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Dead-time effects on the voltage spectrum of a PWM inverter
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An inverter converts a direct-current power supply to an alternating-current power supply. This con-
version is achieved by switching the output between the inputs at high frequency. The resulting output
voltage may be described by a high-frequency train of variable-width pulses. Pulse widths are slowly
modulated so that this output waveform contains a prescribed low-frequency component, which may
then be isolated by an appropriate filtering regime. Techniques for determining the full harmonic spec-
trum of input and output voltages and currents are well established, at least for an idealised mathematical
model of the inverter. However, this model assumes that changes of inverter configuration can be ef-
fected instantaneously, which is not quite the case in practice. In fact, a small amount ofdead timemust
be incorporated into switching regimes in order to avoid short circuits of the input. Although dead time
is an important feature of real power conversion devices, its effects on output voltage spectra have not
previously been fully determined (except by imposing rather restrictive approximations). This situation
is remedied in the present paper, in which we present closed-form expressions for the coefficients of the
harmonic spectrum, corroborated by simulations.
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1. Introduction

The power inverter is an important technology for synthesising an alternating-current power supply from
a direct-current source supply. The device achieves this power-supply conversion through semiconduc-
tor ‘switches’, which are rapidly opened and closed according to a prescribedmodulation strategy,
thereby changing the configuration of the device at high frequency. In the simple inverter design consid-
ered here, the output of the device is a sequence of square-wave pulses, the widths of which are slowly
modulated at the frequency of the desired output. Suchpulse width modulation(PWM) is used in a
variety of electronic devices, including Class-D amplifiers (Berhout & Dooper, 2010; Coxet al., 2011),
fibre-optic communications equipment (Suh, 1987), and manyothers.

The slow modulation of the rapid switching in such devices has the unfortunate side-effect that the
output voltages have complicated harmonic spectra. Knowledge of such spectra is of significant practical
interest, particularly from the point of view of so-calledpower quality, and to inform the design of the
filters needed to remove any unwanted frequency components.An idealised mathematical model is
well established, and for a number of different PWM-based power-conversion devices the harmonic
spectra of the output voltage signals are well documented (see, for example, Holmes & Lipo, 2003).
Recovery of explicit expressions for theinput currentspectra is also feasible, as we have demonstrated
elsewhere (Cox, 2009; Cox & Creagh, 2009).

Unfortunately, the present model assumes that the semiconductor ‘switches’ in power conversion
devices operate instantaneously, which is not achievable in practice. To accommodate the nonzero
switching durations of real semiconductor devices, switching times must be adjusted in order to avoid
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a situation in which both switches conduct simultaneously and thus short-circuit the input. This adjust-
ment is achieved through the addition of short periods ofdead time, during which both switches are set
to remain open, to allow time for the devices to change state without incident.

Previous investigations into the effects of dead time have largely been examinations of its effects
on time-domain representations of the voltage and current waveforms and attempts to mitigate these
through re-adjustment of the inverter (Leggate & Kerkman, 1997; Lin, 2002; Munoz & Lipo, 1999;
Murai et al., 1992; Olivieraet al., 2007). That is not to say there have been no previous attempts to
calculate the effects of dead time on the harmonic spectrum,but such ventures have employed additional
approximations or unnecessarily restrictive assumptionsabout the switching times (Chierchie & Paolini,
2010; Wuet al., 1999).

In this paper, we demonstrate that the effects of dead time can be incorporated into the harmonic
spectrum of a power inverterwithoutsuch additional approximations, and in a relatively straightforward
manner. As one of the authors has argued elsewhere (Cox, 2009; Cox & Creagh, 2009), it is prudent to
avoid the method typically adopted in the engineering literature (see Black, 1953) in favour of something
less algebraically cumbersome. Other methods for determining spectra exist (see Pascualet al., 2003;
Song & Sarwate, 2003), but the technique espoused here seemsto be the most straightforward.

There have been two notable prior attempts to determine the effects of switching dead time on the
Fourier spectrum of the output voltages. First we mention Wuet al. (1999), who examine a two-phase
(H-bridge) inverter with an inductive load. They use Black’s method to determine the Fourier spec-
trum of the output in the presence of dead time. In the course of their analysis, an approximation is
made, which amounts to the introduction of errors of the order of the (small) ratio of the power supply
frequency to the switching frequency (ωo/ωs). The order of magnitude of the error due to this approx-
imation is consistent with the discrepancies between theirtabulated theoretical and simulated results.
In a more recent work, Chierchie & Paolini (2010) derive a general formula for the Fourier spectrum
coefficients, with and without dead time, but these formulasare written in terms of the switching times,
so they give no immediate insight into the output voltage spectrum. One particular form of switching
(so-callednatural sampling) is then analysed in detail. Unfortunately, this analysis is limited to the
case in which the ratioωs/ωo is an integer and a further approximation is made to the equations for the
switching times. Perhaps most unsatisfactory from an applications standpoint is the fact that the final
result is left in terms of the switching times, so that no self-contained explicit expression for the Fourier
coefficients is provided.

We begin our presentation of the effects of dead time on the output voltage spectrum of a PWM
inverter, in Section 2, with a description of the inverter under consideration, before establishing the
mathematical formulation of the problem in Section 3. The analysis proper can be found in Section 4.
Corroborating numerical results are presented in Section 5, followed by a brief discussion and conclu-
sion in Section 6.

2. Dead-time effects on a PWM inverter

Figure 1 shows the single-phase inverter considered in the present paper; for simplicity of notation, all
voltages have been nondimensionalised so that the supply voltages take the values±1. This inverter
represents the basic building block of most power converters. In what we shall refer to as theideal
model, one side of the load is held at zero volts while two switches connect the other side of the load
alternately to the upper and lower supply rails (in practice, the switching is achieved using transistors).
In parallel with these switches are diodes, which conduct current only in the direction shown; their
significance will be explained in due course. The switching instants of the ideal output voltage are
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FIG. 1. Inverter design. SwitchesS1 andS2 operate alternately, at high frequency, to generate a quasi-periodic output voltagev(t)
whose low-frequency components are intended to deliver a prescribed alternating-current power supply.

denoted byAm andBm, and the corresponding output voltage pulse train is illustrated in Figure 2(a).
However, in reality the semiconductor switches have significant turn-on and turn-off times, and so both
switches may conduct around the switching instants, leading to a short-circuit of the input power supply,
which is clearly unacceptable. One remedy is as follows: delay the ‘on’ signal for one switch (this delay
is thedead time, Td) to allow the other to completely turn off (to avoid a short-circuit of the input).
In the mathematical model presented in Section 3, this approach of introducing delays will correspond
to a parameter valueδ = 1. The output voltage associated with this case is depicted in Figure 2(b),
together with that for the ideal case in Figure 2(a). Dead time can instead be introduced by advancing
all turn-off times byTd/2 and delaying all turn-on times by the same amount. This alternative approach
will be associated with a parameter valueδ = 0. Figure 2(c) shows the corresponding output voltage
waveform.

Clearly, when the upper switch (S1) is closed,v(t) = 1, and with the lower switch (S2) closed,
v(t) = −1. During a dead-time episode (when both switches are open),the instantaneous output voltage
v(t) depends on the direction of the current through the load: this direction determines which of the
diodes,D1 or D2, conducts. For example, suppose the currenti(t) through the load is negative. Then
during the dead time around the switchingoff of S2 and the switchingon of S1, diodeD1 conducts and
D2 blocks the current. For the same current polarity, during the dead time aroundS2 switchingon and
S1 off, D1 again conducts andD2 again blocks the current. The net result is an increase in theaverage
voltage seen at the output across that switching cycle. By contrast, if the currenti(t) is positive, then
there is a net decrease in the average voltage over the switching cycle. These dead-time effects modify
the spectrum of the output voltage.

For completeness, we note that if the current is close to zeroat the beginning of the dead time and
decreases to zero during the dead time, then it will remain zero for the rest of the dead-time period,
because the reverse-polarised diode blocks the current flow. This phenomenon can last for several
switching periods, and causes additional distortion of theoutput voltage, beyond that modelled below.
However, we anticipate that considering effects of this kind would result in only small changes to the
spectrum recovered for typical ratiosωo/ωs.
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FIG. 2. Output voltagev(t). (a) Ideal case, with no dead time. (b) Modified switching times, with dead time, in the caseδ = 1.
(c) Modified switching times, with dead time, in the caseδ = 0. Note that the effect of dead time on the switching depends on the
polarity of the output currenti(t).

3. Mathematical formulation

In this section, we develop a mathematical model for a single-leg power inverter. For clarity of expo-
sition, we initially describe the model in the absence of anydead time. The modifications necessary
to accommodate dead time are identified only once the fundamentals of the original ‘ideal’ model have
been established. For further details of the simpler (zero-dead-time model) we also encourage the reader
to consult Cox (2009).

The output voltage without any dead time, as pictured in Figure 3(a), is given by

v(t) =

{

+1 for Bm−1 < t < Am,
−1 for Am < t < Bm.

(1)

The switching timesAm andBm satisfymTs < Am < Bm < (m+1)Ts, whereTs is the fundamental carrier
period (see Figure 3). We shall refer to the interval(mTs,(m+1)Ts) as themth switching period. If, for
eacht, t1 andt2, we let

ψ(t; t1, t2) =

{

1 if t1 < t < t2,
0 otherwise,

(2)
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FIG. 3. PWM switching, illustrated for natural sampling of the reference signals(t). The voltagev(t) takes the values+1 or−1
according to whether the value of the low-frequency reference waves(t) is greater than or less than the value of the high-frequency
triangular carrier wave.

we may write

v(t) = 1−2
∞

∑
m=−∞

ψ(t;Am,Bm). (3)

The switching times may be determined in a variety of ways, depending on thesamplingmethod
to be used. So-callednatural sampingis illustrated in Figure 3: the switching times are defined by
the intersection of a low-frequency reference waves(t) (this is the desired alternating-current output
voltage) with a high-frequency piecewise-linear carrier wave. Alternatively, the reference wave may
be sampled at regular intervals, and this sampled value usedto determine intersections with the carrier
wave and hence the switching times. Both naturally and regularly sampled PWM are considered in
this work. Furthermore, we treat two variants of regular sampling: if the reference signal is sampled
only at the positive peaks of the triangular carrier waveform (or only at the negative peaks), this defines
symmetricalregularly sampled PWM, whereas if the reference wave is sampled atboth positive and
negative peaks of the carrier, this definesasymmetricalregularly sampled PWM.

For any sampling method, the ideal switching times may be written in the form

Am = (m+ ασ
m)Ts, Bm = (m+ β σ

m)Ts, (4)

where the superscriptσ = N, SRor AR to denote, respectively, natural sampling, symmetrical regular
sampling and asymmetrical regular sampling. The fractional switching times are given in terms of the
reference signal by

αN
m = 1

4(1+s((m+ αN
m)Ts)), (5)

β N
m = 1

4(3−s((m+ β N
m)Ts)), (6)

αSR
m = 1

4(1+s(mTs)), (7)

β SR
m = 1

4(3−s(mTs)), (8)

αAR
m = 1

4(1+s(mTs)), (9)

β AR
m = 1

4(3−s((m+1/2)Ts)). (10)



Note that the switching times are determined explicitly foreither form of regular sampling, but only
implicitly for natural sampling. This crucial difference leads to slight differences in our treatment of
the two sampling types. However, the corresponding modifications that must be made to the standard
method (see Black, 1953) are considerably greater (Holmes &Lipo, 2003).

In this paper, results are calculated for a single-frequency reference wave,

s(t) = M cos(ωot), (11)

where the amplitudeM is often referred to as themodulation depth. With relatively minor modifications,
but a considerable volume of additional algebra, the methodused here can easily be extended to cater
for multiple-frequency reference signals. In the absence of dead time, the output voltage spectrum
which corresponds with (11) is well known (Holmes & Lipo, 2003). In applications, the output voltage
switches between voltage levels at a frequency significantly in excess of that of the reference signal, so
thatωoTs ≪ 1.

3.1 Dead time

In practice, as discussed above, the switching is subject toperiods of dead time, during which the output
voltage depends on the output current polarity. A full determination of the current polarity requires a full
knowledge of the output voltage, and this interdependence leads to an apparently intractable problem.

However, an extremely good modelling assumption is to suppose that the current polarity changes
sign precisely twice during each fundamental period of the reference signal. It is therefore reasonable
to suppose that the current polarity is described by a step functiont 7→Ψ(t), as given by

Ψ(t) ≡ sgn(cos(ωot −Φ ′)) =







+1, − 1
2π + Φ ′ < ωot < 1

2π + Φ ′,

−1, 1
2π + Φ ′ < ωot < 3

2π + Φ ′,
(12)

with Ψ(t) = Ψ(t + 2π/ωo) for all t. The determination of the phase angleΦ ′ requires a further mod-
elling assumption. In the engineering literature, the assumption is thatΦ ′ is the phase displacement
between the fundamental components of the ideal output voltage and output current, which can readily
be determined once the impedance of the output load is known.In any event, we shall takeΦ ′ as known.

We now state the manner in which the switching times of the actual output voltage are determined.
For regular sampling, these times (including dead timeTd) are prescribed by

A′
m = Am+ 1

2(δ −Ψ(mTs))Td, B′
m = Bm+ 1

2(δ +Ψ(tBm))Td, (13)

where

tBm =

{

mTs (symmetrical regular sampling, SR),

(m+1/2)Ts (asymmetrical regular sampling, AR).
(14)

Here, the ideal switching timesAm andBm are specified by (4), (7)–(10), and we recall that we have
introduced the parameterδ taking the values 0 and 1 for the two dead-time implementations described
above. For natural sampling, the actual switching times aregiven (implicitly) by

A′
m =

(

m+ 1
4(1+s(A′

m))
)

Ts+ 1
2(δ −Ψ(A′

m))Td, (15)

B′
m =

(

m+ 1
4(3−s(B′

m))
)

Ts+ 1
2(δ +Ψ(B′

m))Td. (16)



Before we turn to our analysis of the Fourier spectrum of the output voltagev(t), we record two
essential tools: we shall make repeated use of the Poisson re-summation formula (see, for example,
Courant & Hilbert, 1989)

∞

∑
m=−∞

h(m) =
∞

∑
m=−∞

∫ ∞

−∞
e2πmiτh(τ)dτ (17)

and the Jacobi–Anger identity (Watson, 1944)

eizcosθ =
∞

∑
n=−∞

inJn(z)eniθ . (18)

4. Results

4.1 Natural sampling

In natural sampling regimes, switching times are known onlyimplicitly, so it is remarkable that it is
possible to recover a closed-form expression for (3). Progress is made by first applying the Poisson
re-summation formula (17) to (3), to give

v(t) = 1−2
∞

∑
m=−∞

∫ ∞

−∞
e2πmiτ ψ(t;A(τ),B(τ))dτ, (19)

whereτ 7→ A(τ) andτ 7→ B(τ) are continuous functions with the property thatA(m) = A′
m andB(m) =

B′
m for every integerm. In view of (15) and (16),

A(τ) =
(

τ + 1
4(1+Mcos(ωoA(τ)))

)

Ts+ 1
2(δ −Ψ(A(τ)))Td ≡ (τ + α(τ))Ts, (20)

B(τ) =
(

τ + 1
4(3−Mcos(ωoB(τ)))

)

Ts+ 1
2(δ +Ψ(B(τ)))Td ≡ (τ + β (τ))Ts. (21)

The integrand in (19) is nonzero when

(τ + α(τ))Ts < t < (τ + β (τ))Ts. (22)

However, it turns out to be helpful to introduce functionst 7→ a(t) andt 7→ b(t) such that

a(t) = α(τ) whent = (τ + α(τ))Ts, (23)

b(t) = β (τ) whent = (τ + β (τ))Ts. (24)

Then, recalling (20) and (21), we see thata(t) andb(t) may be expressed explicitly in terms oft through

a(t) = 1
4(1+Mcos(ωot))+ 1

2(δ −Ψ(t))Td/Ts, (25)

b(t) = 1
4(3−Mcos(ωot))+ 1

2(δ +Ψ(t))Td/Ts. (26)

Using properties (23) and (24), we may equivalently write condition (22) as

t
Ts

−b(t) < τ <
t
Ts

−a(t). (27)



The integrals in (19) are now readily calculated; thus

v(t) = 1−2
∞

∑
m=−∞

∫ t/Ts−a(t)

t/Ts−b(t)
e2πmiτ dτ

= 1−2(b(t)−a(t))−2
∞

∑
m=−∞

′ (2πmi)−1e2πmit/Ts
{

e−2πmia(t)−e−2πmib(t)
}

= M cos(ωot)−
2Td

Ts
Ψ(t)+

∞

∑
m=−∞

′ (πmi)−1e2miπt/Tse−miπδTd/Ts ×

{

imeimπ( 1
2M cos(ωot)−Ψ(t)Td/Ts) − (−i)meimπ(− 1

2M cos(ωot)+Ψ (t)Td/Ts)
}

, (28)

where the notation∑′ indicates that the termm= 0 is omitted from the sum. We note that the only ele-
ment of this formula that reflects the different implementations of dead time is the phase term involving
δ . It is evident from (28) that the low-frequency contributions to the spectrum are due to

v(t) ∼ M cos(ωot)−2
Td

Ts
Ψ(t)+ · · · , (29)

that is, precisely from the reference signal and a small-amplitude square wave with amplitude propor-
tional to the dead-time ratioTd/Ts.

To make further progress, we note that the exponentials in (28) which involve cosωot andΨ(t)
are all 2π/ωo-periodic, so may each be expressed in terms of a suitable Fourier series. In fact, each
exponential may be written in the form

eiz{cos(ωot)+λΨ(t)} ≡
∞

∑
n=−∞

Sn(z,λ )einωot , (30)

where the Fourier series coefficientsSn(z,λ ) may be obtained from

Sn(z,λ ) =
ωo

2π

∫ 2π/ωo

0
eiz(cos(ωot)+λΨ(t))e−inωot dt. (31)

Using the Jacobi–Anger relation (18) and the definition ofΨ from (12), we find

Sn(z,λ ) = cos(zλ )Jn(z)in +sin(zλ )in
∞

∑
p=−∞
p6=n

[π(p−n)]−1Jp(z)ei(p−n)Φ ′
((−1)p−n−1). (32)

A Fourier series representation forΨ(t) is also readily obtained, and is given by

Ψ (t) =
4
π

∞

∑
n=1,3,...

(−1)
1
2 (n−1)

n
cos(n(ωot −Φ ′)). (33)

Finally, combining (28), (32) and (33), we find the output voltage to be

v(t) = M cos(ωot)−
8Td

Tsπ

∞

∑
n=1,3,...

(−1)
1
2 (n−1)

n
cos(n(ωot −Φ ′))

+
∞

∑
m=−∞

′
∞

∑
n=−∞

im(πmi)−1e−imπδTd/Tseiωmnt
{

Sn(
1
2πmM,λ )− (−1)mSn(−

1
2πmM,λ )

}

,(34)



where

λ = −
2Td

TsM
(35)

and the contributory frequencies in (34) are

ωmn = nωo +m
2π
Ts

= nωo +mωs. (36)

Consideration of the form of the term

Sn(
1
2πmM,λ )− (−1)mSn(−

1
2πmM,λ )

reveals that there are contributions tov(t) with frequencyωmn only whenm+n is odd. More explicitly,
(34) may be written as

v(t) = M cos(ωot)−
8Td

Tsπ

∞

∑
n=1,3,...

(−1)
1
2 (n−1)

n
cos(n(ωot −Φ ′))

+
∞

∑
m=−∞

′
∞

∑
n=−∞

im+n(πmi)−1e−imπδTd/Tseiωmnt × (37)











cos(πmTd/Ts)Jn(
1
2πmM)(1− (−1)m+n)−sin(πmTd/Ts)

∞

∑
p=−∞
p6=n

ei(p−n)Φ ′

π(p−n)
Jp(

1
2πmM)Emnp











,

where
Emnp= ((−1)p−n−1)(1+(−1)m+p). (38)

It is apparent from (37) that thefundamentalcomponent of the actual voltage (i.e., the component
with frequencyωo) differs from the reference voltages(t) in both amplitude and phase, although these
differences are small for all typical dead-time implementations (Td/Ts on the order of a few percent).
For a given value of the ratioTd/Ts, the relative error in the fundamental is greater for smaller values of
the modulation depthM.

4.2 Asymmetrical regular sampling

For regular sampling, the switching times are known explicitly, so the Fourier transform of the output
voltage, ˆv(ω), may be obtained directly from (3). Thus, for asymmetrical sampling, from (3), (9), (10),
(11), (13) and (14), it follows that, forω 6= 0,

v̂(ω) =

∫ ∞

−∞
e−iωtv(t)dt = −2

∫ ∞

−∞
e−iωt

∞

∑
m=−∞

ψ(t;Am,Bm)dt

= 2(−iω)−1
∞

∑
m=−∞

(

e−iωAm−e−iωBm
)

= 2(−iω)−1
∞

∑
m=−∞

e−imωTs ×

{

e−
1
4 iωTseiω(− 1

4TsM cos(mωoTs)+
1
2TdΨ(mTs)−

1
2δTd)

−e−
3
4 iωTseiω( 1

4TsM cos((m+ 1
2 )ωoTs)−

1
2TdΨ ((m+ 1

2 )Ts)−
1
2δTd)

}

. (39)



Poisson re-summing then gives

v̂(ω) =
2

−iω

∞

∑
m=−∞

∫ ∞

−∞
e2πmiτe−iωTsτe−

1
2 iωδTd Q(τ)dτ, (40)

where
Q(τ) = e−

1
4 iωTseiω(− 1

4TsM cos(ωoτTs)+
1
2TdΨ (τTs))

−e−
3
4 iωTseiω( 1

4TsM cos(ωo(τ+ 1
2)Ts)−

1
2TdΨ((τ+ 1

2 )Ts)).
(41)

After substitutingt = τTs, we find, equivalently, that

v̂(ω) =
2

−iωTs

∞

∑
m=−∞

∫ ∞

−∞
e2π imt/Tse−iωte−

1
2 iωδTd q(t)dt, (42)

where
q(t) = e−

1
4 iωTseiω(− 1

4TsM cos(ωot)+ 1
2TdΨ (t))

−e−
3
4 iωTseiω( 1

4TsM cos(ωo(t+
1
2Ts))−

1
2TdΨ(t+ 1

2Ts)).
(43)

The time-dependent exponentials in (43) may now be written as Fourier series, since they are each of
the form in (30). Thus

q(t) = e−
1
4 iωTs

∞

∑
n=−∞

Sn(−
1
4ωTsM,λ )einωot −e−

3
4 iωTs

∞

∑
n=−∞

Sn(
1
4ωTsM,λ )einωoteinωoTs/2, (44)

whereλ is given in (35). Combining (42) and (44) then gives

v̂(ω) =
2e−

1
2 iωδTd

−iωTs
∑
m,n

∫ ∞

−∞
e−i(ω−ωmn)t

{

e−
1
4 iωTsSn(−

1
4ωTsM,λ )−e−

3
4 iωTsSn(

1
4ωTsM,λ )eniωoTs/2

}

dt.

(45)
Finally, by evaluating the integral in (45), we recover

v(t) = ∑
m,n

VAR
mneiωmnt , (46)

where (providedωmn 6= 0)

VAR
mn =

2e−
1
2 iΩmnδTd/Ts

−iΩmn

[

e−
1
4 iΩmnSn(−

1
4ΩmnM,λ )−e−

3
4 iΩmnSn(

1
4ΩmnM,λ )einπωo/ωs

]

(47)

and
Ωmn = Tsωmn = nωoTs+2πm. (48)

More explicitly, (47) is given by (providedΩmn 6= 0)

VAR
mn =

2
iΩmn

Jn(
1
4ΩmnM)cos(1

2ΩmnTd/Ts)e
− 1

4 iΩmne−
1
2 iΩmnδTd/Tsin((−1)m− (−1)n)

+
2

iΩmn

∞

∑
p=−∞
p6=n

Jp(
1
4ΩmnM)sin(1

2ΩmnTd/Ts)
ei(p−n)Φ ′

π(p−n)
e−

1
4 iΩmne−

1
2 iΩmnδTd/TsinFmnp, (49)



where
Fmnp= (1− (−1)p−n)((−1)m+(−1)p), (50)

andVAR
mn = 0 wheneverΩmn = 0.

It follows from (49) and (50) thatVAR
mn = 0 wheneverm+ n is even. In particular, therefore, as for

natural sampling, the even low-order harmonics (i.e. thosefor m= 0 and evenn) are absent from the
spectrum.

4.3 Symmetrical regular sampling

Following the procedure described in the previous subsection, but for symmetrical regular sampling, we
find that (3), (7), (8), (11), (13) and (14) give

v(t) = ∑
m,n

VSR
mneiωmnt , (51)

where (providedΩmn 6= 0) the Fourier coefficients are now

VSR
mn =

2
−iΩmn

e−
1
2 iΩmnδTd/Ts

[

e−
1
4 iΩmnSn(−

1
4ΩmnM,λ )−e−

3
4 iΩmnSn(

1
4ΩmnM,λ )

]

. (52)

More explicitly, (52) is given by (wheneverΩmn 6= 0)

VSR
mn =

2
iΩmn

Jn(
1
4ΩmnM)cos(1

2ΩmnTd/Ts)e−
1
4 iΩmne−

1
2 iΩmnδTd/Tsin(e−

1
2 iΩmn− (−1)n)

+
2

iΩmn

∞

∑
p=−∞
p6=n

Jp(
1
4ΩmnM)sin(1

2ΩmnTd/Ts)
ei(p−n)Φ ′

π(p−n)
e−

1
4 iΩmne−

1
2 iΩmnδTd/TsinGmnp, (53)

where
Gmnp= (1− (−1)p−n)(e−

1
2 iΩmn +(−1)p); (54)

andVSR
mn = 0 wheneverΩmn = 0. No particular cancellation occurs in this case, so all harmonics are

present.

5. Corroboration of analytical results

In this section, we compare our closed-form expressions forthe harmonic spectrum ofv(t) with results
from numerical ‘simulations’ of the inverter, obtained using Matlab.

The solid lines in Figures 4–6 represent the harmonic components obtained from our simulations. To
give numerical results that are as clean as possible, we choose the ratioωs/ωo to be an integer (although
this restriction is not necessary for any of our analytical results). We choose a large number of equally
spaced sample points over one period of the reference signal, then for each sample point we determine
the corresponding output voltage, using the formulas in Section 3. Finally, we apply a Fast Fourier
Transform (FFT) with 50000 points per switching period to this (sampled) output waveform. The nu-
merical approximations to the Fourier coefficients thus obtained are plotted alongside those obtained
through the analytical expressions derived in Section 4. Numerical and analytical results are marked,
respectively, by solid and dashed lines. The results plotted are those corresponding to parameter values
ωs/ωo = 21, M = 0.8, Φ ′ = 70.5× π/180 and (whenever dead time is implemented)Td/Ts = 0.04.



While the choice of an integer ratioωs/ωo leads to particularly clean numerical results, it has the some-
what unfortunate consequence that harmonics can overlap: for example, in this case contributions to the
frequency 3ωo can arise fromm= 0, n = 3 orm= 1, n = −18, etc. Thus to determine the contribution
at any given frequency, one must sum all such contributions (for an irrational ratio of frequencies, of
course, no such issue arises).

Results shown are forδ = 1; we have obtained similar agreement between numerical andanalytical
results forδ = 0 dead time. Although, in applications, the dead time ratioTd/Ts is typically around
0.01, we takeTd/Ts = 0.04 here so that the effects of dead time are sufficiently exaggerated to be visible
in our plots. There is clearly excellent agreement between theory and simulation.
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FIG. 4. Output voltage spectrum for natural sampling. Dashed lines show the theoretical spectrum; solid lines (slightly displaced
for clarity) show results from simulation in Matlab. Left:Td = 0. Right: Td/Ts = 0.04 andδ = 1. The frequency of a given
contribution is ‘harmonic order’×ωo.

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

harmonic order

ha
rm

on
ic

 a
m

pl
itu

de

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

harmonic order

ha
rm

on
ic

 a
m

pl
itu

de

FIG. 5. Output voltage spectrum for asymmetrical regular sampling. Dashed lines show the theoretical spectrum; solid lines
(slightly displaced for clarity) show results from simulation in Matlab. Left: Td = 0. Right: Td/Ts = 0.04 andδ = 1. The
frequency of a given contribution is ‘harmonic order’×ωo.
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FIG. 6. Output voltage spectrum for symmetrical regular sampling. Dashed lines show the theoretical spectrum; solid lines
(slightly displaced for clarity) show results from simulation in Matlab. Left: Td = 0. Right: Td/Ts = 0.04 andδ = 1. The
frequency of a given contribution is ‘harmonic order’×ωo.

6. Discussion and conclusions

This paper has presented closed-form expressions for the theoretical spectrum of the output voltage
of a PWM inverter, allowing for two implementations of dead time, for the first time. Prior attempts
to calculate the effects of dead time on this spectrum have relied on approximations or restrictions
which are not necessary here. Our analysis reveals the influence of dead time upon the amplitudes
of the low-order harmonics. For natural sampling, we find that the relationship between the dead-
time ratio and the amplitudes of these components is linear.For regular sampling, the situation is
similar, although the relationship is then only approximately linear, provided the ratioωo/ωs is held
fixed. For natural sampling and for asymmetrical regular sampling, we have identified those frequency
components which are absent from the spectrum (these absences are independent of the form of the
dead-time implementation).

We have corroborated our analytical results by means of Matlab simulations of the output voltage
waveform. There is excellent agreement between theory and simulation for the two dead-time protocols
discussed here, and for both natural and regular sampling.

One reason that dead-time effects have not previously been fully analysed lies in the tremendous
algebraic complexity of the necessary calculations using the ‘industry standard’ method, due to Black
(1953). We therefore emphasise that the method described here, although itself algebraically involved, is
less cumbersome than Black’s method, and does make feasiblethe dead-time calculation. Furthermore,
it may readily be extended to allow for a multiple-frequencyreference signal (cf. Odavicet al., 2010),
although, of course, the corresponding algebra would be significantly more involved. In a similar vein,
we note that this method could be extended to more complicated power converter designs, for which the
single-phase inverter presented here is the fundamental building block.

Finally, we note that in a practical implementation the spectrum may differ from the ideal case
described here. For instance, with dead time the switching is determined by theinstantaneous, rather
thansampled, value of the current. It is therefore to be expected that occasional additional pulses may
arise in the output voltage around the time at which the current changes polarity, modifying slightly the
output voltage spectrum. While this effect is likely to be slight, its significance will increase as the ratio
ωo/ωs increases; an analysis of this effect is beyond the scope of the present paper.
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