
Some constructions on ω-groupoids

Thorsten Altenkirch
Computer Science

University of Nottingham
txa@cs.nott.ac.uk

Nuo Li
Computer Science

University of Nottingham
nzl@cs.nott.ac.uk

Ondřej Rypáček
University of Oxford

United Kingdom
ondrej.rypacek@gmail.com

ABSTRACT
Weak ω-groupoids are the higher dimensional generalisation
of setoids and are an essential ingredient of the construc-
tive semantics of Homotopy Type Theory [10]. Following
up on our previous formalisation [3] and Brunerie’s notes
[5], we present a new formalisation of the syntax of weak ω-
groupoids in Agda using heterogeneous equality. We show
how to recover basic constructions on ω-groupoids using sus-
pension and replacement. In particular we show that any
type forms a groupoid and we outline how to derive higher
dimensional composition. We present a possible semantics
using globular sets and discuss the issues which arise when
using globular types instead.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Lambda calculus and related systems, Mechanical theorem
proving

General Terms
Theory

Keywords
Type Theory, Homotopy Type Theory, Category Theory,
Formalisation, Higher dimensional structures, Agda

1. INTRODUCTION
In Type Theory, a type can be interpreted as a setoid which
is a set equipped with an equivalence relation [1]. The equiv-
alence proof of the relation consists of reflexivity, symmetry
and transitivity whose proofs are unique. However in Ho-
motopy Type Theory, we reject the principle of uniqueness
of identity proofs (UIP). Instead we accept the univalence
axiom which says that equality of types is weakly equiva-
lent to weak equivalence. Weak equivalence can be seen as
a refinement of isomorphism without UIP [3]. For exam-
ple, a weak equivalence between two objects A and B in a

2-category is a morphism f : A → B which has a corre-
sponding inverse morphism g : B → A, but instead of the
proofs of isomorphism f ◦ g = 1B and g ◦ f = 1A we have
two 2-cell isomorphisms f ◦ g ∼= 1B and g ◦ f ∼= 1A.

Voevodsky proposed the univalence axiom which basically
says that isomorphic types are equal. This can be viewed as
a strong extensionality axiom and it does imply functional
extensionality. However, adding univalence as an axiom de-
stroys canonicity, i.e. that every closed term of type N is
reducible to a numeral. In the special case of extensionality
and assuming a strong version of UIP we were able to elim-
inate this issue [1, 2] using setoids. However, it is not clear
how to generalize this in the absence of UIP to univalence
which is incompatible with UIP. To solve the problem we
should generalise the notion of setoids, namely to enrich the
structure of the identity proofs.

The generalised notion is called weak ω-groupoids and was
proposed by Grothendieck 1983 in a famous manuscript Pur-
suing Stacks [7]. Maltsiniotis continued his work and sug-
gested a simplification of the original definition which can be
found in [9]. Later Ara also presents a slight variation of the
simplication of weak ω-groupoids in [4]. Categorically speak-
ing an ω-groupoid is an ω-category in which morphisms on
all levels are equivalences. As we know that a set can be seen
as a discrete category, a setoid is a category where every mor-
phism is unique between two objects. A groupoid is more
generalised, every morphism is isomorphism but the proof
of isomorphism is unique, namely the composition of a mor-
phism with its inverse is equal to an identity morphism. Sim-
ilarly, an n-groupoid is an n-category in which morphisms
on all levels are equivalence. ω-groupoids which are also
called ∞-groupoids is an infinite version of n-groupoids. To
model Type Theory without UIP we also require the equali-
ties to be non-strict, in other words, they are not definition-
ally equalities. Finally we should use weak ω-groupoids to
interpret types and eliminate the univalence axiom.

There are several approaches to formalise weak ω-groupoids
in Type Theory. For instance, Altenkirch and Rypáček [3],
and Brunerie’s notes [5]. This paper explains an implemen-
tation of weak ω-groupoids following Brunerie’s approach in
Agda which is a well-known theorem prover and also a vari-
ant of intensional Martin-Löf type theory. This is the first
attempt to formalise this approach in a dependently typed
language like Agda or Coq. The approach is to specify when
a globular set is a weak ω-groupoid by first defining a type

theory called T∞−groupoid to describe the internal language
of Grothendieck weak ω-groupoids, then interpret it with a
globular set and a dependent function. All coherence laws
of the weak ω-groupoids are derivable from the syntax, we
will present some basic ones, for example reflexivity. One of
the main contributions of this paper is to use heterogeneous
equality for terms to overcome some difficult problems we
encountering when using the normal homogeneous one. In
this paper, we omit some complicated and less important
programs, namely the proofs of some lemmas or definitions
of some auxiliary functions. It is still possible for the reader
who is interested in the details to check the code online1

Agda
Agda is a programming language and development environ-
ment based on Martin-Löf Type Theory [11]. Readers with
background in Type Theory (e.g. from reading the intro-
ductory chapters of [10]) should find it easy to read the
Agda code presented in this paper. Some hints: Π-types
are written in a generalized arrow notation (x : A)→ B for
Πx : A.B, implicit arguments are indicated by curly brack-
ets, eg. {x : A} → B, in this case the Agda will try to
generate the argument automatically and we don’t supply it
to make the code more readable. If we don’t want to supply
A because it can be inferred we write ∀x or ∀{x}. Agda
uses a flexible mixfix notation where the position of argu-
ments are indicated by underline characters. e.g. ⇒ is
one identifier which can be applied to two arguments as in
A⇒ B. The underlined characters can also be used as wild-
cards, if something can be automoatically inferred by Agda.
We use data data to define constructor based datatypes
(both inductive and coinductive) and record to define de-
pendent record types (this generalizes Σ-types. The rep-
resentation of coinductive types and more generally mixed
inductive/coinductive types [6] uses the type constructor ∞
whose elements are computations of type A which are writ-
ten as]a where |a| is an expression which can be evaluated
to an element of type A.

Acknowledgements
The first and second author would like to thank the organiz-
ers and other participants of the special year on homotopy
type theory at the Institute for Advanced Study where they
had many interesting discussion topics related to the work
presented in this paper. Especially we all would like to ac-
knowledge Guillaume Brunerie’s proposal which made this
work possible.

2. SYNTAX OF WEAK ω-GROUPOIDS
We develop the type theory of ω-groupoids formally, follow-
ing [5]. This is a Type Theory with only one type former
which we can view as equality types and interpret as the
homsets of the ω-groupoid. There are no definitional equal-
ities, this corresponds to the fact that we consider weak ω-
groupoids. None of the groupoid laws on any levels are strict
(i.e. definitional) but all are witnessed by terms. Compared
to [3] the definition is very much simplified by the obser-
vation that all laws of a weak ω-groupoid follow from the
existence of coherence constants for any contractible con-
text.

1The source code is available on github.com/nzl-nott.

In our formalisation we exploit the more liberal way to do
mutual definitions in Agda, which was implemented recently
following up a suggestion by the first author. It allows us to
first introduce a type former but give its definition later.

Since we are avoiding definitional equalities we have to define
a syntactic substitution operation which we need for the gen-
eral statement of the coherence constants. However, defining
this constant requires us to prove a number of substitution
laws at the same time. We address this issue by using a
heterogeneous equality which exploits UIP. Note that UIP
holds for the syntax because all components defined here are
sets in the sense of Homotopy Type Theory.

2.1 Basic Objects
We first declare the syntax of our type theory which is
called T∞−groupoid namely the internal language of weak ω-
groupoids. Since the definitions of syntactic objects involve
each others, it is essential to define them in a inductive-
inductive way. Agda allows us to state the types and con-
structors separately for involved inductive-inductive defini-
tions. The following declarations in order are contexts as
sets, types are sets dependent on contexts, terms and vari-
ables are sets dependent on types, context morphisms and
contractible contexts.

data Con : Set
data Ty (Γ : Con) : Set
data Tm : {Γ : Con}(A : Ty Γ) → Set
data Var : {Γ : Con}(A : Ty Γ) → Set
data ⇒ : Con → Con → Set
data isContr : Con → Set

Contexts are inductively defined as either an empty context
or a context with a type in it.

data Con where
ε : Con
, : (Γ : Con)(A : Ty Γ) → Con

Types are defined as either ∗ which we call 0-cells, or a
equality type between two terms of some type A. If the type
A is an n-cell then we call its equality type an (n+ 1)-cell.

data Ty Γ where
* : Ty Γ
=h : {A : Ty Γ}(a b : Tm A) → Ty Γ

2.2 Heterogeneous Equality for Terms
One of the big challenges we encountered at first is the diffi-
culty to formalise and reason about the equalities of terms,
which is essential when defining substitution. When the
usual homogeneous identity types are used, one has to use
substitution to unify the types on both sides of equality
types. This results in subst to appear in terms, about which
one has to state substitution lemmas. This further pollutes
syntax requiring lemmas about lemmas, lemmas about lem-
mas about lemmas, etc. For example, we have to prove using
subst consecutively with two equalities of types is proposi-
tionally equal to using subst with the composition of these
two equalities. There are more and more lemmas needed
as the complexity of the proofs grows. The resulting recur-
ring pattern has been identified and implemented in [3] for
the special cases of coherence cells for associativity, units
and interchange. However it is not clear how that approach

could be adapted to the present, much more economical for-
mulation of weak ω-groupoids. Moreover, the complexity
brings the Agda type checker to its limits and correctness
into question.

The idea of heterogenous equality, which we use to resolve
this issue, is that one can define equality for terms of differ-
ent types, but its inhabitants only for terms of definitionally
equal types. However, the corresponding elimination prin-
ciple relies on UIP. In Intensional Type Theory, UIP is not
provable in general, namely not all types are h-sets (homo-
topy 0-types). However every type with decidable equality is
an h-set. From Hedberg’s Theorem [8] we know that induc-
tive types with finitary constructors have decidable equality.
In our case, the types which stand for syntactic objects (con-
texts, types, terms) are all inductive-inductive types with
finitary constructors and it is therefore safe to assume that
UIP holds for them. In summary, the equality of syntactic
types is unique, so it is safe to use heterogeneous equal-
ity and proceed without using substitution lemmas which
would otherwise be necessary to match terms of different
types. From a computational perspective, it means that ev-
ery equality of types can be reduced to refl and using subst
to construct terms is proof-irrelevant, which is expressed in
the definition of heterogeneous equality for terms.

data ∼= {Γ : Con}{A : Ty Γ} :
{B : Ty Γ} → Tm A → Tm B → Set where

refl : (b : Tm A) → b ∼= b

Once we have heterogeneous equality for terms, we can de-
fine a proof-irrelevant substitution which we call coercion
since it gives us a term of type A if we have a term of type
B and the two types are equal. We can also prove that the
coerced term is heterogeneously equal to the original term.
Combining these definitions, it is much more convenient to
formalise and reason about term equations.

J 〉〉 : {Γ : Con}{A B : Ty Γ}(a : Tm B)
→ A ≡ B → Tm A

a J refl 〉〉 = a

cohOp : {Γ : Con}{A B : Ty Γ}{a : Tm B}(p : A ≡ B)
→ a J p 〉〉 ∼= a

cohOp refl = refl

2.3 Substitutions
In this paper we usually define a set of functions together
and we name a function x as xC for contexts, xT for types,
xV for variables xtm for terms and xS (or xcm) for context
morphisms. For example the substitutions are declared as
follows:

[]T : ∀{Γ Δ} → Ty Δ → Γ ⇒ Δ → Ty Γ
[]V : ∀{Γ Δ A} → Var A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)
[]tm : ∀{Γ Δ A} → Tm A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)

Indeed, composition of context morphisms can be under-
stood as substitution for context morphisms as well.

} : ∀{Γ Δ Θ} → Δ ⇒ Θ → (δ : Γ ⇒ Δ) → Γ ⇒ Θ

Context morphisms are defined inductively similarly to con-
texts. A context morphism is a list of terms corresponding
to the list of types in the context on the right hand side of

the morphism.

data ⇒ where
• : ∀{Γ} → Γ ⇒ ε
, : ∀{Γ Δ}(δ : Γ ⇒ Δ){A : Ty Δ}(a : Tm (A [δ]T))
→ Γ ⇒ (Δ , A)

2.4 Weakening
We can freely add types to the contexts of any given type
judgments, term judgments or context morphisms. These
are the weakening rules.

+T : ∀{Γ}(A : Ty Γ)(B : Ty Γ) → Ty (Γ , B)
+tm : ∀{Γ A}(a : Tm A)(B : Ty Γ) → Tm (A +T B)
+S : ∀{Γ Δ}(δ : Γ ⇒ Δ)(B : Ty Γ) → (Γ , B) ⇒ Δ

2.5 Terms
A term can be either a variable or a coherence constant
(coh).

We first define variables separately using the weakening rules.
We use typed de Bruijn indices to define variables as either
the rightmost variable of the context, or some variable in
the context which can be found by cancelling the rightmost
variable along with each vS.

data Var where
v0 : ∀{Γ}{A : Ty Γ} → Var (A +T A)
vS : ∀{Γ}{A B : Ty Γ}(x : Var A) → Var (A +T B)

The coherence constants are one of the major part of this
syntax, which are primitive terms of the primitive types in
contractible contexts which will be introduced later. Indeed
it encodes the fact that any type in a contractible context
is inhabited, and so are the types generated by substituting
into a contractible context.

data Tm where
var : ∀{Γ}{A : Ty Γ} → Var A → Tm A
coh : ∀{Γ Δ} → isContr Δ → (δ : Γ ⇒ Δ)

→ (A : Ty Δ) → Tm (A [δ]T)

2.6 Contractible contexts
With variables defined, it is possible to formalise another
core part of the syntactic framework, contractible contexts.
Intuitively speaking, a context is contractible if its geometric
realization is contractible to a point. It either contains one
variable of the 0-cell ∗ which is the base case, or we can
extend a contractible context with a variable of an existing
type and an n-cell, namely a morphism, between the new
variable and some existing variable. The graph can be drawn
like branching trees.

data isContr where
c* : isContr (ε , *)
ext : ∀{Γ} → isContr Γ → {A : Ty Γ}(x : Var A)

→ isContr (Γ , A , (var (vS x) =h var v0))

2.7 Lemmas
Since contexts, types, variables and terms are all mutually
defined, most of their properties have to be proved simulta-
neously.

The following lemmas are essential for the constructions and
theorem proving later. The first set of lemmas states that

to substitute a type, a variable, a term, or a context mor-
phism with two context morphisms consecutively, is equiv-
alent to substitute with the composition of the two context
morphisms:

[}]T : ∀{Γ Δ Θ A}{θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}
→ A [θ } δ]T ≡ (A [θ]T)[δ]T

[}]v : ∀{Γ Δ Θ A}(x : Var A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}
→ x [θ } δ]V ∼= (x [θ]V) [δ]tm

[}]tm : ∀{Γ Δ Θ A}(a : Tm A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}
→ a [θ } δ]tm ∼= (a [θ]tm) [δ]tm

}assoc : ∀{Γ Δ Θ Ω}(γ : Θ ⇒ Ω){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}
→ (γ } θ) } δ ≡ γ } (θ } δ)

The second set states that weakening inside substitution is
equivalent to weakening outside:

[+S]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}
→ A [δ +S B]T ≡ (A [δ]T) +T B

[+S]tm : ∀{Γ Δ A B}(a : Tm A){δ : Γ ⇒ Δ}
→ a [δ +S B]tm ∼= (a [δ]tm) +tm B

[+S]S : ∀{Γ Δ Θ B}{δ : Δ ⇒ Θ}{γ : Γ ⇒ Δ}
→ δ } (γ +S B) ≡ (δ } γ) +S B

We can cancel the last term in the substitution for weakened
objects since weakening doesn’t introduce new variables in
types and terms.

+T[,]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{b : Tm (B [δ]T)}
→ (A +T B) [δ , b]T ≡ A [δ]T

+tm[,]tm : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{c : Tm (B [δ]T)}
→ (a : Tm A)
→ (a +tm B) [δ , c]tm ∼= a [δ]tm

Most of the substitutions are defined as usual, except the
one for coherence constants. In this case, we substitute in
the context morphism part and one of the lemmas declared
above is used.

var x [δ]tm = x [δ]V
coh cΔ γ A [δ]tm = coh cΔ (γ } δ) A J sym [}]T 〉〉

3. SOME IMPORTANT DERIVABLE CON-
STRUCTIONS

In this section we show that it is possible to reconstruct
the structure of a (weak) ω-groupoid from the syntactical
framework presented in Section 2 in the style of [3]. To this
end, let us call a term a : Tm A an n-cell if level A ≡ n,
where

level : ∀ {Γ} → Ty Γ → N
level * = 0
level (=h {A}) = suc (level A)

In any ω-category, any n-cell a has a domain (source), snm a,
and a codomain (target), tnm a, for each m ≤ n. These are,
of course, (n-m)-cells. For each pair of n-cells such that
for some m, snma ≡ tnmb, there must exist their composition
a ◦nm b which is an n-cell. Composition is (weakly) associa-
tive. Moreover for any (n-m)-cell x there exists an n-cell
idn

m x which behaves like a (weak) identity with respect to

◦nm. For the time being we discuss only the construction of
cells and omit the question of coherence.

For instance, in the simple case of bicategories, each 2-cell a
has a horizontal source s11 a and target t11 a, and also a ver-
tical source s21 a and target t21a, which is also the source and
target, of the horizontal source and target, respectively, of a.

There is horizontal composition of 1-cells ◦11: x
f //y

g //z,
and also horizontal composition of 2-cells ◦21, and vertical
composition of 2-cells ◦22. There is a horizontal identity on
a, id1

1 a, and vertical identity on a, id2
1 a = id2

2id1
1 a.

Thus each ω-groupoid construction is defined with respect
to a level, m, and depth n-m and the structure of an ω-
groupoid is repeated on each level. As we are working purely
syntactically we may make use of this fact and define all
groupoid structure only at level m = 1 and provide a so-
called replacement operation which allows us to lift any cell
to an arbitrary type A. It is called ’replacement’ because we
are syntactically replacing the base type ∗ with an arbitrary
type, A.

An important general mechanism we rely on throughout the
development follows directly from the type of the only non-
trivial constructor of Tm, coh, which tells us that to con-
struct a new term of type Γ ` A, we need a contractible
context, ∆, a type ∆ ` T and a context morphism δ : Γ⇒ ∆
such that

T [δ]T ≡ A

Because in a contractible context all types are inhabited we
may in a way work freely in ∆ and then pull back all terms
to A using δ. To show this formally, we must first define
identity context morphisms which complete the definition
of a category of contexts and context morphisms:

IdCm : ∀{Γ} → Γ ⇒ Γ

It satisfies the following property:

IC-T : ∀{Γ}{A : Ty Γ} → A [IdCm]T ≡ A

The definition proceeds by structural recursion and there-
fore extends to terms, variables and context morphisms with
analogous properties. It allows us to define at once:

Coh-Contr : ∀{Γ}{A : Ty Γ} → isContr Γ → Tm A
Coh-Contr isC = coh isC IdCm J sym IC-T 〉〉

We use Coh-Contr as follows: for each kind of cell we want
to define, we construct a minimal contractible context built
out of variables together with a context morphism that pop-
ulates the context with terms and a lemma that states an
equality between the substitution and the original type.

3.1 Suspension and Replacement
For an arbitrary type A in Γ of level n one can define a
context with 2n variables, called the stalk of A. Moreover
one can define a morphism from Γ to the stalk of A such
that its substitution into the maximal type in the stalk of A
gives back A. The stalk of A depends only on the level of A,
the terms in A define the substitution. Here is an example
of stalks of small levels: ε (the empty context) for n = 0;
(x0 : ∗, x1 : ∗) for n = 1; (x0 : ∗, x1 : ∗, x2 : x0 =h x1, x3 :

x0 =h x1) for n = 2, etc.

This is the ∆ = ε case of a more general construction where
in we suspend an arbitrary context ∆ by adding 2n variables
to the beginning of it, and weakening the rest of the vari-
ables appropriately so that type ∗ becomes x2n−2 =h x2n−1.
A crucial property of suspension is that it preserves con-
tractibility.

3.1.1 Suspension
Suspension is defined by iteration level-A-times the following
operation of one-level suspension. ΣC takes a context and
gives a context with two new variables of type ∗ added at
the beginning, and with all remaining types in the context
suspended by one level.

ΣC : Con → Con
ΣT : ∀{Γ} → Ty Γ → Ty (ΣC Γ)

ΣC ε = ε , * , *
ΣC (Γ , A) = ΣC Γ , ΣT A

The rest of the definitions is straightforward by structural
recursion. In particular we suspend variables, terms and
context morphisms:

Σv : ∀{Γ}{A : Ty Γ} → Var A → Var (ΣT A)
Σtm : ∀{Γ}{A : Ty Γ} → Tm A → Tm (ΣT A)
Σs : ∀{Γ Δ} → Γ ⇒ Δ → ΣC Γ ⇒ ΣC Δ

The following lemma establishes preservation of contractibil-
ity by one-step suspension:

ΣC-Contr : ∀ Δ → isContr Δ → isContr (ΣC Δ)

It is also essential that suspension respects weakening and
substitution:

ΣT[+T] : ∀{Γ}(A B : Ty Γ)
→ ΣT (A +T B) ≡ ΣT A +T ΣT B

Σtm[+tm] : ∀{Γ A}(a : Tm A)(B : Ty Γ)
→ Σtm (a +tm B) ∼= Σtm a +tm ΣT B

ΣT[Σs]T : ∀{Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)
→ (ΣT A) [Σs δ]T ≡ ΣT (A [δ]T)

General suspension to the level of a type A is defined by
iteration of one-level suspension. For symmetry and ease of
reading the following suspension functions take as a param-
eter a type A in Γ, while they depend only on its level.

ΣC-it : ∀{Γ}(A : Ty Γ) → Con → Con

ΣT-it : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (ΣC-it A Δ)

Σtm-it : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B
→ Tm (ΣT-it A B)

Finally, it is clear that iterated suspension preserves con-
tractibility.

ΣC-it-Contr : ∀ {Γ Δ}(A : Ty Γ) → isContr Δ
→ isContr (ΣC-it A Δ)

By suspending the minimal contractible context, *, we ob-
tain a so-called span. They are stalks with a top variable
added. For example (x0 : ∗) (the one-variable context)

for n = 0; (x0 : ∗, x1 : ∗, x2 : x0 =h x1) for n = 1;
(x0 : ∗, x1 : ∗, x2 : x0 =h x1, x3 : x0 =h x1, x4 : x2 =h x3)
for n = 2, etc. Spans play an important role later in the
definition of composition.

3.1.2 Replacement
After we have suspended a context by inserting an appropri-
ate number of variables, we may proceed to a substitution
which fills the stalk for A with A. The context morphism
representing this substitution is called filter. In the final step
we combine it with Γ, the context of A. The new context
contains two parts, the first is the same as Γ, and the second
is the suspended ∆ substituted by filter. However, we also
have to drop the stalk of A becuse it already exists in Γ.

This operation is called replacement because we can inter-
pret it as replacing ∗ in ∆ by A. Geometrically speaking,
the resulting context is a new context which corresponds to
the pasting of ∆ to Γ at A.

As always, we define replacement for contexts, types and
terms:

rpl-C : ∀{Γ}(A : Ty Γ) → Con → Con
rpl-T : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (rpl-C A Δ)
rpl-tm : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B

→ Tm (rpl-T A B)

Replacement for contexts, rpl-C, defines for a type A in Γ and
another context ∆ a context which begins as Γ and follows
by each type of ∆ with ∗ replaced with (pasted onto) A.

rpl-C {Γ} A ε = Γ
rpl-C A (Δ , B) = rpl-C A Δ , rpl-T A B

To this end we must define the substitution filter which pulls
back each type from suspended ∆ to the new context.

filter : ∀{Γ}(Δ : Con)(A : Ty Γ)
→ rpl-C A Δ ⇒ ΣC-it A Δ

rpl-T A B = ΣT-it A B [filter A]T

3.2 First-level Groupoid Structure
We can proceed to the definition of the groupoid structure of
the syntax. We start with the base case: 1-cells. Replace-
ment defined above allows us to lift this structure to an
arbitrary level n (we leave most of the routine details out).
This shows that the syntax is a 1-groupoid on each level.
In the next section we show how also the higher-groupoid
structure can be defined.

We start by an essential lemma which formalises the discus-
sion at the beginning of this section: to construct a term in
a type A in an arbitrary context, we first restrict attention
to a suitable contractible context ∆ and use lifting and sub-
stitution – replacement – to pull the term built by coh in ∆
back. This relies on the fact that a lifted contractible con-
text is also contractible, and therefore any type lifted from
a contractible context is also inhabited.

Coh-rpl : ∀{Γ Δ}(A : Ty Γ)(B : Ty Δ) → isContr Δ
→ Tm (rpl-T A B)

Coh-rpl { } {Δ} A isC = coh (ΣC-it-ε-Contr A isC)

Next we define the reflexivity, symmetry and transitivity
terms of any type. Let’s start from some base cases. Each of
the base cases is derivable in a different contractible context
with Coh-Contr which gives you a coherence constant for any
type in any contractible context.

Reflexivity (identity) It only requires a one-object context.

refl*-Tm : Tm {x:*} (var v0 =h var v0)
refl*-Tm = Coh-Contr c*

Symmetry (inverse) It is defined similarly. Note that the
intricate names of contexts, as in Ty x:*,y:*,α:x=y indicate
their definitions which have been hidden. Recall that Agda
treats all sequences of characters uninterrupted by whites-
pace as identifiers. For instance x:*,y:*,α:x=y is a name of a
context for which we are assuming the definition: x:*,y:*,α:x=y
= ε , * , * , (var (vS v0) =h var v0).

sym*-Ty : Ty x:*,y:*,α:x=y
sym*-Ty = vY =h vX

sym*-Tm : Tm {x:*,y:*,α:x=y} sym*-Ty
sym*-Tm = Coh-Contr (ext c* v0)

Transitivity (composition)

trans*-Ty : Ty x:*,y:*,α:x=y,z:*,β:y=z
trans*-Ty = (vX +tm +tm) =h vZ

trans*-Tm : Tm trans*-Ty
trans*-Tm = Coh-Contr (ext (ext c* v0) (vS v0))

To obtain these terms for any given type in any give context,
we use replacement.

refl-Tm : {Γ : Con}(A : Ty Γ)
→ Tm (rpl-T {Δ = x:*} A (var v0 =h var v0))

refl-Tm A = rpl-tm A refl*-Tm

sym-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A sym*-Ty)
sym-Tm A = rpl-tm A sym*-Tm

trans-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A trans*-Ty)
trans-Tm A = rpl-tm A trans*-Tm

For each of reflexivity, symmetry and transitivity we can
construct appropriate coherence 2-cells witnessing the groupoid
laws. The base case for variable contexts is proved simply
using contractibility as well. However the types of these laws
are not as trivial as the proving parts. We use substitution
to define the application of the three basic terms we have
defined above.

Tm-right-identity* : Tm {x:*,y:*,α:x=y}
(trans*-Tm [IdCm , vY , reflY]tm =h vα)

Tm-right-identity* = Coh-Contr (ext c* v0)

Tm-left-identity* : Tm {x:*,y:*,α:x=y}
(trans*-Tm [((IdCm } pr1 } pr1) , vX) ,

reflX , vY , vα]tm =h vα)
Tm-left-identity* = Coh-Contr (ext c* v0)

Tm-right-inverse* : Tm {x:*,y:*,α:x=y}
(trans*-Tm [(IdCm , vX) , sym*-Tm]tm =h reflX)

Tm-right-inverse* = Coh-Contr (ext c* v0)

Tm-left-inverse* : Tm {x:*,y:*,α:x=y}
(trans*-Tm [((• , vY) , vX , sym*-Tm , vY) , vα]tm =h reflY)

Tm-left-inverse* = Coh-Contr (ext c* v0)

Tm-G-assoc* : Tm Ty-G-assoc*
Tm-G-assoc* = Coh-Contr (ext (ext (ext c* v0) (vS v0)) (vS v0))

Their general versions are defined using replacement. For
instance, for associativity, we define:

Tm-G-assoc : ∀{Γ}(A : Ty Γ) → Tm (rpl-T A Ty-G-assoc*)
Tm-G-assoc A = rpl-tm A Tm-G-assoc*

Following the same pattern, the n-level groupoid laws can
be obtained as the coherence constants as well.

3.3 Higher Structure
In the previous text we have shown how to define 1-groupoid
structure on an arbitrary level. Here we indicate how all
levels also bear the structure of n-groupoid for arbitrary n.
The rough idea amounts to redefining telescopes of [3] in
terms of appropriate contexts, which are contractible, and
the different constructors for terms used in [3] in terms of
coh.

To illustrate this we consider the simpler example of higher
identities. Note that the domain and codomain of n+1-
iterated identity are n-iterated identities. Hence we proceed
by induction on n. Denote a span of depth n Sn. Then
there is a chain of context morphisms S0 ⇒ S1 ⇒ · · · ⇒ Sn.
Each Sn+1 has one additional variable standing for the iden-
tity iterated n+1-times. Because Sn+1 is contractible, one
can define a morphism Sn ⇒ Sn+1 using coh to fill the last
variable and variable terms on the first n levels. By com-
position of the context morphisms one defines n new terms
in the basic one variable context ∗ – the iterated identities.
Using suspension one can lift the identities to an arbitrary
level.

Each n-cell has n-compositions. In the case of 2-categories,
1-cells have one composition, 2-cells have vertical and hori-
zontal composition. Two 2-cells are horizontally composable
only if their 1-cell top and bottom boundaries are compos-
able. The boundary of the composition is the composition
of the boundaries. Thus for arbitrary n we proceed using
a chain of V -shaped contractible contexts. That is contexts
that are two spans conjoined at the base level at a common
middle variable. Each successive composition is defined us-
ing contractibility and coh.

To fully imitate the development in [3], one would also have
to define all higher coherence laws. But the sole purpose of
giving an alternative type theory in this paper is to avoid
that.

4. SEMANTICS
4.1 Globular Types
To interpret the syntax, we need globular types 2 . Globular
types are defined coinductively as follows:

2Even though we use the Agda Set, this isn’t necessarily a
set in the sense of Homotopy Type Theory.

record Glob : Set1 where
constructor ||
field
| | : Set
hom : | | → | | → ∞ Glob

If all the object types (| |) are indeed sets, i.e. uniqueness
of identity types holds, we call this a globular set.

As an example, we could construct the identity globular type
called Idω.

Idω : (A : Set) → Glob
Idω A = A || (λ a b →] Idω (a ≡ b))

Note that this is usually not a globular set.

Given a globular type G, we can interpret the syntactic ob-
jects.

record Semantic (G : Glob) : Set1 where
field

J KC : Con → Set
J KT : ∀{Γ} → Ty Γ → J Γ KC → Glob
J Ktm : ∀{Γ A} → Tm A → (γ : J Γ KC) → | J A KT γ |
J Kcm : ∀{Γ Δ} → Γ ⇒ Δ → J Γ KC → J Δ KC
π : ∀{Γ A} → Var A → (γ : J Γ KC) → | J A KT γ |

π provides the projection of the semantic variable out of a
semantic context.

Following are the computation laws for the interpretations
of contexts and types.

J KC-β1 : J ε KC ≡ >
J KC-β2 : ∀ {Γ A} → J Γ , A KC ≡
Σ J Γ KC (λ γ → | J A KT γ |)

J KT-β1 : ∀{Γ}{γ : J Γ KC} → J * KT γ ≡ G
J KT-β2 : ∀{Γ A u v}{γ : J Γ KC}

→ J u =h v KT γ ≡
[(hom (J A KT γ) (J u Ktm γ) (J v Ktm γ))

Semantic substitution and semantic weakening laws are also
required. The semantic substitution properties are essential
for dealing with substitutions inside interpretation,

semSb-T : ∀ {Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)(γ : J Γ KC)
→ J A [δ]T KT γ ≡ J A KT (J δ Kcm γ)

semSb-tm : ∀{Γ Δ}{A : Ty Δ}(a : Tm A)(δ : Γ ⇒ Δ)
(γ : J Γ KC)

→ subst | | (semSb-T A δ γ) (J a [δ]tm Ktm γ)
≡ J a Ktm (J δ Kcm γ)

semSb-cm : ∀ {Γ Δ Θ}(γ : J Γ KC)(δ : Γ ⇒ Δ)(θ : Δ ⇒ Θ)
→ J θ } δ Kcm γ ≡ J θ Kcm (J δ Kcm γ)

Since the computation laws for the interpretations of terms
and context morphisms are well typed up to these properties.

J Ktm-β1 : ∀{Γ A}{x : Var A}{γ : J Γ KC}
→ J var x Ktm γ ≡ π x γ

J Kcm-β1 : ∀{Γ}{γ : J Γ KC}
→ J • Kcm γ ≡ coerce J KC-β1 tt

J Kcm-β2 : ∀{Γ Δ}{A : Ty Δ}{δ : Γ ⇒ Δ}{γ : J Γ KC}
{a : Tm (A [δ]T)} → J δ , a Kcm γ

≡ coerce J KC-β2 ((J δ Kcm γ) ,
subst | | (semSb-T A δ γ) (J a Ktm γ))

The semantic weakening properties should actually be deri-
avable since weakening is equivalent to projection substitu-
tion.

semWk-T : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)
→ J A +T B KT (coerce J KC-β2 (γ , v)) ≡

J A KT γ

semWk-cm : ∀ {Γ Δ B}{γ : J Γ KC}{v : | J B KT γ |}
→ (δ : Γ ⇒ Δ) → J δ +S B Kcm

(coerce J KC-β2 (γ , v)) ≡ J δ Kcm γ

semWk-tm : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)
→ (a : Tm A) → subst | | (semWk-T γ v)

(J a +tm B Ktm (coerce J KC-β2 (γ , v)))
≡ (J a Ktm γ)

Here we declare them as properties because they are essen-
tial for the computation laws of function π.

π-β1 : ∀{Γ A}(γ : J Γ KC)(v : | J A KT γ |)
→ subst | | (semWk-T γ v)

(π v0 (coerce J KC-β2 (γ , v))) ≡ v

π-β2 : ∀{Γ A B}(x : Var A)(γ : J Γ KC)(v : | J B KT γ |)
→ subst | | (semWk-T γ v) (π (vS {Γ} {A} {B} x)

(coerce J KC-β2 (γ , v))) ≡ π x γ

The only part of the semantics where we have any freedom
is the interpretation of the coherence constants:

JcohK : ∀{Θ} → isContr Θ → (A : Ty Θ)
→ (θ : J Θ KC) → | J A KT θ |

However, we also need to require that the coherence con-
stants are well behaved wrt to substitution which in turn
relies on the interpretation of all terms. To address this we
state the required properties in a redundant form because
the correctness for any other part of the syntax follows from
the defining equations we have already stated. There seems
to be no way to avoid this.

If the underlying globular type is not a globular set we need
to add coherence laws, which is not very well understood.
On the other hand, restricting ourselves to globular sets
means that our prime examle Idω is not an instance any-
more. We should still be able to construct non-trivial globu-
lar sets, e.g. by encoding basic topological notions and defin-
ing higher homotopies as in a classical framework. However,
we don’t currently know a simple definition of a globular set
which is a weak ω-groupoid. One possibility would be to use
the syntax of type theory with equality types. Indeed, we
believe that this would be an alternative way to formalize
weak ω-groupoids.

5. CONCLUSION
In this paper, we present an implementation of weak ω-
groupoids following Brunerie’s work. Briefly speaking, we
define the syntax of the type theory T∞−groupoid, then a
weak ω-groupoid is a globular set with the interpretation
of the syntax. To overcome some technical problems, we
use heterogeneous equality for terms, some auxiliary func-
tions and loop context in all implementation. We construct

the identity morphisms and verify some groupoid laws in the
syntactic framework. The suspensions for all sorts of objects
are also defined for other later constructions.

There is still a lot of work to do within the syntactic frame-
work. For instance, we would like to investigate the relation
between the T∞−groupoid and a Type Theory with equality
types and J eliminator which is called Teq. One direction is
to simulate the J eliminator syntactically in T∞−groupoid as
we mentioned before, the other direction is to derive J using
coh if we can prove that the Teq is a weak ω-groupoid. The
syntax could be simplified by adopting categories with fam-
ilies. An alternative may be to use higher inductive types
directly to formalize the syntax of type theory.

We would like to formalise a proof of that Idω is a weak
ω-groupoid, but the base set in a globular set is an h-set
which is incompatible with Idω. Perhaps we could solve
the problem by instead proving a syntactic result, namely
that the theory we have presented here and the theory of
equality types with J are equivalence. Finally, to model the
Type Theory with weak ω-groupoids and to eliminate the
univalence axiom would be the most challenging task in the
future.

6. REFERENCES
[1] Thorsten Altenkirch. Extensional Equality in

Intensional Type Theory. In 14th Symposium on Logic
in Computer Science, pages 412 – 420, 1999.

[2] Thorsten Altenkirch, Conor McBride, and Wouter
Swierstra. Observational equality, now! In PLPV ’07:
Proceedings of the 2007 workshop on Programming
languages meets program verification, pages 57–68,
New York, NY, USA, 2007. ACM.

[3] Thorsten Altenkirch and Ondrej Rypacek. A
syntactical Approach to Weak ω-groupoids. In
Computer Science Logic (CSL’12) - 26th International
Workshop/21st Annual Conference of the EACSL,
CSL 2012, 2012.

[4] D. Ara. On the homotopy theory of Grothendieck
∞-groupoids. ArXiv e-prints, June 2012.

[5] Guillaume Brunerie. Syntactic Grothendieck weak
∞-groupoids, 2013.

[6] Nils Anders Danielsson and Thorsten Altenkirch.
Subtyping, declaratively; an exercise in mixed
induction and coinduction. In proceedings of the Tenth
International Conference on Mathematics of Program
Construction (MPC 10), 2010.

[7] Alexander Grothendieck. Pursuing Stacks. 1983.
Manuscript.

[8] Michael Hedberg. A coherence theorem for
Martin-Löf’s type theory. 1998.

[9] G. Maltsiniotis. Grothendieck ∞-groupoids, and still
another definition of ∞-categories. ArXiv e-prints,
September 2010.

[10] The Univalent Foundations Program. Homotopy type
theory: Univalent foundations of mathematics. 2013.

[11] The Agda Wiki. Main page, 2010. [Online; accessed
13-April-2010].

