
An Evolutionary Algorithm for Graph Planarisation by Vertex Deletion

Rodrigo Lankaites Pinheiro1, Ademir Aparecido Constantino2, Candido F. X. de Mendonça3

and Dario Landa-Silva1
1School of Computer Science, University of Nottingham, NG8 1BB, Nottingham, U.K.

2Informatics Department, State University of Maringá, Maringá, PR, Brazil
3School of Arts, Science and Humanities, USP-East, São Paulo, SP, Brazil

psxrp2@nottingham.ac.uk, aaconstantino@uem.br, cfxavier@usp.br, dario.landasilva@nottingham.ac.uk

Keywords: Graph Planarisation, Evolutionary Algorithms, Vertex Deletion.

Abstract: A non-planar graph can only be planarised if it is structurally modified. This work presents a new heuristic
algorithm that uses vertices deletion to modify a non-planar graph in order to obtain a planar subgraph. The
proposed algorithm aims to delete a minimum number of vertices to achieve its goal. The vertex deletion
number of a graphG = (V,E) is the smallest integerk ≥ 0 such that there is an induced planar subgraph of
G obtained by the removal ofk vertices ofG. Considering that the corresponding decision problem is NP-
complete and an approximation algorithm for graph planarisation by vertices deletion does not exist, this work
proposes an evolutionary algorithm that uses a constructive heuristic algorithm to planarise a graph. This
constructive heuristic has time complexity ofO(n+m), wherem= |V| andn = |E|, and it is based on the
PQ-trees data structure and on the vertex deletion operation.The algorithm performance is verified by means
of case studies.

1 INTRODUCTION

Practical applications of Graph Drawing, such as the
design of VLSI circuits, requires drawing techniques
for non-planar graphs. A graph (representing the cir-
cuit) needs to be drawn on the plane (an electronic
chip) without crossing edges. However, graph draw-
ing algorithms are restrained to planar graphs, oth-
erwise the results obtained by these algorithms are
compromised. Network design and analysis and com-
putational geometry are additional well known fields
where the drawing of planar graphs are required. A
possible way to tackle non-planarity in graphs is to
consider its topological invariants, such as the number
of vertex deletion, which can be used as the measure
of non-planarity.

The simple drawingof a graphG = (V,E) is a
drawing ofG on the plane, where each edge does not
cross itself, adjacent edges do not cross themselves,
the crossing of two edges only occurs once, the edges
do not cross over vertices, and no more than two edges
cross at the same point. A graph is consideredplanar
when there is a simple drawing for this graph on the
plane, without crossing edges. Without loss of gen-
erality, from now on we are considering only simple
drawings.

Take all drawings ofG, the drawing which pos-
sesses the lowest number of edge crossings among all
drawings is named optimal drawing ofG. And the
number of edge crossings is namedcrossing number
of G, denoted bycr(G).

The number of vertex deletionΦ(G) is the small-
est integerk > 0 such that the deletion ofk vertices
from G produces a planar graph. The decision prob-
lem regarding the number of vertex deletion, the num-
ber of vertex splitting, the number of edges deletion
and the crossing number are all NP-complete (Faria
et al., 2001a; Garey and Johnson, 1983; Liu and Geld-
macher, 1977; Yannakakis, 1978). (Faria et al., 2006)
proved that an approximation algorithm cannot exist
for the graph planarisation problem using the vertex
deletion operation, hence a heuristic algorithm be-
comes a viable alternative to tackle the problem. Also
it has been shown that it remains NP-hard even for
cubic graphs (Faria et al., 2001a; Faria et al., 2001b;
Faria et al., 2004). Besides, (de Figueiredo et al.,
1999) showed that the same occurs for the number
of vertices splittings according to the result obtained
by (Robertson and Seymour, 1995).

Literature reports many algorithms that attempt to
remove a minimal number of edges to obtain a planar
subgraph (Chiba et al., 1979; Fisher and Wing, 1966;

464

Marek-Sadowska, 1978; Ozawa and Takahashi, 1981;
Pasedach, 1976). One of the best approaches is the
PLANARISEalgorithm by (Jayakumar et al., 1989)
referred asJTS PLANARISEalgorithm. TheJTS PLA-
NARISEalgorithm is based on the planarity test al-
gorithm by (Lempel et al., 1967) and (Even, 2011)
(also referred as theLEC algorithm) and its imple-
mentation using PQ-trees (Booth and Lueker, 1976).
(Eades and de Mendonça, 1993) considered the num-
ber of vertex splittings adapting thePLANARISEal-
gorithm into theSPLIT-PLANARISE. That was done
by replacing the edge removal operation for the vertex
splitting operation. Both algorithms have time com-
plexity O(n2) and space complexityO(n+m), where
n represents the number of vertices andm represents
the number of edges ofG. This work proposes an al-
gorithm namedVD-PLANARISEwhich uses similar
ideas to theJTS PLANARISEalgorithm above men-
tioned, though it uses the operation of vertex deletion
instead of edge removal. In the next section it will
be discussed how theJTS PLANARISEalgorithm was
adapted for the new proposed constructive heuristic
which has time and space complexity ofO(n+m).
We can also highlight that theJTS PLANARISEalgo-
rithm generates a planar subgraph where the proposed
algorithm generates an induced planar subgraph.

Section 2 describes a few necessary concepts. In
section 3 we present theVD-PLANARISEalgorithm.
The section 4 analyses the complexity and the perfor-
mance of the proposed algorithm. Section 5 presents
the evolutionary algorithmMAVD-PLANARISEand
later we show an empirical analysis of the performed
tests of the proposed algorithms (section 6).

2 THE LEC ALGORITHM AND
PQ-TREES

This section presents the basics of theJTS PLA-
NARISEalgorithm, which is based on theLEC pla-
narity test algorithm which is performed with the aid
of PQ-trees. The definitions of the data structure and
its operations are described in this section. However,
for further details on the implementation of the opera-
tions onPQ-trees we recommend the work of (Booth
and Lueker, 1976).

The LEC algorithm only deals with biconnected
graphs. Considering that it is fairly easy to divide a
graph into a tree of biconnected components (blocks),
(Gibbons, 1985) presents a linear complexity algo-
rithm for the generation of a tree of biconnected com-
ponents for a given graph. This work may consider,
thus, only biconnected graphs.

Take a biconnected graphG= (V,E) with n= |V|

vertices andm = |E| edges. Anst-numbering is a
labeling of the vertices inG with integer numbers
1,2, ,n where 1 is adjacent ton and a vertex num-
bered j is adjacent to a pair of vertices numberedi
andk wherei < j < k. The vertex 1 is named source
and is referred ass while the vertexn is named sink
and is referred ast. Each biconnected graph has a
st-numbering (Lempel et al., 1967) and such labeling
can be found in linear time (Even and Tarjan, 1976).
The graphG labeled withst-numbers is namedst-
graph.

Let Gk, where 1≤ k ≤ n, be a subgraph of anst-
graphG induced by the set of verticesVk = 1,2, ...,k.
LetBk be a graph associated with the subgraphGk and
all of the edges ofG connected with the verticesVk
andV−Vk in G. These edges are named virtual edges
and the verticesV−Vk are named virtual vertices. The
virtual vertices are labeled as its original vertices inG;
though they remain apart (a leaf for each adjacent ver-
tex not yet embedded). Consequently, inBk there may
be several virtual vertices with the same label, each of
them with exactly one virtual edge. A drawingBk is
namedbush formof Gk if the vertices with smaller or
equal labels thank appears at a higher level than the
leaves and all of the virtual vertices appears as leaves.

It is possible to demonstrate (Even, 2011; Lempel
et al., 1967) that ast-graph is planar if and only if
for eachBk, 2≤ k ≤ n−2, there is a planar graphB′

k
isomorph toBk such that all the virtual vertices inB′

k
labeledk+1 appear consecutively.

A PQ-tree (Booth and Lueker, 1976)T is a data
structure that represents a set of permutations in a set
S. The nodes ofT can beleaves, representing the
elements ofS; P-nodes, conventionally represented as
a circle; andQ-nodes, conventionally represented as
a rectangle.

For this kind of tree the order that the descendants
of a node appear is important. Theborderlineof T
is defined as the permutation represented by the order
of the leaves ofT from left to right. For example, the
borderline of the firstPQ-tree in Figure 1 is[abcde].

The set of permutations represented byT is gen-
erated by rearranging the descendants of each nodeP
andQ, according to two rules – the descendants of a
P-node can be freely permuted and the order of the
descendants of aQ-node can only be inverted.

The set of permutations ofS represented byT is
the set of borderlines of thePQ-trees obtained from
T, by rearranging the descendants according to these
rules. For example, the set of permutations repre-
sented by thePQ-tree in Figure 1 is:[abcde], [abced],
[cbade], [cbaed], [dabce], [dcbae], [eabcd], [ecbad],
[deabc], [decba], [edabc], and[edcba].

ThesePQ-trees proved to be useful in many prob-

An�Evolutionary�Algorithm�for�Graph�Planarisation�by�Vertex�Deletion

465

Figure 1: The twelve permutations allowed for the given PQ-tree.

lems involving a successive reduction of the set of
permutations to find a specific permutation. For ex-
ample, they have been used to identify planar graphs,
interval graphs, matrix with the property of consecu-
tive ones (Booth and Lueker, 1976), hierarchical pla-
nar graphs (Battista and Nardelli, 1988), as well as
the dominance drawings (Eades and de Mendonça,
1993).

In this work, aPQ-treeTk is used to represent the
bush formBk in the algorithm. The nodes ofTk corre-
spond to the following:

• leaves: the virtual vertices ofBk;

• Q-nodes: the maximal biconnected components
in Bk; and

• P-nodes: the articulation vertices inBk.

The leaves are named pertinent if they correspond
to the next selected vertices (labelk+1) with the pos-
sibility to be embedded, while the others are named
non-pertinent leaves. In the same way, a non-leaf
nodeX is pertinent if any leaf descendant ofX in the
PQ-tree is pertinent. If all the leaves from the descen-
dants of a nodeX in the PQ-tree are pertinent, then
X is named a full node. If no leaf descendant of the
nodeX is pertinent thenX is empty. TheX border-
line is defined by its set of descendant leaves, read
from left to right. A nodeX is a pertinent root if it is
the lowest level node whose borderline has only per-
tinent leaves. The tree rooted inX is named pertinent
subtree. Once a pertinent root is identified, a series of
pattern tests and reallocations described in (Booth and
Lueker, 1976) can be used in order to build a new tree
in which all the pertinent leaves are shown consecu-
tively if such tree exists. In this case all the pertinent
leaves in the new tree will appear as descendants of
a single node. For instance, suppose that thePQ-tree
from Figure 2 represents a bush formB7; P1 node is
a pertinent node;Q1 node is an empty node;P2 node

is the pertinent root;Q2 node is a full node; the per-
tinent leaves are labeled as 8; and the non-pertinent
leaves are labelled as 9,10,11,12.

Figure 2: A PQ-tree of a bush formB7.

Reduction is an important operation of aPQ-tree.
On an abstract level, the reduction takes a set of per-
mutationsΠ of S and a subsetS′ ⊆ S and returns a
subsetΠ′ of Π in a way that the elements ofS′ con-
secutively appear in all the permutations inΠ′. The
elements ofS′ are named pertinent elements ofS.

(Booth and Lueker, 1976) created an algorithm
that reduces aTk tree into aT∗

k tree in a way that all the
pertinent leaves consecutively appear in the border-
line (when possible). The reduction operation can be
efficiently executed with a sophisticated implementa-
tion of PQ-trees. This work, however, does not dis-
cuss these operations that are detailed in (Booth and
Lueker, 1976).

It is trivial to notice that not always aPQ-treeTk
can be reduced into aT∗

k , thus (Ozawa and Takahashi,
1981) defined some criteria to test a tree before ap-
plying the reduction. LetG be a biconnectedst-graph
andT1,T2,,Tn−1 be thePQ-trees corresponding to the
bush formsB1,B2,,Bn−1 of G. A nodeX of a PQ-tree
is classified according to its borderline, as follow:

• Type A: if the rooted subtree inX could be rear-
ranged in a way that all the pertinent leaves de-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

466

scendant ofX consecutively appear in the middle
of the borderline, with at least a non-pertinent tree
in each extreme of the borderline. For example,
theP1 node in Figure 2 is the typeA.

• Type B: if the borderline of the rooted subtree in
X consists only of pertinent nodes, thenX is a full
node. For example,Q2 node in Figure 2 is typeB.

• Type H: if the rooted subtree inX could be rear-
ranged in a way that all the pertinent leaves de-
scendant ofX consecutively appear in one of the
ends of the borderline. For example,P2 node in
Figure 2 is typeH.

• Type W: if the borderline of the rooted subtrees in
X consists only of non-pertinent leaves, that is,X
is an empty node. For example,Q1 node in Figure
2 is typeW.

It is known that aPQ-tree is not always one of the
typesA, B, H or W. However, the need to transform
(essentially by vertex deletion) the whole tree in a tree
of theW type will be further looked at.

A graph G containing n vertices is planar if
and only if the pertinent roots in all thePQ-trees,
T2,T3,,Tn−2 of G are of theB, H or A type. A PQ-
tree is reducible if its pertinent root is ofB, H or A
type, otherwise, it is irreducible (Ozawa and Taka-
hashi, 1981).

Both T1 andT2 trees are reducible. The first one
because it has just a pertinent leaf corresponding to
the edge(v1,v2), and the second one because it has
only one type of leaf that is the node corresponding to
the virtual vertexn.

3 PLANARISATION BY VERTEX
DELETION

In this section we introduce the proposed graph
planarisation constructive heuristicVD-PLANARISE
which uses the vertex deletion operation.

In general, theVD-PLANARISEalgorithm starts
with a vertex and continues with the insertion of one
vertex at a time, building an induced planar subgraph
G′ of G. The vertices are selected following the label-
ing order introduced by thest-numbering algorithm
(Lempel et al., 1967). Letv be the next candidate ver-
tex to be inserted in the planar subgraphG′. Let Ev
be the edge subset incident with the vertexv and the
vertices ofG′ and letÊv be the subset of other edges
incident withv. For each iteration if a vertexv cannot
be inserted intoG′ then it is removed. The remaining
set of edges(v,u) ∈ Êv is added (as dummy edges) to
the first inserted vertex (vertex 1). This will be done

to eachu vertex that does not have another adjacent
with a smaller label comparing to thev label, aiming
to maintain the property ofst-numbering.

The proposed algorithm is presented as follows:

VD-PLANARISE
Input: graph G.
Output: an induced planar subgraph of G.
Pre-processing: obtain a valid st-numbering
of G, obtain small(u) for every vertex u in
G.
Begin:

build the initial tree T1;
for k:=2 to n-2 do:
{following the st-numbering}

if Tk−1 is reducible then:
reduce;

else
Update(vk);

obtain Tk by replacing every
pertinent node from T∗

k−1 by
a new P-node Pk such as every
edge adjacent to the vertex
vk with label higher than k
appears as a direct descendant
of Pk.

return G;
End.

The algorithm starts with theT1 tree and builds the
sequence ofPQ-treesT2,T3,. If a graph is planar the
LEC algorithm finishes after building theTn−1 tree,
otherwise it finishes when it detects the impossibility
to reduce aTk tree intoT∗

k .
ConsiderTk an irreduciblePQ-tree of a non-planar

graph, that is, it is impossible to reduce aTk tree into
T∗

k . The proposed algorithm adds a new operation
namedUpdate(k). This operation removes all the per-
tinent leaves transforming theTk tree in typeW. Be-
sides, if anyu vertex with a label higher thank+ 1,
adjacent to the equivalent vertex of the removed per-
tinent leaves does not have any other adjacent vertex
with a smaller label, a new edge (dummy) is added to
the graph in a way thatu is adjacent tos. This is nec-
essary to maintain the property ofst-numbering. Each
immersion iteration of the algorithm can increase the
number of the adjacent vertices ofs. However, this
number does not exceed the number of vertices inG.
The main question is how to inspect the adjacency of
the vertices to be removed in order to assure the prop-
erty ofst-numbering without increasing the complex-
ity of time. This can be done by adding asmall(u)
field to each vertexu. This field informs the amount
of u adjacents with smaller labels than theu label es-
tablished in the step ofst-numbering. Thus, when the
pertinent nodes -correspondent to thevk+1 vertex - are
removed to make all theTk subtrees of theW type, the
small(u) field is reduced by one to each adjacent ver-
tex u of vk+1 whereu has a larger label thank+ 1.

An�Evolutionary�Algorithm�for�Graph�Planarisation�by�Vertex�Deletion

467

When the value of thesmall(u) field reaches zero, a
dummy edge is added froms to u. After the last itera-
tion, all the dummy edges froms to u are removed for
vertex wheresmall(u) field is zero.

4 TIME COMPLEXITY AND
PERFORMANCE OF THE
VD-PLANARISE

The Booth and Lueker reduction of all reduciblePQ-
treesTk can be performed in a total time ofO(n+m)
(Jayakumar et al., 1989). If aPQ-treeTk is not re-
ducible, theUpdate(k)operation that will remove the
pertinent vertices is performed. Suppose the worst
case with the maximum of removed vertices (notice
that it is true for theKn graph). In this case, for each
v vertex removed the algorithm inspects the labels of
each adjacent vertexu of v. If the label ofu is larger
than the label ofv, a unit is reduced to thesmall(u)
value. Thus theUpdate(k)operation will inspect each
vertex and its adjacents (likeBFSalgorithm). Hence
in the worst case the total time of this operation is
O(n+m). The addition of dummy edges to thesver-
tex is done in the worst casen times. Therefore the
complexity of time ofVD-PLANARISEis O(n+m).

Since the proposed algorithm is a heuristic one,
questions may arise regarding the quality of its solu-
tions, i.e. the amount of vertices removed. The algo-
rithm efficiency - with the exception of a few cases
such as the complete graphKn - is highly dependable
on thest-numbering, since thePQ-trees are built in
that order. Hence remains the question: how many
different st-numberings can a graph possess? And
what is the impact of differentst-numberings regard-
ing the quality of the obtained solutions?

It is not trivial to answer these questions since the
number ofst-numberings of a given graph varies ac-
cordingly to its structure and characteristics. For a
complete graph consisting ofn vertices, after thest
edge is chosen each vertex without a label can be a
candidate to receive the next label, thus it is trivial to
show that there aren! possiblest-numberings for such
graph. It is easy to see that for that case differentst-
numberings does not affect the solution since every
vertex is adjacent to every other vertex, however we
can usen! as an upper bound to the number of possi-
blest-numberings.

Therefore, given the largest-numbering possibil-
ities space and knowing that differentst-numbering
affects the quality of the solutions obtained by the
VD-PLANARISE, we decided to use a search tech-
nique to refine the solutions. For additional details

regarding theVD-PLANARISEalgorithm we recom-
mend the work of (Constantino et al., 2011) and (Pin-
heiro et al., 2012).

5 THE EVOLUTIONARY
ALGORITHM
MAVD-PLANARISE

As the VD-PLANARISEalgorithm possesses linear
time complexity, its use as an objective function for
optimisation techniques is efficient enough. Know-
ing that it is possible to run ast-numbering algo-
rithm with linear time complexity and that thest-
numberings possibilities space is too large to enumer-
ate, the use of an enhanced mechanism to search a
large solution space is viable. Hence we propose the
MAVD-PLANARISE.

The objective of theMAVD-PLANARISEis to
search for the best parameter setup for both thest-
numbering andVD-PLANARISEalgorithms. The
MAVD-PLANARISEis defined over the basic struc-
ture of a memetic algorithm, consisting of a genetic
algorithm (Goldberg, 1989) and a local search. The
individuals are defined in a structure that contains a
copy of the adjacency structure of the graph to be pla-
narised, a(s, t) edge to be used in thest-numbering
algorithm, ast vector containing thest-numbering
of the graph over that setup and the fitness value
(number of removed vertices) calculated after thest-
numbering.

The chromosome of an individual is a copy of the
adjacency list of the given graph. LetG be a graph
andc be a chromosome;c consists ofn genes where
n is the number of vertices ofG. Each genegk is the
adjacency list of the vertexvk.

Every time an individual is generated - over the
initial population generation or by crossover - the
st-numbering algorithm is applied over its adjacency
structure using the individual selected(s, t) edge with
the purpose of obtaining thest-numbering, which is
stored in thest vector. After thest-numbering is ob-
tained, the fitness value is then calculated using the
VD-PLANARISEalgorithm. Only after that procedure
an individual is ready for selection and crossover.

TheMAVD-PLANARISEuses a fixed size popula-
tion with a random initial generation of each individ-
ual, copying the adjacency structure of the original
graph and randomly swapping the vertices order of
each vertex list. During the selection and renewal of
the population, we opted for using an elitism system
(Goldberg, 1989) of the 10% best solutions being kept
on the population. In order to improve the selection

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

468

chances of less fit individuals and avoid stagnation,
the algorithm also utilises a linear scaling (Goldberg,
1989) technique to calculate the fitness value.

Regarding the selection process, after defining the
elite, the algorithm uses the roulette method (Gold-
berg, 1989) to select the pairs for crossover. The se-
lection process using the roulette method uses the fit-
ness valuetk = fscaling(fO(k)) of each individual of
the actual population and the total valuets = ∑n

k=1 tk,
wheren is the number of individuals of the popula-
tion. After calculating those values a random valuer
is picked where 1≤ r ≤ ts and the algorithm selects
the individuals that belong to the range of the sum of
the picked number.

The crossover mechanism of the proposed algo-
rithm is composed by two steps. The first one is a
regular uniform crossover operation (Goldberg, 1989)
and the second one is what defines the method as
a memetic algorithm, a local search to find the best
(s, t) edge to be used by thest-numbering algorithm.
After the chromosomes are generated and before cal-
culating the fitness, every new individual has a small
chance of suffering a mutation. Let this chance beα.
The mutation process uses theflip technique where
one gene is randomly raffled and all the adjacency list
of that chosen gene is shuffled.

After the crossover, theMAVD-PLANARISErun a
greedy local search procedure for each individual on
the neighbourhood of the(s, t) edge with the purpose
of choosing the best edge for that graph structure. The
procedure begins its search by picking up the best
(s, t) edges from the individual parents. The choosing
of this edge is made during the crossover and the pro-
cess consists of finding the bestst-numbering given
the edge(s, t) and the inverse(t,s) of each parent
and the adjacency structure of the generated individ-
ual. Only then the greedy search starts by the selected
(s, t) edge, itsst-numbering and the resulting num-
ber of vertices of the graph planarisation using that
setup. For each vertexv adjacent tos theGREEDYST-
SEARCHalgorithm generates ast-numbering using
the edge(s,v) as a temporary(s, t) edge and planarise
the graph using theVD-PLANARISEalgorithm. If
the resulting planar subgraph has more vertices than
the one with the original(s, t) edge, then the vertex
v replaces the vertext in the (s, t) edge. The greedy
search also executes the same procedure for the edge
(v,s) and in case the obtained planar subgraph has
more vertices than the original one,(s, t) := (v,s) and
the GREEDYST-SEARCHalgorithm return its recur-
sive call over the new(s, t) edge. The algorithm ends
when it cannot find a better solution.

Figure 3: Results forCn×Cm graphs.

6 RESULTS

We tested the algorithms on two types of graphs;
cartesian graphs, for they possess symmetric and
cyclic characteristics among its vertices and edges
and randomly generated graphs. For eachn, where
3 ≤ n ≤ 10, we generated tenCn ×Cm graphs with
m evenly spread through[n,25], hence obtaining 80
graphs. As for the random graphs, we generated 200
graphs, with|V| evenly distributed such that 30≤
|V| ≤ 75 and for each pair of vertices we set an edge
with a probability ofδ, where each graph was given a
randomδ value such that 0.25≤ δ ≤ 0.75.

As for a measure, we tested theVD-PLANARISE
for every possiblest-numbering using an enumeration
algorithm. The comparative of the quality of the solu-
tions was made between the average and the best so-
lutions obtained by theVD-PLANARISE, and the so-
lution obtained by theMAVD-PLANARISE. Regard-
ing the parametrisation of our proposed memetic al-
gorithm, we defined a population of 100 individuals,
and a variable mutation rateα proportional to the pop-
ulation’s stagnation, such that 0.05≤ α ≤ 0.15. For
each graph we run the algorithm three times and used
the second better result.

Figure 3 presents the chart with the results ob-
tained from the tests on theCn ×Cm graphs. The
first interesting observation is regarding the dis-
crepancy between the average solutions obtained by
the VD-PLANARISEand the solutions found by the
MAVD-PLANARISE, meaning that the differentst-

Figure 4: Results for random graphs.

An�Evolutionary�Algorithm�for�Graph�Planarisation�by�Vertex�Deletion

469

Table 1: Summary of the experiments.

numberings in fact have great impact over the qual-
ity of the solutions obtained by the planarisation al-
gorithm. Furthermore, we can conclude that for this
special class of graphs, the algorithm performs well
enough to, in every test case, improve the quality of
the obtained solutions.

Figure 4 shows the results obtained from the tests
on random graphs. Again, we can observe that the
proposed metaheuristic was able to search the solu-
tion space and find better solutions.

Table 1 presents a summary of the experiments.
For cartesian graphs, we can highlight that the so-
lutions obtained by theMAVD-PLANARISEare very
close to the optimal solutions of theVD-PLANARISE,
overall only 0.7% worse, hence proving the quality of
the proposed algorithm for this type of graphs. For
the random graphs, it can be seen that the perfor-
mance of theMAVD-PLANARISEis superior to the
optimal solution found testing all thest-numberings.
This happens because the algorithm not only search in
the space of possiblest-numberings, but also changes
the visiting order of the vertices, which affects di-
rectly thePQ-trees algorithms and therefore theVD-
PLANARISE.

The table also presents the mean of the improve-

Figure 5: Time curve for theMAVD-PLANARISE.

ments achieved by applying the metaheuristic and
comparing it to the average solution obtained by the
VD-PLANARISE. We can observe that as the size of
the graph increases, so the improvement of the solu-
tions obtained by the metaheuristic decreases. This is
expected as the search space increases and the prob-
lem gets more difficult. Nonetheless, the algorithm
performs similar both on cartesian and random graphs
as the overall improvements for cartesian graphs was
40.07% with a standard deviation of 14.682% and for
random graphs with similar size range as the carte-
sian graphs was 43.252% with a standard deviation of
8.726%.

The algorithm execution time is shown by the Fig-
ure 5 using different sized graphs in terms of number
of vertices and edges(|V|+ |E|) and the execution
time in seconds. It can be noted that the algorithm
has a polynomial time performance, with a slightly
non-linear growing curve.

7 CONCLUSION

This work presented an evolutionary algorithm for
graph planarisation -MAVD-PLANARISE- which is
based on memetic algorithms. As the planarisation
heuristic algorithm, the proposed algorithm applies
the VD-PLANARISEwhich uses the vertex deletion
operation to obtain a planar subgraph. To the best of
our knowledge this is the only algorithm found in the
literature which optimises the number of vertices to
be removed for the process of graph planarisation.

It is important to emphasise that in the literature,
no linear complexity algorithm that planarises a
graph by removing vertices can be found as the use
of the vertex deletion operation is not frequent. Note
that the proposed algorithm finds an induced planar
subgraph from bi-connected non-planar components.
However it is possible to find a tree (or a forest in case
the graph is not connected) of bi-connected compo-
nents in linear time complexity and build an induced
planar subgraph using successive applications of the
algorithm VD-PLANARISE. Hence the algorithm
proposed here represents a sound and novel approach
to graph planarisation using the vertex deletion.

The proposed MAVD-PLANARISE approach
searches the planar solution space using different st-
numberings and obtains good results as it was shown
in section 6. Although the algorithm is capable of
refining the solution, there are no guarantees that by
just altering thest-numbering, theVD-PLANARISE
can obtain the optimal solution (as expected for a
heuristic approach). TheMAVD-PLANARISEnot
only searches in thest-numbering space, but it

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

470

also runs a local search on each individual, further
improving the results.

Future research include improvements on the
memetic algorithm in order to investigate a wider
search space, not just the one provided by theVD-
PLANARIZE. One option is to use the final solution
of the MAVD-PLANARIZEas a starting point to
another search procedure (such assimulated anneal-
ing, GRASP, VNS, PSO, etc) that does not rely on
the VD-PLANARIZE, but instead search in different
neighbourhoods. Another option is to adapt such
neighbourhoods to the local search procedure already
presented in this work. In any case, investigating
a wider range of neighbourhoods could potentially
improve the quality of the obtained solutions.

REFERENCES

Battista, G. D. and Nardelli, E. (1988). Hierarchies and
planarity theory.IEEE Transactions on Systems, Man,
and Cybernetics, (18):10351046.

Booth, K. S. and Lueker, G. S. (1976). Testing for the con-
secutive ones property, interval graphs, and graph pla-
narity using pq-tree algorithms.Journal of Computer
and System Sciences, 13(3):335 – 379.

Chiba, T., Nishioka, I., and Shirakawa, I. (1979). An al-
gorithm of maximal planarization of graphs. InProc.
1979 IEEE Symp. on Circuits and Sys, pages 649–652.

Constantino, A. A., de Mendonça, C. F. X., and Pinheiro,
R. L. (2011). Um algoritmo heurstico de complex-
idade linear para planarizaço de grafos por remoço
de vrtices. InIn Proc. XLIII Simpósio Brasileiro de
Pesquisa Operacional, XLIII SBPO, pages 1–11.

de Figueiredo, C. M. H., Faria, L., and Mendonça, C. F. X.
(1999). Optimal node-degree bounds for the complex-
ity of nonplanarity parameters. InProceedings of the
tenth annual ACM-SIAM symposium on Discrete al-
gorithms, SODA ’99, pages 887–888.

Eades, P. and de Mendonça, C. F. X. (1993). Heuristics for
planarization by vertex splitting. InIn Proc. ALCOM
Int. Workshop on Graph Drawing, GD’93, pages 83–
85.

Even, S. (2011).Graph Algorithms. Cambridge University
Press, New York, NY, USA, 2nd edition.

Even, S. and Tarjan, R. E. (1976). Computing an st-
numbering. Theoretical Computer Science, 2(3):339
– 344.

Faria, L., de Figueiredo, C., and Mendonça, C. (2001a).
Splitting number is np-complete.Discrete Applied
Mathematics, 108(12):65 – 83. ¡ce:title¿Workshop
on Graph Theoretic Concepts in Computer Sci-
ence¡/ce:title¿.

Faria, L., de Figueiredo, C. M. H., and de Mendonça Neto,
C. F. X. (2001b). On the complexity of the approx-
imation of nonplanarity parameters for cubic graphs.
pages 18–21.

Faria, L., de Figueiredo, C. M. H., and de Mendonça Neto,
C. F. X. (2004). On the complexity of the approxi-
mation of nonplanarity parameters for cubic graphs.
Discrete Applied Mathematics, 141(1-3):119–134.

Faria, L., de Figueiredo, C. M. H., Gravier, S.,
de Mendonça, C. F., and Stolfi, J. (2006). On max-
imum planar induced subgraphs.Discrete Applied
Mathematics, 154(13):1774 – 1782.

Fisher, G. and Wing, O. (1966). Computer recognition and
extraction of planar graphs from the incidence matrix.
Circuit Theory, IEEE Transactions on, 13(2):154–
163.

Garey, M. and Johnson, D. (1983). Crossing number is np-
complete.SIAM Journal on Algebraic Discrete Meth-
ods, 4(3):312–316.

Gibbons, A. (1985).Algorithmic Graph Theory. Cambridge
University Press.

Goldberg, D. E. (1989).Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition.

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1989).
O(n2) algorithms for graph planarization.Computer-
Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 8(3):257–267.

Lempel, A., Even, S., and Cederbaum, I. (1967). An al-
gorithm for planarity testing of graphs. InTheory of
Graphs, International Symposium, pages 215–232.

Liu, P. C. and Geldmacher, R. C. (1977). On the deletion of
nonplanar edges of a graph. InProc. 10th S-E Conf.
Combinatorics, Graph Theory, and Computing, Boca,
pages 727–738.

Marek-Sadowska, M. (1978). Planarization algorithms for
integrated circuits engineering. Inin Proc. IEEE Inter-
national Symposium on Circuits and Systems, pages
919–923.

Ozawa, T. and Takahashi, H. (1981). A graph-planarization
algorithm and its applications to random graphs. Inin
Graph Theory and Algorithms, Lecture Notes in Com-
puter Science, pages 95–107. Springer-Verlag.

Pasedach, K. (1976). Criterion and algorithms for deter-
mination of bipartite subgraphs and their application
to planarization of graphs. Graphen-Sprach. Algo-
rithm. Graphen, 1. Fachtag. graphen-theor. Konz. Inf.,
Berlin(West) 1975, 175-183 (1976).

Pinheiro, R. L., Constantino, A. A., and de Mendonça and,
C. F. X. (2012). Um algoritmo evolutivo para
planarização de grafos por remoção de vértices. In
In Proc. XLIV Simpósio Brasileiro de Pesquisa Op-
eracional, XLIV SBPO, pages 1–12.

Robertson, N. and Seymour, P. (1995). Graph minors .xiii.
the disjoint paths problem.Journal of Combinatorial
Theory, Series B, 63(1):65 – 110.

Yannakakis, M. (1978). Node-and edge-deletion np-
complete problems. InProceedings of the tenth an-
nual ACM symposium on Theory of computing, STOC
’78, pages 253–264, New York, NY, USA. ACM.

An�Evolutionary�Algorithm�for�Graph�Planarisation�by�Vertex�Deletion

471

