0.00

1990 20 0.51 12 60.00 4 20.00 4 20.00 3 0.22

1991 30 0.76 16 53.33 12 40.00 2 6.67 7 0.51

1992 60 1.53 31 51.67 17 28.33 12 20.00 16 1.18

1993 115 2.93 37 32.17 46 40.00 32 27.83 40 2.94

1994 138 3.52 62 44.93 50 36.23 26 18.84 25 1.84

1995 276 7.03 86 31.16 129 46.74 61 22.10 106 7.79

1996 381 9.70 162 42.52 151 39.63 68 17.85 156 11.47

1997 417 10.62 201 48.20 151 36.21 65 15.59 106 7.79

1998 412 10.49 156 37.86 178 43.20 78 18.93 71 5.22

1999 672 17.12 149 22.17 306 45.54 217 32.29 249 18.31

2000 437 11.13 85 19.45 202 46.22 150 34.32 215 15.81

2001 159 4.05 41 25.79 78 49.06 40 25.16 37 2.72

2002 106 2.70 21 19.81 53 50.00 32 30.19 24 1.76

2003 144 3.67 23 15.97 66 45.83 55 38.19 27 1.99

2004 198 5.04 15 7.58 95 47.98 88 44.44 90 6.62

2005 128 3.26 9 7.03 41 32.03 78 60.94 53 3.90

2006 104 2.65 4 3.85 47 45.19 53 50.96 55 4.04

2007 87 2.22 3 3.45 31 35.63 53 60.92 73 5.37

2008 6 0.15 0 0.00 2 33.33 4 66.67 6 0.44

3926 100.00 1137 28.96 1667 42.46 1122 28.58 1360 100.00
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Table 3: Variable de�nitions
This table presents the de�nitions of the dependent and the independent variables. The
risk-neutral success probability p and the risk-adjusted success probability q are the proxy
measures for risk between consecutive �nancing rounds. The multiplier in the up movement
in �rm value u is the proxy measure for return between consecutive �nancing rounds.

Variable code De�nition

p The Cox-Ross-Rubinstein risk-neutral success probability of an

up-movement in �rm value between consecutive �nancing rounds as

de�ned in Eq. (2)

q The Cox-Ross-Rubinstein risk-adjusted success probability of an

up-movement in �rm value between consecutive �nancing rounds. q is

obtained from replacing the continuously compounded �ve-year

Treasury-bill rate in Eq. (2) with the continuously compounded

risk-adjusted rate of return from Ruhnka and Young (1987, 1991) for

the corresponding development stage.

u The multiplier on �rm value between two consecutive �nancing rounds.

u is the post-money �rm value at the current �nancing round divided

by the post-money �rm value at the previous �nancing round as

de�ned in Eq. (1).

rf The continuously compounded �ve-year Treasury-bill rate.

r The continuously compounded risk-adjusted rate of return from

Ruhnka and Young (1987, 1991) for the corresponding development

stage: 54.8% for early-stage, 42.2% for expansion, and 35% for later

stage of development.

Early A dummy variable that is set to one if the �rm is at an early stage of

development at the prior venture capital �nancing round. Early-stage

is identi�ed from the VentureXpert database.

Rounds The total number of �nancing rounds of a �rm prior to the current

�nancing rounds.

Capital The amount of capital (US$ million) raised at the current �nancing

round.

T ime The time period in years between two consecutive �nancing rounds.

Offer Price The initial public o�ering price (US$) per share.

Change price Hanley's (1993) partial adjustment in the o�er price between the �ling

of the preliminary and the �nal prospectus, identi�ed from Thomson

Reuter's New Issues database.

Syndication The number of venture capital investors at the previous �nancing

round identi�ed Thomson Reuter's VentureXpert.

Marketreturn The return on the Nasdaq index between two consecutive �nancing

rounds.

IPO return The equally weighted average initial public o�ering underpricing during

the month of the current �nancing round from Jay Ritter's web site [a].

Number IPOs The total number of initial public o�erings during the month of the

current �nancing rounds from Jay Ritter's web site [a].

[a] [http://bear.warrington.u�.edu/ritter/ipodata.htm]
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Table 4: Summary statistics
This table presents the summary statistics for 3,926 venture capital �nancing rounds
(Panel A) and 1,360 initial public o�ering �nancing rounds (Panel B) between January,
1986 and December, 2008. Table 3 provides the variable de�nitions.

Variable code Unit 25% Mean Median 75%

Panel A: Venture capital �nancing rounds

p 0.2171 0.3338 0.3210 0.4316
q 0.2787 0.4504 0.4226 0.5964
u 1.5470 3.5100 2.3489 3.9473
rf % 4.8522 5.3620 5.5638 6.0269
r % 30.0105 36.4547 35.2064 43.6964
Early 0.0000 0.2974 0.0000 1.0000
Rounds 1.0000 2.5485 2.0000 3.0000
Capital US$ million 6.3900 32.2830 17.8800 42.5050
T ime Years 0.4712 1.0227 0.8356 1.3425
Syndication 2.0000 4.0035 3.0000 6.0000
Market return % 4.8532 18.0366 16.7482 32.5921
IPO return % 11.6000 31.3233 18.5000 39.9000
Number IPOs 21.0000 40.0217 39.0000 56.0000

Panel B: Initial public o�ering �nancing rounds

p 0.1792 0.2873 0.2756 0.3711
q 0.2435 0.3942 0.3576 0.5127
u 1.9251 4.9356 2.9704 5.0454
rf % 4.6996 5.3281 5.5929 6.0268
r % 30.0105 33.6499 35.2064 35.2064
Rounds 2.0000 3.2706 3.0000 4.0000
Capital US$ million 35.8600 71.7069 55.2000 90.0000
T ime Years 0.4384 1.3458 0.9123 1.7781
Offer price US$ 10.0000 13.0331 12.5000 16.0000
Change price % �11.1111 5.8178 5.6349 20.0000
Syndication 2.0000 4.5079 4.0000 6.0000
Market return % 5.0015 20.0357 17.6076 35.6307
IPO return % 11.9400 32.2658 18.7000 41.4000
Number IPOs 2.0000 4.5079 4.0000 6.0000
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Table 5: In-sample model performance
This table presents the in-sample model performance to explain the risk-neutral prob-
abilities of 3,926 venture capital �nancing rounds (Panel A) and 1,360 initial public
o�ering �nancing rounds (Panel B) between January, 1986 and December, 2008. The
estimation models are linear regression (Linear) from Eq. (5), multilayer-perceptron
neural networks (MLP) from Eq. (8), and cascade neural networks (Cascade) from
Eq. (11). The in-sample diagnostics include the Jarque-Bera (JB) test of normality
of residuals, the Lee-White-Granger (LWG) test of nonlinearity, the Hannan-Quinn
information criterion (HQIFC), the sum of squared (SSE), the mean squared error
(MSE), and the coe�cient of determination (R-squared).

Linear MLP Cascade

Panel A: Venture capital �nancing rounds

JB [a] 0.0000 0.0000 0.0000

LWG [b] 1000 � �

HQIFC �3.9425 �3.9909 �3.9922

SSE 66.6972 62.2336 60.3471

MSE 0.0193 0.0181 0.0180

R-squared 0.2007 0.2545 0.2768

Panel B: Initial publico�ering �nancing rounds

JB [a] 0.0000 0.0000 0.0000

LWG [b] 302 � �

HQIFC �4.0720 �4.0645 �4.0730

SSE 21.2097 21.3544 20.9813

MSE 0.0169 0.0169 0.0168

R-squared 0.1936 0.1881 0.2027

[a] Denotes probability value.

[b] The number of trials for neglected nonlinearity out of 1000 experiments.
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Table 6: Variable signi�cance testing
This table presents the statistical signi�cance of the independent variables to explain
the risk-neutral success probabilities. The sample consists of 3,926 venture capital
�nancing rounds (Panel A) and 1,360 initial public o�ering �nancing rounds (Panel
B) between January, 1986 and December, 2008. The estimation models are linear
regression (Linear) from Eq. (5), multilayer-perceptron neural networks (MLP) from
Eq. (8), and cascade neural networks (Cascade) from Eq. (11).

Linear MLP Cascade

Panel A: Venture capital �nancing rounds

t-statistic [a] t-statistic [b] t-statistic [b]

Early �10.7017*** �129.6933*** �77.3485***
Rounds 8.7313*** �88.2585*** �67.2773***
Capital �20.0496*** �587.5666*** �503.9714***
Time 1.0363 �2.1890** �6.0487***
Syndication 1.0811 �25.0509*** �9.6924***
Market return �4.4288*** �46.2289*** �4.4521***
IPO return �3.0100*** � �

Number IPOs �6.0129*** �35.9740*** �13.8847***
Panel B: Initial public o�ering �nancing rounds

t-statistic [a] t-statistic [b] t-statistic [b]

Rounds 5.5058*** �112.4975*** �53.4745***
Capital �0.8339 � �

Time 0.2942 13.8858 �28.5888***
Syndication 0.0296 � �

O�er price �3.0675*** �75.2167*** �49.0918***
Change price �6.2943*** �81.6764*** �61.8299***
Market return �5.1676*** �110.9548*** �58.4517***
IPO return 1.9479** � �

Number IPOs �0.0520 � �

[a] t-statistics are based on partial derivatives of the dependent and the independent
variables, ∂y/∂xi. The t-statistics are White's (1980) heteroskedasticity consistent
errors and covariances. The values of the regression intercepts are not reported.
[b] Testing that the independent variable xi is statistically signi�cant is based on H0:
HQIFC(xi) = HQIFC against the alternative HA: HQIFC(xi) < HQIFC and involves
a t-test. The one-tailed p-values are calculated from empirical density functions and
bootstrap analysis.

***, ** denotes 1% and 5% signi�cance levels, respectively.
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Table 7: Out-of-sample tests on the estimation accuracy of risk
This table presents the out-of-sample estimation errors and comparison between the
risk-neutral and the risk-adjusted framework. The risk-neutral success probability p
and the risk-adjusted success probability q are the proxy measures for risk as de�ned
in Table 3. The out-of-sample observations are randomly selected from 3,926 venture
capital �nancing rounds (Panel A) and 1,360 initial public o�ering �nancing rounds
(Panel B) between January, 1986 and December, 2008. The estimation models are
linear regression (Linear) from Eq. (5), multilayer perceptron neural networks (MLP)
from Eq. (8), and cascade neural networks (Cascade) from Eq. (11). BR is the ratio
of the 0.632 bootstrap (Eq. 16) estimates in relation to the estimates of the linear
regression models. SSE is the sum of squared error. MSE is the mean squared error.
RMSQ is the root mean squared error. R is the correlation coe�cient between the ex
ante and the ex post probabilities.

Panel A: Venture capital �nancing rounds

Risk-neutral framework Risk-adjusted framework

Linear MLP Cascade Linear MLP Cascade

BR � 0.9406 0.9387 � 0.9631 0.9620

SSE 25.0680 23.2678 23.1834 42.6531 41.1782 40.8564

MSE 0.0197 0.0183 0.0182 0.0407 0.0393 0.0390

RMSQ 0.1404 0.1352 0.1350 0.2018 0.1983 0.1975

R 0.4664 0.5290 0.5256 0.3989 0.4304 0.4377

Panel B: Initial public o�ering �nancing rounds

Risk-neutral framework Risk-adjusted framework

Linear MLP Cascade Linear MLP Cascade

BR � 1.0081 0.9946 � 0.9815 0.9931

SSE 7.5474 6.9017 6.8030 13.9767 13.9124 13.8335

MSE 0.0160 0.0153 0.0151 0.0339 0.0330 0.0336

RMSQ 0.1265 0.1238 0.1230 0.1842 0.1838 0.1832

R 0.4233 0.4976 0.5057 0.4427 0.4463 0.4521
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Table 8: Out-of-sample tests on the estimation accuracy of return
This table presents the out-of-sample estimation errors and comparison between the
risk-neutral and the risk-adjusted framework. The upmovement in �rm value u is the
proxy measure for return as de�ned in Table 3. The out-of-sample observations are
randomly selected from 3,926 venture capital �nancing rounds (Panel A) and 1,360 ini-
tial public o�ering �nancing rounds (Panel B) between January, 1986 and December,
2008. The estimation models are linear regression (Linear) from Eq. (5), multilayer
perceptron neural networks (MLP) from Eq. (8), and cascade neural networks (Cas-
cade) from Eq. (11). BR is the ratio of the 0.632 bootstrap (Eq. 16) estimates in
relation to the estimates of the linear regression models. SSE is the sum of squared
error. MSE is the mean squared error. RMSQ is the root mean squared error. R is
the correlation coe�cient between the ex ante and the ex post up-movement in �rm
value.

Panel A: Venture capital �nancing rounds

Risk-neutral framework Risk-adjusted framework

Linear MLP Cascade Linear MLP Cascade

SSE 65480 60166 60009 89874 68871 68434

MSE 18.9413 17.4042 17.3588 31.7351 24.3190 24.1645

MAE 1.8254 1.7217 1.7094 2.0039 1.8466 1.8538

R 0.2546 0.4387 0.3776 0.1388 0.3973 0.3749

Panel B: Initial public o�ering �nancing rounds

Risk-neutral framework Risk-adjusted framework

Linear MLP Cascade Linear MLP Cascade

SSE 124899 126475 122902 780057 260477 255999

MSE 98.8126 100.0594 97.2327 683.0630 228.0883 224.1671

MAE 2.7114 2.7162 2.6696 4.0774 3.1903 3.1668

R 0.3439 0.3422 0.3686 0.0770 0.6192 0.6260
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