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Abstract. We study localised activity patterns in neural field equations posed on the Euclidean
plane; such models are commonly used to describe the coarse-grained activity of large ensembles of
cortical neurons in a spatially continuous way. We employ matrix-free Newton-Krylov solvers and
perform numerical continuation of localised patterns directly on the integral form of the equation.
This opens up the possibility to study systems whose synaptic kernel does not lead to an equivalent
PDE formulation. We present a numerical bifurcation study of localised states and show that the
proposed models support patterns of activity with varying spatial extent through the mechanism of
homoclinic snaking. The regular organisation of these patterns is due to spatial interactions at a
specific scale associated with the separation of excitation peaks in the chosen connectivity function.
The results presented form a basis for the general study of localised cortical activity with inputs and,
more specifically, for investigating the localised spread of orientation selective activity that has been
observed in the primary visual cortex with local visual input.
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1. Introduction. One of the most challenging research questions in neuroscience
is understanding the relationship between spatially-structured cortical states and the
underlying neural circuitry that supports them. A popular approach for analysing
coarse-grained activity of large ensembles of neurons in the cortex is to model corti-
cal space as a continuum. Since the pioneering work of Wilson and Cowan [65, 66]
and Amari [1,2], continuous neural field models have become a popular and effective
tool in neuroscience. In such models, the large-scale activity of spatially-extended
networks of neurons is described in terms of nonlinear integro-differential equations,
whose associated integral kernels represent the spatial distribution of neuronal synap-
tic connections. The canonical Wilson-Cowan-Amari neural field equation [2, 66]

∂

∂t
u(r, t) = −u(r, t) +

∫

Ω

w(r, r′)S
(
u(r′, t)

)
dm(r′) (1.1)

describes the evolution of the average membrane voltage potential of a neuronal pop-
ulation u(r, t), at position r on the cortical domain Ω (with distance measure dm)
and at time t. The nonlinear function S represents the neural firing rate, whereas
the connectivity function w(r, r′) models how a population of neurons at position r
on the cortex interacts with a population at position r′. Frequently-used firing rate
functions S include the Heaviside step function, piecewise-linear functions or smooth
sigmoidal functions. Various choices are also possible for the connectivity function,
which is often assumed to be translation invariant (that is, dependent only on the
Euclidean distance ‖r− r′‖) and localised in space. The cortical domain Ω is usually
a subset of Rd, with d = 1 or, in more realistic models, d = 2. For a recent review on
neural fields modeling, we refer to Bressloff [11].

Unlike spiking neural network models, continuous field models have the advan-
tage that analytic techniques for partial differential equations (PDEs) can be adapted
to study the formation of patterns and their dependence upon control parameters.
Various types of coherent structures have been observed in neural field models, rang-
ing from spatially and temporally periodic patterns to travelling waves and spiral
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waves [22, 31, 46]. Neural field equations have also successfully been used to model a
wide range of neurobiological phenomena such as visual hallucinations [12,32], mech-
anisms for short term memory [48] and feature selectivity in the visual cortex [8,39].

A common strategy to derive analytical and numerical results for the nonlo-
cal Eq. (1.1) is to assume translation invariance and exploit the freedom in the choice
of the connectivity function w: if the Fourier transform of w is a rational function, it
is possible to derive a PDE formulation that is equivalent to the integral model [46].
Coherent structures supported by the original model can then be conveniently con-
structed and analyzed in the PDE framework. Indeed, previous studies have been
carried out in cases where the synaptic kernel led to an equivalent PDE formula-
tion [47,48], albeit some of the numerical strategies to perform numerical bifurcation
analysis are applicable to generic connectivity functions w [52]. This paper is moti-
vated by the desire to develop numerical algorithms for Eq. (1.1) without relying on
an equivalent PDE formulation. More precisely, we discuss how to solve Eq. (1.1)
when Ω = R2, S is a smooth function of sigmoidal type and w has a generic Fourier
transform.

The main tools for our investigation are time integration and numerical continu-
ation. When a PDE model is available, we use standard techniques for both tasks, in
line with what is typically done in several other works in this field [45–47]. However
we show that, when the integral of Eq. (1.1) can be written as a convolution, it is
convenient to employ a fast Fourier transform (FFT) for both time stepping and nu-
merical continuation. Direct numerical simulations of Eq. (1.1) using FFTs have been
performed before on full integral models [26, 36]. In the present paper, we combine
FFTs with Newton-Krylov solvers [42,43], thus opening up the possibility to perform
numerical continuation directly on the integral model.

We concentrate our effort on the emergence and bifurcation structure of stationary
localised patterns in planar neural field models of the form Eq. (1.1). Indeed, this type
of solution is of great interest in models of prefrontal cortex, where localised states
are believed to characterise working memory [21, 37]. Recently, localised regions of
activity have been observed in the cat primary visual cortex [20] when the animal
is presented with localised-oriented input. Moreover, some reported drug-induced
visual hallucinations have also been found to be spatially localised [60] indicating the
existence of spatially localised regions of activity in the human primary visual cortex.

Localised states have been observed in a wide variety of nonlinear media [44]. The
bifurcation structure of localised solutions has been studied extensively in the Swift–
Hohenberg equation posed on the real line [14, 15, 19, 28, 67] and on the plane [4, 7,
49–51,57,58]. In this context, a well-known mechanism for the formation of localised
states is homoclinic snaking : solutions with one or more bumps at the core emerge
from the trivial homogeneous state and undergo a series of fold bifurcations, giving
rise to a hierarchy of states with an increasing number of bumps. This scenario seems
to be a common footprint of localised patterns, extending far beyond the prototypical
Swift–Hohenberg equation [40,59] and to have also been found in nonlocal equations
such as neural fields [24,33,47,48].

An example of homoclinic snaking is given in Fig. 1.1, where we show a bifurcation
diagram for the integral model (1.1) posed on the real line with

w(x, x′) := w(|x− x′|) = e−b|x−x
′|(b sin |x− x′|+ cos(x− x′)), (1.2)

S(u) =
1

1 + e−µu+θ
− 1

1 + eθ
, (1.3)

where b and µ control the decay of the synaptic kernel and the slope of the sigmoidal
firing rate respectively, while θ is a threshold value. As µ varies, the trivial steady
state u = 0 bifurcates at a subcritical reversible Hopf bifurcation, from which a
branch of periodic solutions and a branch of localised states originate. Beyond the
fold Lp on the periodic branch, a stable periodic state, shown in the inset (a), coexists
with the trivial state. The branch of localised states features solutions with an odd
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Fig. 1.1. Bifurcation diagram showing snaking behavior for the 1D neural field equation us-
ing Eqs. (1.2)–(1.3) with θ = 3.5 and b = 0.4, where stable (unstable) branch segments are rep-
resented with solid (dashed) lines. Two branches of solutions bifurcate from the trivial states at
a reversible Hopf bifurcation RH, namely a branch of periodic solutions (grey) and a branch of
localised solutions (black). The periodic branch is stable above the fold Lp. The localised branch
undergoes a series of fold bifurcations giving rise to stable branch segments with increasing numbers
of bumps. Several examples of solutions are shown in the insets (a)–(d). Stable localised states exist
for µ ∈ [µ1, µ2].

number of bumps and snakes for µ ∈ [µ1, µ2]; in this interval, localised solutions
with different spatial extent coexist and are stable (see insets (b)–(d)). We note the
existence of a counterpart even-numbered-bump solution branch along with so-called
ladder branches connecting the odd and even branches (not shown). For the same
connectivity function used here, snaking has been shown to occur in terms of the
parameter b [48]. Elsewhere, Elvin et al. [30] used the Hamiltonian structure of the
steady states of the model (1.1) with (1.2)–(1.3) and developed numerical techniques
to find homoclinic orbits of the system. Snaking has also been shown to occur with a
Mexican-hat connectivity function [24] and for a wizard-hat connectivity function [33].
In the latter study, normal form theory for a reversible Hopf bifurcation was applied
to prove the existence of localised solutions and a comprehensive parameter study was
carried out with numerical continuation in terms of two parameters controlling the
nonlinearity and a third controlling the shape of the connectivity function.

For the neural field equation posed on the Euclidean plane, various types of
spatially localised two-dimensional states have been found including radially sym-
metric solutions [13, 34, 36, 47, 48, 61, 64], rings [26, 55], hexagonal patches [34, 47]
along with more complex breathing and travelling states [25, 35, 55]. When working
in the Euclidean plane, it is still possible to derive an equivalent PDE for suitable
choices of the connectivity function w or of its Fourier transform ŵ [47]. Following
this approach, normal form theory has recently been applied to prove the existence
of localised solution branches in both the Euclidean plane and on the hyperbolic
disk with a wizard-hat connectivity function [34]. When these solutions were path-
followed using numerical continuation, it was found that the branches do not undergo
snaking-type behaviour. However, for the connectivity (1.2), snaking was shown to
occur for branches of radially-symmetric solutions [47]. Furthermore, the existence of
D6-symmetric and D3-symmetric localised states were found at isolated parameter
values.

In Fig. 1.2 we show time evolution of the nonlocal Eq. (1.1) posed on the plane,
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Fig. 1.2. Time integration of the integral model (1.1) posed on the plane, with connectivity
function given by Eq. (1.4) and firing rate function given by Eq. (1.2); in all simulations θ = 5.6,
b = 0.4. (a)–(c): Convergence of a small bump of activity, given by Eq. (A.1), to a spot solution
with µ = 3.4; time as indicated in panels. (d)–(f): Convergence of a hexagonal pattern, given by
Eq. (A.2), to a stable D6-symmetric localised state with µ = 3.2. (g)–(i) With the same initial
condition as (d), divergence away from a localised state to a periodic state with µ = 3.4.

with radially-symmetric connectivity function1

w(r, r′) := w(‖r− r′‖) = e−b‖r−r
′‖(b sin ‖r− r′‖+ cos ‖r− r′‖), (1.4)

and sigmoidal firing rate function given by Eq. (1.3); various combination of initial
conditions and control parameters lead to three different steady states. We note
that this models supports localised states, such as the radially-symmetric spot of
panel (c) or the hexagonal pattern of panel (f). Furthermore, changes in the slope
of the sigmoidal firing rate affect the stability properties of the solutions, leading to
other localised states or to domain-covering patterns such as the one in panel (i). In
the present paper we will focus on localised planar patterns (with various symmetry
properties) that coexist with the trivial state u = 0 and with fully periodic states,
similar to the one shown in Fig. 1.1 for the 1D case. In two spatial dimensions,
periodic and localised solution branches bifurcate from the trivial state at a Turing
instability (as opposed to a reversible Hopf in 1D) and snake irregularly, in a similar
fashion to what is found for the planar Swift–Hohenberg equation [50].

The present paper has two main results. The first is that steady states of the full
integral version of the planar neural field equation can be path followed with a nu-
merical continuation scheme that uses a standard GMRES algorithm. The second is a
comprehensive comparison between the full integral model and related PDE formula-
tions in terms of the steady state solution structure. We show that homoclinic snaking
occurs in planar neural field models for non-radial patterns and that the choice of the

1Throughout the paper, we will use the symbol ‖ · ‖ to denote both the Euclidean norm for
vectors and the standard L2-norm for functions.
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connectivity function has a considerable impact on the snaking structure, as well as
on the stability properties and the selection of the localised states.

The outline of the paper is as follows. In Sec. 2, we present the different models
that we study, and then, in Sec. 3, we describe the numerical methods that are used to
analyze each model. Our homoclinic snaking results of localised states are presented
in Sec. 4.

2. Models. In this section, we introduce several neural field models used in the
paper: our starting points are the models introduced by Laing et al. [46,47], in which
the cortical space Ω is assumed to be the Euclidean plane R2.

2.1. Integral model. The first model that we will consider is obtained from
Eq. (1.1) assuming a translation-invariant, radially-symmetric kernel

∂

∂t
u(r, t) = −u(r, t) +

∫

R2

w(‖r− r′‖) S
(
u(r′, t)

)
dr′ + g(r) (2.1)

with sigmoidal firing rate (shown in Fig. 2.1(a))

S(u) =
1

1 + e−µu+θ
− 1

1 + eθ
, µ, θ > 0, (2.2)

radial connectivity function

w (r) = e−br(b sin r + cos r), r = ‖r‖, b > 0 (2.3)

and external inhomogeneous input

g(r) = G0 exp

(
− αx2 + βy2

σ2

)
, G0, σ ∈ R, α, β > 0. (2.4)

In the visual cortex regions of activation have been shown to have a Gaussian spread
for radially-symmetric visual inputs [20], hence our choice for the function g(r). The
connectivity function is plotted in Fig. 2.1(b) on the Euclidean plane and as a ra-
dial cross section in Fig. 2.1(d). An analytical expression for the Fourier transform
of w cannot be obtained; we show the Fourier transform of Eq. (2.3) as computed
numerically in the k = (kx, ky)-plane in Fig. 2.1(c) and as a radial cross section
in Fig. 2.1(e), where k = ‖k‖. The connectivity function (2.3) was proposed in
models of working memory as a description of synaptic connections in the prefrontal
cortex [38, 48]. The connectivity describes local excitation and longer-range connec-
tions that alternate between inhibition (w(r) < 0) and excitation (w(r) > 0). We
argue that this type of connectivity pattern is also relevant to the study of patterns
of activity in early visual areas like V1 where there is a characteristic length scale
associated with the average orientation hypercolumn width. It has been shown in
anatomical studies that the number of lateral connections decay with distance, that
the number of excitatory connections peak each hypercolumn width and the number
of inhibitory connections peak each half-hypercolumn width [16]. The net effect is
alternating bands of inhibition and excitation that decay with distance. This is also
consistent with auto-correlations computed for the orientation selectivity map [54]
given that connections tend to be reinforced between neurons with similar orientation
preference. Henceforth the model (2.1)–(2.3) will be referred to as the integral model
(IM).

2.2. Fourth-order PDE. In the cases when the Fourier transform of the synap-
tic kernel is a rational function, it is possible to derive an equivalent PDE formulation
of Eq. (2.1) as was originally proposed in [47]. For simplicity, we will consider models
without an external input g(r). If ŵ(k) = P (k)/Q(k) with P and Q even functions
in k where k = ‖k‖ for k ∈ R2, then the Fourier transform of Eq. (2.1) gives

Q(k)

[
∂

∂t
û(k, t) + û(k, t)

]
= P (k)(̂S ◦ u)(k, t).
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Fig. 2.1. Firing rate function and connectivity function for the integral model (IM). (a):
Sigmoidal nonlinearity given by Eq. (2.2) plotted here with θ = 5.6 and µ = 3; in this formulation
the effective threshold is θ/µ (dashed line). (b): Radially-symmetric connectivity kernel given by
Eq. (2.3) plotted on the Euclidean plane with b = 0.4. (c): Its Fourier transform plotted on the
(kx, ky)-plane. (d): Radial cross section of panel (b). (e): Radial cross section of panel (c).

An inverse Fourier transform of the equation above leads to the desired PDE

LQ
[
∂

∂t
u(r, t) + u(r, t)

]
= LPS

[
u(r, t)

]
,

where LP and LQ are linear operators containing spatial derivatives of even order.
Since the Fourier transform of the connectivity function (2.3) does not have an

analytic expression, the integral model does not admit an equivalent PDE. However,
we can choose a rational function whose Fourier transform is close to w in Fourier
space, then derive an approximate formulation PDE for the integral model. Although
such PDE formulations can be thought of as approximations to the integral model,
either approach is a legitimate modelling choice. Indeed, PDE methods can be useful
in analytical studies (see for example [33, 34]) but, as we will demonstrate, more
efficient numerical schemes can be implemented for the integral model. We will also
investigate the impact of this choice in terms of the bifurcation structure in Sec. 4.
We specify the connectivity function w4(r) through its Hankel transform

w4(r) =
1

2π

∫ ∞

0

s ŵ4(s)J0(rs) ds,

where ŵ4(k) ≈ ŵ(k) is given by

ŵ4(k) =
A

B + (k2 −M)2
(2.5)

and the coefficients A, B, M are determined using a least-squares best fit algorithm
(see Sec. 3.4.3 for further details).

We compare the PDE kernels with the IM connectivity function in the physical
and Fourier domains in Fig. 2.2(a) and (b). In physical space the two functions appear
to be similar. The key qualitative difference is that in Fourier space ŵ4(0) > 0, which
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Fig. 2.2. Comparison of the PDE connectivity functions with w(r) given by Eq. (2.3) and
its Fourier transform ŵ(r) as computed numerically. Panels (a) and (b) show the 4th-order PDE
kernel defined by Eq. (2.5) in the real and Fourier domains, respectively. Similarly, for the 8th-order
PDE kernel given by Eq. (2.7) in panels (c) and (d). For reference, we indicate the L2-norm of w,
w − w4, w − w8 and of their Fourier transforms. Parameters given at the beginning of Sec. 4.2.

is not consistent with the IM connectivity function, for which ŵ(0) < 0. Biologically
this means that w4 represents a globally excitatory connectivity function, whereas
w represents a globally inhibitory connectivity function. We will see in Sec. 4.2.2
that it is necessary to increase the order of the polynomials in the numerator and
denominator of Eq. (2.5) in order to accurately capture the sign at k = 0.

Starting from the expression for ŵ4, we derive the corresponding PDE, containing
spatial derivatives up to the fourth order

[
B + (M + ∆)2

][ ∂
∂t
u(r, t) + u(r, t)

]
= AS

(
u(r, t)

)
, (2.6)

where the sigmoidal firing rate function is identical to the integral model case (2.2).
In Eq. (2.6) we have denoted by ∆ the standard Euclidean Laplacian. Henceforth,
this model will be referred to as PDE4.

2.3. Eighth-order PDE. In order to obtain a kernel that is closer in L2-norm
to the connectivity function (2.3), we consider higher-order polynomials and repeat
the steps outlined in Sec. 2.2 with the following expression

ŵ8(k) =
−A(k2 − C)(k2 −D)

B + (k2 −M)4
, (2.7)

where the values of A, B, C, D and M are determined using a least-squares best
fit algorithm; see Sec. 3.4.3 for further details. We compare this kernel with the IM
connectivity function in the physical and Fourier domains in Fig. 2.2(c) and (d). With
the higher-order polynomials used here the kernel is closer in L2-norm to IM and has
the property ŵ8(0) > 0 (compare the 8th-order kernel as shown in Fig. 2.2(c) and (d)
with the 4th-order kernel as shown in Fig. 2.2(a) and (b)). The synaptic function w8

leads to the following PDE, containing spatial derivatives up to eighth order

[
B + (M + ∆)4

][ ∂
∂t
u(r, t) + u(r, t)

]
= −

[
(∆ + C)(∆ +D)

]
S
(
u(r, t)

)
, (2.8)

where the sigmoidal firing rate function is identical to the integral model case. Hence-
forth this model will be denoted as PDE8.

3. Numerical methods. In this section, we review the numerical methods em-
ployed for the computation of localised states in IM, PDE4 and PDE8.
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3.1. Integral model. Numerical computations of the IM (2.1)–(2.3) are per-
formed discretizing a large but finite domain Ω = [−L,L]2 with N evenly-distributed
grid points in each spatial direction and imposing periodic boundary conditions. We
approximate u on a grid ΩN = { (xi, yj) }Ni,j=1 and collect the corresponding approx-
imate values of u in a vector u

uij ≈ u(xi, yj), u = {uij }Ni,j=1 ∈ RN
2

.

Similarly, we form vectors w, S(u), g ∈ RN2

for the approximations to w, S(u) and
g, respectively. Further, we introduce the discrete convolution,

(u ∗ v)ij ≈ F−1
(
F(u)F(v)

)
(xi, yj), u ∗ v = { (u ∗ v)ij }Ni,j=1 ∈ RN

2

, (3.1)

where we have denoted by F and F−1 the 2D Fourier transform and its inverse,
respectively. In summary, the discrete version of the evolution equation (2.1) is given
by

u̇ = −u + w ∗ S(u) + g. (3.2)

This type of discretization has been applied before in direct numerical simulations
of neural models (see, for instance [26, 36]). A similar approach for the computation
of the convolution term has recently been used for numerical continuation in 1D
phase-transition models [9]. For smooth firing rate functions, the right-hand side
can be evaluated accurately and efficiently using a fast Fourier transform (FFT) and
its inverse (IFFT). In passing, we note that since the FFT of w can be performed
and stored at the beginning of the computation, one function evaluation of the right-
hand side requires just one FFT and one IFFT. Furthermore, standard de-aliasing
techniques can be applied to the convolution operator if required [17].

Once a stable steady-state of Eq. (3.2) is found via direct numerical simulation,
it is possible to continue it in one of the control parameters using standard numeri-
cal continuation techniques. In previous studies of neural field equations, numerical
continuation was performed on an equivalent PDE formulation of the integral system.
A key observation is that path following can be applied directly to IM (or to similar
models), employing FFTs and Newton-Krylov solvers [42, 43]. Such methods do not
require the formation of a Jacobian matrix, but rely only on Jacobian-vector multipli-
cations: for IM, this is conveniently done using just a single application of FFT and
IFFT. We remark that Newton-Krylov methods are often used in conjunction with
sparse systems, but the performance of FFTs and IFFTs makes them a favourable
choice for IM, even though the system is full.

For numerical continuation of steady states of IM, we solve the system of algebraic
equations

F(u) = −u + w ∗ S(u) + g = 0, (3.3)

whose associated Jacobian-vector product is given by

J(u)v = −v + w ∗
(
S′(u)v

)
, u,v ∈ RN

2

, (3.4)

where S′(u) = diag(S′(u11), . . . , S′(uNN )) ∈ RN2×N2

. We solve the system (3.3)
using a Newton-GMRES solver implemented in Matlab and continue the solution
with a secant method. Eigenvalue computations can also be performed using the
Jacobian-vector products (3.4). Details of the numerical implementation and of the
numerical parameters can be found in Sec. 3.4.1.

Remark 3.1. The external input g guarantees that the system of algebraic equa-
tions (3.3) is not translation invariant, even when the problem is complemented with
periodic boundary conditions. Unless otherwise stated, we will use a negligible external
input for the IM, so that Newton iterations can be applied directly to Eq. (3.3). We
point out that a similar result can be obtained without imposing any external input,
by perturbing the right-hand side with a term containing one extra unknown and then
closing the system with a suitable phase condition [4,18,50].
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3.2. Fourth-order PDE. In order to continue stationary localised solutions
to PDE4 with D6 symmetry, we use polar coordinates and pose a boundary-value
problem on the sector Ω1/6 = { (r, θ) ∈ R2 | 0 < r < R, 0 < θ < π/3 } with Neumann
boundary conditions

0 =
[
B + (M + ∆)2

]
u−AS(u), (r, θ) ∈ Ω1/6

0 =∇u · n (r, θ) ∈ ∂Ω1/6

(3.5)

where the Laplacian operator ∆ is expressed in polar coordinates. We discretise the
system above using finite differences in r and a Fourier collocation method in θ, on a
uniform grid {(ri, θj)} with i = 1, . . . , Nr and j = 1, . . . , Nθ, leading to a system of
nonlinear algebraic equations of the form

0 =
[
BI + (MI + L)2

]
u−AS(u) u ∈ RNrNθ , I,L ∈ RNrNθ×NrNθ (3.6)

where I is the identity matrix. The Laplacian matrix L is formed explicitly, starting
from differentiation matrices Dr, Drr, Dθθ for spatial derivatives with Neumann
boundary conditions and then combining them with Kronecker products [4, 50,62]

L = Drr ⊗ Iθ + (R−1Dr)⊗ Iθ + R−2 ⊗Dθθ,

where R = diag(r1, r2, . . . , rNr ) and Iθ is the Nθ-by-Nθ identity matrix. For purely
radial patterns, we adapt the boundary-value problem so as to contain only the radial
direction r and impose Neumann boundary conditions. Numerical continuation of
the system (3.6) is performed with a secant method. Further details on the numerical
implementation can be found in Sec. 3.4.2.

3.3. Eighth-order PDE. For localised solutions of PDE8, we follow a similar
approach to the on used for PDE4. In order to avoid the discretisation of 8th-order
differential operators, we recast PDE8 as a system of two 4th-order PDEs and seek
solutions to the following boundary-value problem

0 =(M + ∆)2u− v, (r, θ) ∈ Ω1/6,

0 =(M + ∆)2v +Bu+A(∆ + C)(∆ +D)S(u), (r, θ) ∈ Ω1/6,

0 =∇u · n, (r, θ) ∈ ∂Ω1/6,

0 =∇v · n, (r, θ) ∈ ∂Ω1/6.

(3.7)

Again, the discretisation of this system uses finite-differences in r and Fourier spec-
tral collocation in θ. As the order of the underlying PDE increases, its numerical
continuation becomes more demanding. A more convenient approach would be to use
directly the integral form for the model, with connectivity function w8 and proceed
with a Newton-GMRES, solver. In this way, the computational cost would be the
same as for IM.

3.4. Implementation and numerical parameters.

3.4.1. Integral model. Time integration is carried out using a standard 4th
order Runge–Kutta method with fixed step size. At each time step, the right-hand
side of Eq. (3.2) is evaluated four times using an Nvidia Graphic Processing Unit
(Tesla C2070). To compute the discrete Fourier transform (DFT) we use the CUFFT
library provided by Nvidia as part of its CUDA framework [53]. This software library
allows us to easily exploit the parallelism of a GPU to obtain a fast implementation.
The vector u is kept in the GPU global memory throughout a time step in order to
avoid memory transfers and it is updated in parallel once the four stages of the Runge–
Kutta scheme have been computed. Transfers between CPU and GPU memory only
occur when the result of a time step needs to be saved to a file. Time integration
uses a grid of 103 × 103 points and a stepsize of 0.5. Computation of each time step
requires approximately 0.1 seconds.
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Numerical continuation for IM is done in Matlab using a in-house secant continu-
ation code which employs a Newton-GMRES method for the nonlinear solves. Unless
otherwise stated, we used a grid of 210 × 210 points and fixed an absolute tolerance
of 10−3 for the nonlinear iterations. The Newton-GMRES solver uses the MATLAB
in-built function gmres without preconditioners and with parameters restart = 20,
tol = 10−3 and maxit = 10. Initial guesses are obtained directly from the Runge–
Kutta time stepper, interpolating with MATLAB’s interp2 function where neces-
sary. Stability computations are performed with Arnoldi iterations via MATLAB’s
eigs function, passing the Jacobian-vector product (3.4) and computing (with the
default tolerance) the first 20 eigenvalues with the largest real part. Computations
are performed on a MacPro with a 3 GHz Quad-Core Intel Xeon processor employing
exclusively the CPU.

3.4.2. PDE4 and PDE8 models. Numerical continuation for the PDE models
have been carried out with a secant code similar to the one used for IM, but using
MATLAB’s in-built function fsolve for the nonlinear iterations. Unless otherwise
stated, we used 300 grid points in the radial directions and 20 in the angular direction.
We use the Levenberg–Marquardt algorithm implemented in fsolve and set TolFun =
10−6. The sparse Jacobians of these problems are formed and passed directly to the
solver. Initial guesses for the continuation have been obtained using the expressions
given in Eqs. (A.1) and (A.2). Computations are performed on a standard laptop on
a single core.

3.4.3. Least-squares data fitting. Before comparing the connectivity func-
tions w4(r) and w8(r) with w(r), it was necessary to tune the parameters in the
definitions of ŵ4 and ŵ8. In each case we performed a nonlinear least-squares opti-
mization of the parameters using the lsqcurvefit function in Matlab. For w4 the
objective was to minimize the L2-norm of the difference between ŵ4 and ŵ whilst
varying the parameters A, B and M in Eq. (2.5), where ŵ is computed numerically
using the Hankel transform at 300 points. Similarly, for w8, the L2-norm of the dif-
ference between ŵ8 and ŵ was minimised whilst varying the paramaters A, B, M , C,
D in Eq. (2.7). For reference, the L2-norms of w and ŵ are given above the panels in
Fig. 2.2; the norm of the difference between the two functions plotted in each panel is
also given. We note the largest Fourier mode of the connectivity dictates the location
of bifurcations in terms of the sigmoid parameters θ and µ. By minimising the dif-
ference between the connectivity functions in Fourier space, we expect to find similar
behaviour for each connectivity over the same parameter ranges. On the other hand,
if one minimises the difference between the connectivity functions in physical space
and the amplitudes of the largest Fourier modes are not matched, bifurcations occur
in different parameter ranges in each model and a direct comparison cannot be made.

4. Numerical results.

4.1. Convergence of the Newton-GMRES solver. Since Newton-GMRES
methods with pseudospectral evaluation of the right-hand side have not been used
before for integral neural field models, we report briefly on our solver. To test con-
vergence, we perturbed a localised steady state of IM to obtain an initial guess (panel
(b) of Fig. 4.1) and converge back to the original solution (panel (a) of Fig. 4.1) using
our Newton-GMRES solver. In panel (c) we plot the relative residuals of each itera-
tion, showing that we achieve convergence within a few nonlinear iterations. Similar
convergence plots (not shown) are obtained for the numerical continuation, albeit so-
lutions in that case are achieved with fewer iterations, owing to the more accurate
initial guess provided by the secant predictor scheme. The experiment is repeated
for various values of N : the convergence diagrams are indistinguishable from the one
reported in panel (c). The wall time for the numerical experiment scales linearly with
the number of unknowns N2, as reported in panel (d). We remark that, even with-
out using any GPU acceleration and without enforcing explicit parallelisation in the
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Fig. 4.1. Convergence of the Newton-GMRES solver. A stationary localised solution u∗ of IM
is shown in panel (a). The solution is perturbed to obtain an initial guess u0 = u∗ + 0.8 sinx cos y,
shown in panel (b), and then the Newton-GMRES solver is used to converge back to u∗. Convergence
is measured with the relative residual ‖F(uj)‖/‖F(u0)‖, where uj is the solution at the jth iteration
(panel (c)). The experiment is repeated for several values of N without any significant change to
the convergence diagram, whereas the wall time for the numerical experiment scales linearly with
the number of unknowns N2, as reported in panel (d); grey line with slope 1 is plotted for reference.
Parameters of IM: θ = 5.6, µ = 2.5, b = 0.40, L = 60, G0 = 4.0, α = 1.0, β = 4.0, σ = 12.0.

CPU, the Newton-GMRES solver finds a solution to a full problem with 1,048,576
unknowns in less than 40 seconds.

4.2. Snaking behaviour of radial and D6 patterns. We now turn to the
numerical continuation of localised states in IM, PDE4 and PDE8. The continuation
parameter is the steepness µ of the sigmoidal firing rate, whereas the other parameters
are fixed as follows: for IM, we choose θ = 5.6, b = 0.40, L = 60, G0 = 10−4, α = 1.0,
β = 1.0, σ =

√
10; for the PDE4 model, we use θ = 5.6, R = 60, G0 = 0 with fitting

parameters for ŵ4 in Eq. (2.5) given by A = 1.225, B = 0.1398, M = 1.2183; for the
PDE8 model we use again θ = 5.6, R = 60, G0 = 0 with fitting parameters for ŵ8

in Eq. (2.7) given by A = 0.8510, B = 0.6626, M = 0.6653, C = 0.3 and D = 10.
We remark that translation invariance is removed in the IM by the negligible external
input G0 while in PDE4 and PDE8 this is achieved by the boundary conditions of
the problems (3.5) and (3.7), so we choose G0 = 0. In the present section we focus on
the no- (or equivalent negligible-) input case which should be well understood before
the addition of an input. In Sec. 5.2 we will provide examples of the model behaviour
with input and discuss the implications.

The bifurcation points in the diagrams presented in this section will be labelled as
follows. F represents a fold bifurcation and P a spatial-symmetry-breaking bifurcation
from a radial state. Superscripts indicate the symmetry properties of the bifurcation,
where R represents a bifurcation on a branch with radially symmetric solutions and
D6 represents a bifurcation on a branch of D6-symmetric solutions The labels l and
r in the subscripts for fold bifurcations indicate whether the fold occurs on the left or
right of the snaking structure. The indices n in the subscripts indicate the ordering
moving up the snaking structure. On radial branches n corresponds to the number
of rings around a central spot solution, for example, on the branch between FRl1 and
FRr1 there is one ring around a central spot. On D6-branches there are n(n+ 1)/2× 6
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Fig. 4.2. Snaking of radially- and D6-symmetric localised solutions in terms of µ for PDE4.
Radial branches are grey curves and D6 branches are black; stable segments are solid and unstable
segments are dashed. Bifurcations labelled F and P are discussed in the text. (a): Detail of radial
branch from (b); points labelled a1 and a2 correspond to planar plots showing a stable spot solution
and an unstable spot-with-ring solution, respectively. (b): Global structure showing radial and D6
branches; points labelled b1, b2 and b3 correspond to planar plots showing 7-spot, 19-spot and 37-
spot solutions, respectively. Thin vertical lines discussed in text. Parameters given at the beginning
of Sec. 4.2. We omit numerical values for the L2-norm ||u|| here and in subsequent bifurcation
diagrams; this quantity only provides an indication of the spatial extent of the solutions.

additional spots glued around a central spot, for example, on the branch between FD6
l1

and FD6
r1 the solution has a total of 7 spots.

4.2.1. PDE4 results and comparison with IM. We discuss both radially-
and D6-symmetric localised solutions of PDE4 with connectivity function defined via
Eq. (2.5). Other solution branches with different symmetry properties do exist but
these are only discussed for IM in Sec. 4.3. An unstable radial spot solution bifurcates
from the trivial state u = 0 at a Turing instability with µ-value to the right of the
range shown in the subsequent diagrams. It is this unstable radial spot branch that
appears in the bottom right of Fig. 4.2(a) and (b).

Figure 4.2(b) shows the snaking structure for radial and D6 branches. We first
focus on the radial branch, detail of which is shown in panel (a). A radial spot
branch enters the diagram in the bottom-right-hand corner and undergoes a fold at
FRl0 . The radial spot solution existing on the branch segment between FRl0 and FRr0
is plotted in panel (a1). This solution is stable between FRl0 and PD6. At PD6 on
the radial branch a D6 instability produces the bifurcating branch of D6-symmetric
solutions that leaves panel (a) in the bottom-left-hand corner. Beyond PD6 the radial
branch is unstable and undergoes a further fold FRr0. After another fold FRl1 a ring has
formed around the radial spot. The spot with ring solution existing on the branch
segment between FRl1 and FRr1 is shown in panel (a2). The branch remains unstable
and undergoes a series of further folds (FRl2 , FRr2, FRl3 , etc) adding additional rings as
is shown in panel (b).

The D6-symmetric branch that bifurcates from the radial branch at PD6 also
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Detail close to the spatial-symmetry-breaking bifurcation PD6; the corresponding bifurcation for IM
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IM . (b): Detail of the D6 snaking structure. Parameters given at the beginning of
Sec. 4.2.

undergoes a series of fold bifurcations as shown in Fig. 4.2(b). In this case a series
of additional spots are added to the central spot in a configuration that preserves
the D6-symmetry. Planar plots in panels (b1), (b2) and (b3) show the stable 7-
spot, 19-spot and 37-spot solutions that exist on the branch segments between the
fold pairs (FD6

l1 , FD6
r1 ), (FD6

l2 , FD6
r2 ) and (FD6

l3 , FD6
r3 ), respectively. There are further

intermediate stable branch segments between pairs of fold bifurcations that have not
been labelled. On the stable segment that can be found between FD6

r1 and FD6
l2 , there

exists a 13-spot solution for which one spot has been glued on the long edge of each
of the six sides of the solution shown in panel (b1). Similarly, on the stable segment
that can be found between FD6

r2 and FD6
l3 , there exists a 25-spot solution for which

two spots have been glued on the long edge of each of the six sides of the solution
shown in panel (b2).

The same radially- and D6-symmetric branches shown in the previous section
have been computed for IM. Here we test the accuracy of PDE4 both qualitatively
in terms of the types of solutions produced and their bifurcations, and quantitatively
in terms of the parameter ranges for which the different solution types persist. We
are also interested to see whether the relative ranges of existence for different types
of solution is consistent between PDE4 and IM.

Figure 4.3(a) and (b) both show detail from Fig. 4.2(b) with the same curves
reproduced for PDE4 with the same line style and labelling conventions. Also plotted
(in colour) are the equivalent curves computed for IM, where the equivalent of PD6

in IM is PD6
IM . The first major point to make is that in terms of the types of solution

encountered, the series of bifurcations encountered and the stability of each branch
segment, there is an exact agreement between PDE4 and IM. Furthermore, the quan-
titative agreement on the radial branch is good up until the fold point FRr1. Above FRr1,
the radial branch for PDE4 makes a large excursion away from the IM branch and the
branches remain well separated as the snaking continues; see panel (a). Similarly, for
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Fig. 4.4. Snaking of radially- and D6-symmetric localised solutions in terms of µ for PDE8
(greyscale) and comparison with IM (colour). Black and grey curves correspond to PDE8 and
have the line style and labelling conventions as Fig. 4.2. Corresponding radial and D6 solution
branches from the full model are plotted as dash-dot curves in red and blue, respectively; stability
is not indicated and folds not labelled on these branches. (a): Global snaking diagram for PDE8.
(b): Detail close to the spatial-symmetry-breaking bifurcation PD6; the corresponding bifurcation in
the full model is labelled PD6

IM . (c): Detail of the D6 snaking structure. Parameters given at the
beginning of Sec. 4.2.

the D6 branch the level of agreement is good up to FD6
r1 above which PDE4 branch

deviates and remains well separated from the IM branch; see panel (b). The range
of existence in µ for each stable branch segment on the D6 branch is greatly under
estimated by PDE4.

We now highlight a key qualitative difference between the bifurcation diagrams
for PDE4 and IM. In IM, there is a range of µ ∈ [2.5, 3.0] for which the stable branch
segments corresponding to 7-spot, 19-spot and 37-spot all overlap. This is not the
case for PDE4, in particular, the branch segments corresponding to stable 7-spot and
37-spot solutions between the fold-pairs (FD6

l1 , FD6
r1 ) and (FD6

l3 , FD6
r3 ) do not overlap.

This can be seen by the fact that FD6
r3 occurs at a smaller µ-value (indicated by

the first thin vertical line in Fig. 4.2(b)) than FD6
l1 (indicated by the second thin

vertical line). This organisation of the solutions in parameter space is qualitatively
inconsistent with IM.

4.2.2. PDE8 results and comparison with IM. Figure 4.4(a) shows branches
of both radially- and D6-symmetric solutions of PDE8. Globally the bifurcation di-
agram is the same as that of PDE4 in terms of the types of solution observed and
the sequence of bifurcation encountered. There is an important difference between
PDE4 and PDE8 in terms of the organisation in parameter space of the solution
branches. For PDE4, there is no overlap in parameter ranges for which the 7- and
37-spot branches are stable; see the two vertical lines in Fig. 4.2 and note that FD6

r3

occurs before FD6
l1 in this case. In the PDE8 case, as shown in Fig. 4.4(a), there

is an overlap in the parameter ranges as indicated by the grey shaded region. This
organisation of the solution branches in parameter space is now consistent with the
full model as shown in panel (c). Indeed PDE8 provides better agreement with IM;
the branches remain close for both the radial and the D6 branches as we move up the
snaking structure as can be seen in panels (b) and (c). We note that when compared
with IM, the upper section of the radial branch occurs at smaller values of µ for PDE4
and at larger values of µ for PDE8; compare Fig. 4.2(a) with Fig. 4.4(b).
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4.3. Snaking of D2, D3 and D4 patterns in IM. In this section we discuss
several patterns that possess neither radial nor D6 symmetry. For non-radial patterns
discussed so far in this article, see Fig. 4.2(b1)–(b3), the individual spots lie on a
regular hexagonal lattice. However, we expect an infinite number of possible stable
configurations that conform to the same lattice spacing but without the full D6
symmetry; here we present two such examples. We also present one further example
of a stable configuration that does not conform to the regular hexagonal lattice.

4.3.1. Three-spot pattern (D3). Figure 4.5 shows the snaking of D3-symmetric
patterns about a three-spot solution. The unstable branch that enters panel (a) in
the bottom-right-hand corner reconnects to the trivial state u = 0 at the Turing in-
stability (not shown). The panels (a1)–(a5) show stable solutions on the first five
full excursions in µ of the snaking structure. The existence of three-spot (see panel
(a1)) and twelve-spot (see panel (a3)) solutions for PDE4 with connectivity given by
Eq. (2.5) was shown in [47]. Here we have provided numerical evidence that these
solutions exist in IM and that they form part of a larger snaking structure.

4.3.2. Two-spot pattern (D2). Similarly, there is an unstable two-spot solu-
tion that connects to the trivial state u = 0 at the Turing instability (not shown).
Figure 4.6(a) shows that this solution also undergoes a sequence of fold bifurcations
giving rise to larger D2-symmetric patterns. We note that the spacing between the
spots in these patterns still conforms to the regular hexagonal lattice. The pan-
els (a1)–(a5) show solutions on the first five stable branch segments moving up the
snaking structure; we note that the pattern (a3) is on an intermediate branch that
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does not make a full excursion in µ.

4.3.3. Quincunx pattern (D4). We show in Fig. 4.7(a2) a stable configuration
that lies on a square lattice but with a spacing between the spot peaks that is double
that of the hexagonal-lattice solutions encountered thus far. The solution is formed
by five spots that interact at the first excitatory peak away from 0 in the connectivity
function (2.3) as shown in Fig. 2.1(d). The configuration of four spots forming a
square with an additional spot in the center is typically referred to as a quincunx
pattern that is found, for example, on dice and dominoes. As shown in Fig. 4.6(a)
these solutions exist on an isola in parameter space where other branches, see panels
(a1) and (a3), are unstable.

5. Discussion.

5.1. Summary. This paper explores patterns of localised activity in the neural
field equation posed on the Euclidean plane with a smooth firing rate function. The
choice of connectivity function is an important factor in determining whether, the
localised behaviour found is restricted to individual spots, or whether multiple inter-
acting spots can form coherent localised patterns. In [34] localised states were studied
in a model with a radially-symmetric wizard-hat connectivity function describing local
excitation and lateral inhibitions in the Euclidean plane. When spot solutions were
tracked using numerical continuation no snaking behaviour was observed, i.e. the
only steady states found consisted of a single spot. The radially symmetric connec-
tivity function studied here and shown in Fig. 2.1(d) features local excitation, lateral
inhibition and long-range bands of excitation that decay with distance. Indeed, the
distance between excitation peaks fixes a spatial scale that allows for regular spatial
interactions and the formation of larger patterns of activity. In [47] it was shown that
multiple-spot patterns could be obtained all with the common property of the peaks
lying on a regular hexagonal lattice with spacing determined by the connectivity func-
tion. One of the main aims in the present article was to show how these solutions are
connected in parameter space and how patterns with varying spatial extent grow via
the mechanism of homoclinic snaking.

The results presented in [47] relied on working with an approximated connectivity
function (see Fig. 2.2(a) and (b)) that allowed for solutions the full integral neural
field equation to be studied in an equivalent fourth-order PDE. The initial parts of
the results section are concerned with the relative agreement between solutions to the
integral model and equivalent PDE formulations. We pursue the problem numerically
by investigating the level of agreement in terms of an entire bifurcation diagram rather
than comparing individual solutions at fixed parameter values. We compared both ra-
dially symmetric and D6-symmetric solution branches and found that the qualitative
difference of the zero-mode in the Fourier domain for the approximated connectivity
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Fig. 5.1. Model simulations with input given by Eq. (2.4) with α = β = 1. The simulations are
performed with µ = 2.4. (a) The Gaussian-bump input plotted with σ = 10 and G0 = 6 (G0 = 1.5
used in the simulations). A circle of radius twice the standard deviation of the Gaussian input is
plotted in each panel. (b): Case with σ = 9.0, the model converges to a 7s-spot solution that is a
modified version of the state shown in Fig. 4.2(b1) (c): Case with σ = 9.5, the model converges to
a 12s-spot solutions that is a modified version of the state shown in Fig. 4.5(a3) (d): Case with
σ = 10.0, the model converges to a 14s-spot solutions that is a modified version of the state shown
in Fig. 4.6(a5). All other parameters (for IM) given at the beginning of Sec. 4.2.

used in the fourth-order model (see Fig. 2.2(b)) led to significant discrepancies in the
existence ranges of solution branches, in particular for solutions with a larger spatial
extent. We demonstrated that the improved approximation of the connectivity func-
tion shown in Fig. 2.2(c) and (d), leading to an eighth-order PDE, provides a better
agreement across the full bifurcation diagram. In particular, the eighth-order model
captures the key feature of there being a specific parameter range in which multiple
solutions coexist, each solution with a different spatial extent. It was not possible to
capture this feature with the fourth-order PDE formulation. In this way, we demon-
strated that a higher-order PDE can give a closer agreement with the integral model
in terms of overall bifurcation structure.

Having investigated radial and D6 solutions with PDE formulations and com-
pared the results with the full integral model, we proceeded to give an account of
other types of solutions that, when path-followed with numerical continuation lead
to patterns with different underlying symmetry properties. We worked with the full
integral model and showed that patterns with D2 and D3 symmetry also give rise to
snaking behaviour, generating spatial patterns with variable spatial extent. All the
solutions of this type, including those shown earlier with D6-symmetry, have the com-
mon feature of the individual spots lying on a regular hexagonal lattice. Furthermore,
these solutions of variable spatial extent exist within roughly the same ranges of the
parameter µ. As the snaking diagram is ascended, new spots are glued to long edges
of the pattern in a regular fashion. We note the existence of an arbitrary number
of intermediate branches not shown in our bifurcation diagrams where symmetries
can be broken via the (simultaneous) addition or subtraction of one (or more spots).
We expect these solutions to lie on intermediate branches that are stable over ranges
smaller than the full excursions in the main snaking structure.

5.2. Localised patterns with input. The computational framework presented
in this paper opens up the possibility to investigate the spread of cortical activity with
inputs. An important principle in studying the neural field equation is that small
inputs to the equations should drive the system to states that are already solutions to
the underlying equations without input. The bifurcation study presented here allows
us to identify the types of solution that we may expect to encounter for localised
inputs and the relevant parameter regime in which they occur. Two criteria need to
be satisfied when identifying a suitable operating regime, 1) the model should only
produce the trivial homogeneous state u = 0 before an input is introduced and 2)
when an input is introduced, the model should be driven to one of the underlying
non-trivial solutions. These criteria are discussed in a general context and for a
specific application in [63, Chapter 9] and [56], respectively. We have shown that, for
the full integral model, there is an accumulation of fold bifurcations at around µ = 2.4
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Fig. 5.2. Symmetry breaking of weakly unstable solution on a square lattice at µ = 3.2. (a):
Evolution of L2 norm. (b): Initial condition given by Eq. (A.3). (c): Weakly unstable solution.
(d): Stable solution. All other parameters (for IM) given at the beginning of Sec. 4.2.

representing the first point for which localised patterns can be observed. Both criteria
are satisfied when the model is operated just before these fold points. Introducing a
small (amplitude O(1)) input the system can be driven to states that have a spatial
extent corresponding to that of the input. Figure 5.1(a) shows the profile of the input
used in a series of simulations that were initiated with the u = 0 state plus a small
random perturbation across the entire spatial domain. Figures 5.1(b), (c) and (d)
show the result of three 150 time unit simulations, each with different spatial extent
for the input. In each case, the trivial state u = 0 is no longer stable and the system
naturally selects one of the solutions described in the early bifurcation analysis. As
the spatial extent of the input increases, the size of the pattern selected by the model
increases and this is an important consequence of the corresponding solutions existing
as part of a snaking structure. The computational framework presented in this article
will allow for the relationship between model inputs and spatially localised patterns
to be investigated in future work.

5.3. Patterns on other lattices. The multi-spot solutions described in this
article all have the common feature of the activated peaks falling onto a regular
hexagonal lattice. Indeed, this has been found to be the default way for the radial
symmetry to be broken in pattern forming systems, notably the archetypal Swift-
Hohenberg equation [50]. In Fig. 4.7 an example of a solution with D4 symmetry
was shown that consists of five spots interacting at double the standard separation
between excitation peaks. We now show an attempt to converge solutions with D4
symmetry that have the regular spacing between peaks. A suitable initial condition
to find such solutions is given by Eq. (A.3) chosen such that there is a depression
at (x, y) = (0, 0) and the surrounding square-lattice pattern decays away from the
origin, see Fig. 5.2(b). For appropriate parameter values these states appear to con-
verge to patterns on a square lattice. However, we found the patterns to be weakly
unstable, finally converging to a pattern on a hexagonal lattice after a long transient.
Figure 5.2(a) shows a time-course of the L2 norm from a simulation with the initial
condition shown in panel (b). The model reaches the weakly unstable D4 configu-
ration after approximately 30 time units (panel (c)) before finally converging after
230 time units to the stable D2-symmetric pattern (panel (d)) that was previously
identified in Fig. 4.6(a2).

6. Conclusions. The organisation in parameter space of localised structures
consisting of multiple spots has been revealed for the first time in planar neural field
equations. As localised solutions are path-followed using numerical continuation we
find that these structures grow in a series of fold bifurcations through the mechanism
of homoclinic snaking that has been well-studied in the Swift-Hohenberg equation.
A numerical strategy has been proposed to perform a numerical bifurcation analysis
by taking advantage of matrix-free Newton-Krylov nonlinear solvers combined with
a pseudospectral evaluation of the right-hand side. The novel application of these
methods to the neural field equations allowed for numerical continuation to be applied
to the full integral form of the model. Previous studies in 2D have relied exclusively on
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PDE approximations of the connectivity functions; here we compared a fourth-order
and eighth-order PDE formulation with the integral model and found that the higher-
order approximation gave a closer agreement in terms of the bifurcation structure. We
believe that, while converting the integral formulation to higher-order PDEs could
be useful in analytical studies, numerical calculations of these systems should be
approached without resorting to PDE formulation where possible. The numerical
schemes presented here will allow for future studies of the neural field equations to use
connectivity functions defined either directly in the real domain or the Fourier domain
without recourse to PDE methods, provided that the sigmoidal firing rate be smooth
and that the integral formulation can be expressed as a convolution (this extends also
to inhomogeneous firing rates). We point out that here we have used the standard
Newton-GMRES method mainly for its simplicity, but more sophisticated choices
are also possible [43]. Furthermore, the numerical framework proposed here is not
restricted to neural-field models, but could be applied to generic integro-differential
systems featuring a convolution term with an exponentially-decaying kernel, such as
those occurring in phase-transition problems [6, 9, 29], or density functional based
theories for soft condensed matter [3].

The neural field studied in the present paper can be considered as a model of
the visual cortex and the localised patterns studied without inputs can be related
to visual hallucinations that can be localised in the visual field [60]. Furthermore,
we have shown that the localised states computed in our bifurcation analysis are
exactly the types of solutions selected by the model in the presence of small inputs.
The persistence of these localised structures in the presence of a model input is new.
This future direction will be of particular interest for the study of localised patterns
of activity that have been observed in the primary visual cortex [20] with localised
visual input.

It may be possible to stabilise the weakly unstable solutions shown in Sec. 5.3 with
parametric forcing (typically referred to as inhomogeneous neural media) [10, 23, 27].
The question of introducing orientation-preference tilings on square and hexagonal
lattices was addressed in [5]. However, one is restricted in the number of orientations
that can be equally represented with such tilings, (two and three, respectively). Para-
metric forcing on a quasi-periodic lattice (as studied in [41] for the Swift-Hohenberg
equation) could allow for near-continuous representations of features in a model with-
out an abstracted feature space. The study of localised states in this context would
be an interesting future direction.
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Appendix A. Analytic expressions for initial conditions. Figure 1.2(a)
shows the initial condition given by

u(x, y) = A exp

(
− x2 + y2

L

)
, (A.1)

with A = 6 and L = 5.77; subsequent panels (b) and (c) show a transient state after
1 time unit and the stable steady state after 15 time units. Figure 1.2(d) shows the
initial condition given by

u(x, y) = A exp

(
− x2 + y2

L

)[
cos(x) + cos

(
1

2
x+

√
3

2
y

)
+ cos

(
−1

2
x+

√
3

2
y

)]
,

(A.2)
with A = 2 and L = 100; subsequent panels (e) and (f) show a transient state after
1 time unit and the stable steady state after 15 time units. Figure 5.2(b) shows the
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initial condition given by

u(x, y) = 2 exp

(
− x2 + y2

L

)
(− cosx− sin y), (A.3)

with A = 2 and L = 65; subsequent panels (c) and (d) show transient states after
200 and 300 time units, respectively. The L2-norm is plotted over this time course in
panel (a).
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