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Abstract 

The feasibility of the discrete element method to model the performance of a cone crusher 

comminution machine has been explored using the particle replacement method (PRM) to represent 

the size reduction of rocks experienced within a crusher chamber. In the application of the PRM 

method, the achievement of a critical octahedral shear stress induced in a particle was used to define 

the breakage criterion. The breakage criterion and the number and size of the post breakage progeny 

particles on the predicted failure of the parent particles were determined from the results of an 

analysis of the experimental data obtained from diametrical compression tests conducted on series of 

granite ballast particles. The effects of the closed size setting (CSS) and eccentric speed settings on 

the predicted product size distribution compare favourably with the available data in the literature.  

 

 

Introduction 

The cone crusher is the most common type of mineral comminution machine that is used widely in the 

minerals and aggregates extractive industries to crush medium or above medium sized rocks. 

Although the operational design of cone crushers has experienced a significant improvement since the 

first models were developed in the mid-1920s, further improvements to the development of crusher 
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design to enhance performance have been restricted due to a number of factors. Firstly, it has proved 

difficult to successfully predict the size distribution and shape of the crusher product for a given feed 

stream. A number of researchers have proposed a series of iterative empirical models based on 

experimental observation (Gauldie, 1953; Whiten, 1972; Evertsson, 1997). These inverse solution 

methods attempt to match the size distributions of the feed and product streams. However, to date 

engineers have been unable to adapt these models to assist in the development of modified crusher 

chamber design configurations to improve the operational performance of these machines. In 

particular, these iterative inverse solution models do not allow the design engineer to investigate the 

influence that changes to the cavity profile, the cone throw or rotational speed settings may have on 

the crusher performance. The use of an incremental build and testing of alternative design prototypes 

is expensive, often requiring the production and several models to identify an economic improvement 

in the crusher performance. The development of a validated computational simulation mode of a cone 

crusher could significantly reduce the required lead time and costs. The discrete element method 

(DEM) (Cundall and Strack, 1979) provides a potential method to investigate the mechanical 

behaviour of the flow and breakage of granular material on both the micro and macro scales. Over the 

past thirty years, DEM models have been widely used to investigate the mechanical behaviour of 

granular material. In recent years, the particle replacement method (PRM) has been widely used to 

model particle breakage using DEM. The PRM approach replaces the predicted failed parent particle 

by a number of new and smaller fragments. The achievement of a critical octahedral stress induced in 

a particle was used as the breakage criterion (McDowell and De Bono, 2013) in the application of the 

PRM method. The breakage criterion and breakage function were determined from the results of a 

series of experimental compression tests performed on a feed of different sizes granite rock samples. 

For a given particle feed size distribution, the performance of the computational crusher model was 

validated by evaluating the effects that changes to the CSS and eccentric speed settings had on the 

predicted product size distribution. Alternative breakage functions were also examined to study their 

influence on the computed product size distributions.  
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The construction of DEM cone crusher model 

Figure 1 and Figure 2 illustrate typical vertical and horizontal cross sectional views through a cone 

crusher. To construct a representative numerical DEM model of a cone crusher, the geometry of a 

crusher was defined by the specification of the following eight parameters. The location of these 

parameter measurements are shown on Figure 1and Figure 2. 

 The width of feed entrance to the crusher chamber, F. 

 The closed size setting (CSS): the smallest distance between concave and mantle. 

 The throw s: this represents the eccentric distance the cone moves during a half 

rotation. 

 The bite angle β: the angle subtended between the concave and the mantle.  

 The cone angle α, measured as the angle at the base of the mantle.  

 The eccentric angle γ: the angle of the eccentric rotation of the cone. 

 The parallel length of the cone : the length of the lower part of the concave that  is 

parallel to the mantle in CSS state. 

 Bottom diameter of the mantle Dc.  

As the simulated operation of the DEM cone crusher with a real geometry is computationally too 

expensive, the performance of a small scale cone crusher was modelled in this study. The dimensions 

of the model parameters were determined based on the full scale cone crusher design geometry 

presented by Lang (1998). Table 1 gives the values of these parameters.  

Table 1. Parameter values used to construct the DEM cone crusher model 

 

Figure 1. A vertical cross-section view through a typical cone crusher. 

 

Figure 2. A horizontal cross-section view through a typical cone crusher 
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The mantle was modelled by a cylinder wall, and the concave was represented by two cylinder walls 

of which the lower one was used to model the part of the concave which is parallel to the mantle. The 

calculation procedures of geometrical parameters were listed in Table 2 and these parameters are 

illustrated in Figure 3.  

Table 2. Calculation procedures of geometrical parameters of prototype cone crusher 

 

 

Figure 3. Parameters calculated in the DEM cone crusher model 

The proprietary DEM code PFC
3D

 (Itasca, 2008) was used to construct and solve the simulation 

models described in this study. Figure 4 shows an illustration of the representative 3D rendered 

surfaces of the mantle and concaves formed within a typical DEM cone crusher model. The motion of 

the cone has two components: an eccentric pendular angular velocity  about the vertical axis of 

the cone crusher, and a ‘spinning’ angular velocity of the cone about its own axis , related to 

 by: 

 
Equation1 

 

Figure 4. The DEM cone crusher model 

Breakage criterion 

The PRM approach has recently been used by Lichter et al (2009) to model the rock fracture predicted 

within a cone crusher.  However, in that study the rock particles were described by polyhedral models 

and the fracture criterion and the parameters used to determine the distribution of the resultant post 

breakage fragment sizes were not discussed. A number of other researchers have proposed a number 

of other breakage criteria using the PRM approach.  For example, Tsoungui et al.(1999)  proposed a 
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measure of shear stress in two dimensions.  Astrom & Herrmann(1998) and Ben-Num & Einav(2010) 

used a measure of compressive stress to define a two dimensional fracture criterion.  McDowell &de 

Bono(2013) and McDowell et al(2013) suggested the use of  the octahedral shear stress as the fracture 

criterion for a three dimensional simulation of rock failure. It was decided to employ the octahedral 

shear stress breakage criterion for the simulations performed in this study. This model was selected  as 

it avoids  particle fracture under a high hydrostatic stress but low deviatoric stress, e.g., if a particle is 

subjected to diametrical point loads, equal in three mutually orthogonal directions then it would not 

break under this hydrostatic stress q=0 (McDowell and De Bono, 2013). The octahedral stress is 

expressed as: 
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Equation 2 

where 
1 , 

2  and 3  are the principle stresses in three directions. Therefore the assumption was 

made that, for the rock particles flowing and being successively compressed as the cone rotates in the 

chamber, the particles would be replaced if the computed octahedral shear stress exceeded its 

‘strength’. However, q is difficult to measure in experiments so it is difficult to calibrate the strength 

of the particle. For a sphere, McDowell et al (2013) related the octahedral shear stress q to the tensile 

strength measured from a diametrical compression test by: 

𝑞 = 0.9𝜎 
Equation 3 

where  is the tensile stress at failure which is defined by McDowell and Bolton (1998): 

𝜎 =
𝐹

𝑑2 
Equation 4 

and F is the diametrical compressive force applied by the platens and d is the diameter of the sphere. 

The Weibull (1951) statistical distribution is one of the most commonly used tools to describe the 

fracture of disordered materials and has been applied to a wide range of granular materials: ceramics 

(Davidge, 1979); soil particles (McDowell & Amon, 2000;) and the analysis of survival data 
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(Mudholkar, 1996). Therefore in this study the rock particles were given strengths for a given size 

described by a Weibull distribution. The average tensile strength,  , is  also related to the particle size 

(Bazant, 1984; Lee, 1992; McDowell and Bolton, 1998; Bui, 2005). Consequently, a size effect factor 

b is also applied to the particle strengths based on the assumption that particles have the same Weibull 

modulus for all the size fractions, which is described by the expression: 

𝑞𝑜 ∝ 𝜎𝑎𝑣 ∝ 𝑑𝑏 
Equation 5 

where qo denotes the 37% strength for a size d,  is the average tensile strength and b is the size effect 

factor which is constant for a given material. 

Experimental calibration  

In order to calibrate the tensile strength, q, of the particles, the tensile strengths of three size fractions 

of Glensanda ballast particles were determined from the execution of a series of experimental 

diametrical compression tests: 14-28mm, 30-37.5mm and 40-60mm. Thirty particles of each size 

fraction were tested; the experimental rig used is as shown in Figure 5. 

 

Figure 5A photograph of the Zwick experimental testing rig used to apply diametrical compression tests to selected 

rock samples.  

To quantify the ballast particle strengths using Weibull (1951) statistics, the tensile strengths 

(calculated from equation 12) of each size fraction were ranked in ascending order to compute the 

survival probability (Davidge, 1979) for each tensile stress at failure, the survival probability was  

computed using the mean rank position equation: 

𝑃𝑠 = 1 − 𝑖/(𝑁 + 1) 
Equation 6 

where i is the ith ranked sample from a total of N samples. Thus, given the test results for 30 same 

sized particles, the lowest value of  gives a particle survival probability of 30/31, and the tensile 

strength of the strongest particle gives a particle survival probability of 1/31. Assuming the particle 
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strengths obey a Weibull distribution, the survival probability of particles of size d under a tensile 

stress  is given by: 

𝑃𝑠(𝑑) = exp(−(
𝜎

𝜎𝑜
)𝑚) 

Equation 7 

where m is the Weibull modulus and  is the tensile stress such that 37% of the particles survive, 

commonly termed the‘37% tensile strength’ of the sample. The Weibull modulus determines the 

coefficient of variation, which reduces as the variability in strength increases. Equation 15 may be 

recast in the form: 

𝑙𝑛  𝑙𝑛 
1

𝑃𝑠  𝑑 
  = 𝑚𝑙𝑛(

𝜎

𝜎𝑜
) 

Equation 8 

The Weibull modulus m and the 37% tensile strength for each set of tests may be graphically 

determined from a Weibull survival probability plot, which is a plot of   against . 

The Weibull modulus m corresponds to the slope of the line of best fit, and the value of is the value 

of  when 𝑙𝑛  𝑙𝑛  
1

𝑃𝑠 𝑑 
  = 0. The Weibull probability of plots for the three tested size fractions of 

ballast particles are plotted in Figure 6 

 

Figure 6 A plot of the computed Weibull survival probabilities for ballast particles of three size fractions 

 

It is clear that the measured tensile strengths of all of three tested size fractions of the ballast exhibit a 

Weibull distribution Table 3 shows summary of the measured experimental data  for all three size 

fractions: the 37% tensile strength (σo), the average tensile strength (σf), correlation coefficient of 

linear fit(R
2
), and the Weibull modulus (m).  
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Table 3 Summary of the averages of the measured experimental data obtained from the sets of single sized particle 

crushing tests 

 

Figure 7shows a plot of the average particle strength as a function the particle size. The data can be 

expressed as the equation: 

𝜎𝑎𝑣 = 480.03𝑑−1.1 
Equation 9 

 

Figure 7 Average tensile strength against average particle size at failure 

To select an appropriate breakage function for the construction of a PRM model to simulate the 

breakage behaviour experienced in a cone crusher chamber model, the size distribution of the 

daughter fragments resulting from the failure of the single parent particles were analysed. Figure 8 

shows the typical fragments generated following the failure of the single particles. As may be 

observed, the failed particles typically formed 2 or 3 larger sized progeny particles accompanied by a 

few smaller sized particles and some fines. 

 

Figure 8 Photographs showing the typical daughter fragments produced following the failure of the single parent 

particles subjected to a diametrical compression test 

Twenty particles of a total of thirty particles of each size fraction were sieved. For each original 

parent particle, the daughter fragments were sized according to their sieve size and then the individual 

size fractions individually weighed. The minimum sieve size used was 8mm, thus all fragments 

smaller than 8mm were classified as fines. It was found that for all the size fractions, the largest 

daughter fragments can in most cases form approximately 60% of the original particle mass. The 

second largest progeny fragments have a mass of approximately 30% of the original parent particle. 

The remaining fragments tend to be formed by a collection of much smaller particles and fines that 

represent less than 10% of the original particle mass. Figure 9 shows the size classification analyses of 
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ten samples of each size fraction. Therefore, it was proposed to adopt the following protocol to govern 

the generation of daughter particles on the application of a diametrical compression to each size of 

original particle: once the critical tensile strength of this size of particle is exceeded, the particle will 

always divide into two major particles which will be 60% and 30% of the original particle mass, with 

the remaining mass (10%) is a small fragment representing the remaining crushed fines in the 

aggregate. 

 

Figure 9A graphical presentation of the size and mass classification data obtained from analyses performed on the 

fragments produced on the failure of particles subjected to a diametrical compression test 

 

Input parameters  

A simple sphere was used to present the particle in this research. The contact model used here is the 

linear contact model (Itasca, 2008). To permit a tractable computational time two hundred particles 

were chosen to represent the feed material. The size of the feed material needs to be chosen from the 

size range of the experimentally crushed ballast particles as the experimental results of the tensile 

strengths are necessary to calibrate the rock breakage criteria in the DEM model. The smallest size 

fraction 14-28mm was chosen as the size range of the feed material. Therefore the feed particles are 

200 spheres with a random diameter of  between 14mm ( ) and 28mm ( ). 

Table 4 shows the input parameters for the model. The particle stiffness were calculated by the 

equation given by Itasca Consulting Group, Inc (2008), which is the Young’s modulus of the material 

 to the radius of the balls R and stiffness: 

𝑘𝑛 = 𝑘𝑠 = 4𝑅𝐸𝑐 
Equation 10 

A typical value of the Young’s modulus for the Glensanda granite ballast was determined to be 

70GPa.  The interparticle friction in this study was chosen to be the same as that for simulations on 

aggregates of ellipsoidal pebbles (McDowell et al, 2011) this was determined to achieve the same 
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angle of repose in the DEM simulation as that measured for the real pebbles during the execution of a 

simple slump test in the laboratory.  This assumption was made, because using spheres to represent 

rocks, it will be very difficult to achieve an angle of repose similar to ballast aggregate, the reader is 

referred to McDowell et al (2011) for details of the modelling of flow of ellipsoidal rocks.  Energy 

dissipation at contacts was modelled by the viscous damping model (Itasca, 2008) characterized by 

the critical damping ratio (Ginsberg& Genin, 1984). The critical damping ratio was calibrated by 

comparing the results of model simulation drop tests with corresponding laboratory drop tests - that is 

individual pebbles were dropped onto the bottom wall. The reader is referred to the work of 

McDowell et al (2011) for the details of the determination of particle-particle friction coefficient and 

critical damping ratio. The minimum size of the breakable spheres was set at a diameter of 4mm. The 

minimum particle size was defined to control the time step of the DEM calculation, the maximum 

number of particles and thus the computational time. 

The Weibull modulus of particle strengths for a given size was set as the average value of the three 

size fractions: 2.95. The size effect factor b in equation 12 was determined as -1.1 based on the Figure 

7. 

Table 4 Input parameters of the cone crusher model for PRM approach  

 

Breakage functions 

Based on the size distributions of the broken rock particles produced by the laboratory diametrical 

compression tests described above, an original particle is assumed to split into three particles which 

individually represent 60%, 30% and 10% of the mass of the original particle. To conserve mass, the 

three progeny fragments were sufficiently overlapped to be contained within the bounding parent 

sphere. The axis joining the centres of the three new spheres was aligned along the direction of the 

minor principal stress, as shown in Figure 10. This overlap causes the particle fragments to move 

along the direction of the minor principal stress of the original parent particle, as would occur when a 

single particle is compressed between two flat parallel platens (McDowell & De Bono, 2013). 
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Figure 10 Triple split mechanism 

 

However, huge undesirable local pressure spikes were generated by the overlaps of fragments in the 

size distribution function. The imposed elastic energy caused by the overlap needs to be 

accommodated after every update of particle breakages.  Otherwise, all the fragments will break 

infinitely under the artificial created huge pressure. In order to accommodate this problem, the author 

defined a ‘freeze state’ to release the artificial energy. The cone crusher model will be set into the 

freeze state once breakage occurs with the following assumptions: 

 When new particles are generated, all other particles are initially given zero rotational and 

translational velocities. The locations of the boundaries (the walls of the crusher model) are 

fixed. 

 In this state, all of the particles are temporarily assigned an artificially large mass (3x10
9
 

kg/m
3
) to minimise the motions caused by collision. 

 The new particles are given an artificially low stiffness (1x10
3
 N/m) to minimise the energy 

release generated by the overlaps. 

 The viscous damping system is removed and a high local damping coefficient 0.9 (Itasca, 

2008) is added to accelerate the stabilization of the new particles. 

 Gravity is removed. 

A flow chart illustrating the solution stages of the cone crusher model is shown in Figure 11. The 

particles in the crusher chamber will continue to flow until a breakage condition is achieved. At this 

point, the solution algorithm applies the ‘freeze’ state until the artificial energy of the new fragments 

is released and dissipated. Thereafter, the model reverts to the normal state allowing the particles to 

continue to flow. It should be noted that the instantaneous velocities of all particles are recorded 

before the system applies a freeze state, after which these velocities are returned to the original 
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unbroken particles It is noted that a local damping system was replaced in the model by a viscous 

damping system, when the solution algorithm reverts from the freeze s to the normal state. 

 

 

Figure 11 Flow chart of the cone crusher solution algorithm using the PRM model approach  

Simulation procedure 

Figure 12 shows snapshots of the crusher simulation in action. In industry the feed material is usually 

loaded to the crusher feed bin by a hydraulic shovel or by a conveyer belt. This material is then 

ideally choke fed under gravity into the top of the cone crusher chamber. It is difficult to entirely 

replicate this complex feed process within the model, and thus the feed is simplified by assuming that 

the feed particles flow from a full bin located vertically above the crusher chamber. The 

computational algorithm is detailed as follows: 

 200 particles are randomly generated inside an artificial cylinder wall 1, representing 

the feed bin (labelled in Figure 12). 

 The spheres representing the feed material are deposited by the gravity into the feed 

bin. A flat artificial wall 2 (labelled in Figure 12) is constructed above the concave to 

avoid the particles from dropping directly through the chamber.  

 The flat artificial wall 2 is then deleted to let the particles to flow under gravity 

through the top of the crusher chamber. A conical artificial wall 3 (labelled in Figure 

12) was constructed to cap the top of the mantle, and this prevents any particles from 

flowing into the hollow mantle.  

 The mantle is rotated. 

 

Figure 12 A sequence of animation stills which  represent  the dynamic performance of the crusher predicted by the 

DEM model 

 

http://dict.cn/conveyer%20belt
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Model validation 

The influence of changing the CSS and eccentric speed on the size distribution of the products was 

first studied. Figure 13 shows the product size distributions generated by the model for various CSS 

for a fixed eccentric speed of rotation of 300 rpm. From an examination of these results it is clear that 

the feed particles will experience greater size reduction as the CSS decreases. Figure 14 shows the 

computed product cumulative size distribution curves for a range of eccentric rotational speeds values, 

at a constant CSS (15mm). It is shown that the upper size distribution curve represent the simulation 

with higher eccentric speed. That means the faster the mantle rotates, the larger the number of 

breakages which will occur in the chamber. It is concluded that the effect of both CSS and eccentric 

speed are monotonic in the product size distribution: either higher eccentric speed or smaller CSS lead 

to greater size reduction for the feed particles. This is qualitatively consistent with the experimental 

results in the literature Hulthen (2010).  

 

Figure 13 The effect of CSS on the size distribution of the products predicted by the  DEM simulation 

 

Figure 14The effect of eccentric speed on size distribution of the size distribution of the products predicted by the  

DEM simulation 

 

Influence of breakage mechanism 

Figure 15 shows the effect of the breakage mechanism on the computed product cumulative size 

distributions generated by two alternative breakage algorithms. The first mechanism is the triple-split 

mechanism that has been used so far.  The second mechanism is a simpler equal-split mechanism such 

that the two fragments are of equal size, contained within the parent sphere when fracture occurs, and 

such that the fragments move along the axis of the minor principal stress, with conservation of mass – 

as shown in Figure 16. The parameters are those in Table 4.  The CSS was set at 15mm and the 

eccentric speed was 300 rpm. It can be seen the cumulative mass curves of particles larger than 6mm 

nearly overlap. The major difference occurs at the bottom of the curve which represents the 
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cumulative mass of the fine particles. The equal split mechanism mass distribution curve suddenly 

changes at a particle size of 5mm, such that only a few fine particles are generated.  The difference 

between the two curves for smaller particle sizes is likely to be due to the comminution limit – the 

smallest particle size which can break is 4mm.  For such a particle the triple-split mechanism would 

result in a much smaller size for the smallest fragment. In addition, the triple split mechanism will 

give a large number of different discrete particle sizes over several generations of fracture, whereas 

for the double split mechanism a much smaller number of discrete fragment sizes are possible.  

 

 

 

Figure 15 The effect of the breakage function on the size of the rock fragments formed 

 

Figure 16 Equal split mechanism 

All the particle strengths are governed by a 37% strength, , the size effect factor, b, and the Weibull 

modulus m. Model simulations using various values of these three parameters have been performed 

with the triple-split mechanism to investigate their effect on the predicted cumulative size distribution 

of the products. Figure 17 shows the effect of changing the  parameter, for a constant b of -1.1 and 

constant m of 2.65. It can be observed that the predicted solution curves nearly overlap when  

varies from 10MPa to 20MPa. However, if is increased or decreased by a factor of 10, to values of 

80or 0.8MPa, respectively it is clear that more size reduction occurs at lower values of .  

 

Figure 17 The effect of the values of the parameter σo on the size distribution of the product stream 
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Figure 18 shows a plot of the computed particle strengths as a function of particle size for various 

values of b. For similarly sized fragments, an increase in the magnitude of b results in a higher 

strength; that is to say: b controls the hardening law and a higher value means a stronger size effect on 

strength. Figure 19 shows the cumulative particle size distribution as a function of the size effect 

factor b using the triple-split mechanism. It is evident that increasing the magnitude of b results in less 

breakage in the crusher chamber. 

 

Figure 18 Particle strengths as a function for various values of the parameter b with initial particle strength 18Mpa 

 

Figure 19 The effect of the parameter b on the size distribution of products 

 

Figure 20 shows the influence that changes to the value of the Weibull modulus parameter m have on 

the cumulative product size distribution, for a constant value of b=-1.1 and σo =18MPa for the largest 

particle size. The three curves for the different Weibull modulus m values are almost coincident. It is 

therefore concluded that changes to the Weibull modulus parameter does not significantly affect the 

product cumulative size distribution. In conclusion, for the three parameters which govern the particle 

strengths, size effect factor b has the greatest influence to the product size distribution and Weibull 

modulus m has the least influence.  

 

Figure 20The effect of the parameter m on the size distribution of products  

 

Conclusions 

A prototype DEM cone crusher model has been successfully modelled using the PRM approach and it 

has been validated against existing experimental data in the literature. The performance of these 

crusher models was assessed by examining the influence that changes to the CSS and eccentric speed 
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settings have on the predicted cumulative product size distributions. It was found either a decrease in 

the CSS or an increase in the eccentric rotational speed resulted in more computed breakage events 

within the crusher chamber, which is consistent with the experimental data in literature. The breakage 

mechanism was also found to influence the cumulative size distribution of the products for smaller 

fragment sizes. Three parameters were identified as characterising the strength of particles: the 37% 

tensile strength , the size effect factor b and the Weibull modulus m. The size effect factor b is 

found to have most influence on the product cumulative size distribution, whilst changes to the 

Weibull modulus m had little effect for this relatively unconstrained process. It can be concluded that 

the simple PRM model may be very useful in quickly establishing the influence that changes to the 

parameter values may have on the predicted cone crusher performance, thus informing the design of 

new more efficient prototypes. 
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Table 1. Parameter values used to construct the DEM cone crusher model 

F(mm) CSS(mm) s(mm) (˚) (˚) (˚) (mm) Dc(mm) 

55 12-18 4.5 18-22 45 2 50 300 
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Table 2: Calculation procedures of geometrical parameters of prototype cone crusher 

Geometrical Parameter Calculation Procedure 

The distance from p ivot to the centre 

of the bottom of the mantle: ℎ 
ℎ = 180𝑠/(2𝜋𝛾) 

The length of the upper part of the 

length of concave: 𝑙𝑢𝑝𝑝𝑒𝑟 _𝑐 
𝑙𝑢𝑝𝑝𝑒𝑟 _𝑐 = (𝐹 − 𝑐𝑠𝑠)/𝑠𝑖𝑛𝛽  

The radius of the bottom end of the 

mantle: Rbot _m  
𝑅𝑏𝑜𝑡 _𝑚 = 𝐷𝑐 /2 

The radius of bottom end of the lower 

concave: Rbot _c 
𝑅𝑏𝑜𝑡 _𝑐 = 𝑐𝑜𝑠𝛾 ∗  𝑠 + 𝑅𝑏𝑜𝑡 _𝑚 + 𝐶𝑆𝑆 ∗ sin(𝛼 − 𝛾) 

The radius of top end of the lower 

concave: Rmid _c  
𝑅𝑚𝑖𝑑 _𝑐 = 𝑅𝑏𝑜𝑡 _𝑐 − ∆𝑙 ∗ 𝑐𝑜𝑠(𝛼 − 𝛾) 

The radius of top end of the upper 

concave: 𝑅𝑡𝑜𝑝 _𝑐 
𝑅𝑡𝑜𝑝 _𝑐 = 𝑅𝑚𝑖𝑑 _𝑐 − 𝑙𝑢𝑝𝑝𝑒𝑟 _𝑐 ∗ 𝑐𝑜𝑠(𝛼 + 𝛽 − 𝛾) 

The radius of  the top end of the 

mantle: 𝑅𝑡𝑜𝑝 _𝑚
 

𝑅𝑡𝑜𝑝 _𝑚
=

𝑅𝑡𝑜𝑝 _𝑐 − sin 𝛼 − 𝛾 ∗ 𝐹

𝐶𝑜𝑠𝛾 ∗ (𝑠 + 𝑅𝑏𝑜𝑡 _𝑚 )
∗ 𝑅𝑏𝑜𝑡 _𝑚  

The side length of the mantle: 𝑙𝑚  𝑙𝑚 = (𝐹 − 𝐶𝑆𝑆)/sin𝛽  

The coordinate of centre of bottom end 

of lower concave: 𝑂𝑏𝑜𝑡 _𝑐  
(0,  𝐶𝑆𝑆 ∗ 𝑐𝑜𝑠(𝛼 − 𝛾), 0) 

The coordinate of centre of top end of 

the lower concave: 𝑂𝑚𝑖𝑑 _𝑐  
(0, , 0 ) 

The coordinate of centre of top end of 

the upper concave: 𝑂𝑡𝑜𝑝 _𝑐 

(0, 

, 0) 

The coordinate of the centre of bottom 

end of mantle: 𝑂𝑏𝑜𝑡 _𝑚  
(𝑐𝑜𝑠𝛾 ∗ 𝑠, −𝑠𝑖𝑛𝛾 ∗ 𝑠 , 0 ) 

The coordinate of the centre of top end 

of mantle: 𝑂𝑡𝑜𝑝 _𝑚  
( 𝑅𝑡𝑜𝑝 _𝑐 − cos 𝛾 ∗ 𝑅𝑡𝑜𝑝 _𝑚

,  𝐶𝑆𝑆 − 𝐹 ∗

𝑐𝑜𝑠 𝛼 − 𝛾 + ∆𝑙 ∗ sin 𝛼 − 𝛾 + sin 𝛼 + 𝛽 − 𝛾 ∗ 𝑙𝑚 − sinγ ∗
𝑅𝑡𝑜𝑝 _𝑚

, 0) 
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Table 3 Summary of the averages of the measured experimental data obtained from the sets of single sized particle 

crushing tests 

Particle size fraction 37% tensile strength σo Average strength σf R2 Weibull Modulus m 

14-28mm 20.12MPa 20.02MPa 0.9608 3.0895 

30-37.5mm 12.61MPa  11.26MPa 0.9644 3.2859 

40-60mm 9.49MPa 8.47MPa 0.9882 2.4398 
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Table 4  Input parameter of the cone crusher model for PRM approach 

Size effect factor b -1.1 

Weibull Modulus m 2.65 

 
18.2MPa 

do 28mm 

Critical damping ratio 0.11 

Ball/wall friction 0.37 

Ball/ball friction 0.37 

Wall stiffness 1e13 N/m 

Particle Young modulus 70GPa 

Ball density 2650kg/m
3
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Figure 1. A vertical cross-section view through a typical cone crusher. 
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Figure 2. A horizontal cross-section view through a typical cone crusher 
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Figure 3. Parameters calculated in the DEM cone crusher model 
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Figure 4. The DEM cone crusher model 
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Figure 5 A photograph of the Zwick experimental testing rig used to apply diametrical compression tests to selected 

rock samples.  
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Figure 6 A plot of the computed Weibull survival probabilities for ballast particles of three size fractions 

 

 

Figure 7 Average tensile strength against average particle size at failure 
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Figure 8 Photographs showing the typical daughter fragments produced following the failure of the single parent 

particles subjected to a diametrical compression test 

 

  

Figure 21A graphical presentation of the size and mass classification data obtained from analyses performed on the 

fragments produced on the failure of particles subjected to a diametrical compression test 
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Figure 10. Triple split mechanism 
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Figure 11, Flow chart of the cone crusher solution algorithm using the PRM model approach  
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Figure 12. A sequence of animation stills which  represent  the dynamic performance of the crusher predicted by the 

DEM model 
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Figure 13 The effect of CSS on the size distribution of the products predicted by the  DEM simulation 

 

Figure 14. The effect of eccentric speed on size distribution of the size distribution of the products predicted by the  

DEM simulation 
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Figure 15. The effect of the breakage function on the size of the rock fragments formed 

 

Figure 16. Equal split mechanism 
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Figure 17. The effect of the values of the parameter σo on the size distribution of the product stream 

 

 

Figure 18. Particle strengths as a function for various values of the parameter b with initial particle strength 18Mpa 
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Figure 19. The effect of the parameter b on the size distribution of products 

 

Figure 20. The effect of the parameter m on the size distribution of products  
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