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Abstract

There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative
paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of
ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than
aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and
simulation when contrasted with stochastic versions of ODE models using early-stage cancer examples. We seek answers to
the following questions: (1) Does this new stochastic formulation produce similar results to the agent-based version? (2) Can
these methods be used interchangeably? (3) Do agent-based models outcomes reveal any benefit when compared to the
Gillespie results? To answer these research questions we investigate three well-established mathematical models describing
interactions between tumour cells and immune elements. These case studies were re-conceptualised under an agent-based
perspective and also converted to the Gillespie algorithm formulation. Our interest in this work, therefore, is to establish a
methodological discussion regarding the usability of different simulation approaches, rather than provide further biological
insights into the investigated case studies. Our results show that it is possible to obtain equivalent models that implement
the same mechanisms; however, the incapacity of the Gillespie algorithm to retain individual memory of past events affects
the similarity of some results. Furthermore, the emergent behaviour of ABMS produces extra patters of behaviour in the
system, which was not obtained by the Gillespie algorithm.
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Introduction

In previous work, three case studies using established mathe-

matical models of immune interactions with early-stage cancer

were considered in order to investigate the additional contribution

of ABMS to ODE models simulation [1]. These case studies were

re-conceptualised under an agent-based perspective and the

simulation results were compared with those from the ODE

models. Our results showed that, apart from the well known

differences between these approaches (as those outlined for

example, in Schieritz and Milling [2]), further insight from using

ABMS was obtained, such as extra population patterns of

behaviour.

In this work we apply the Gillespie algorithm [3,4], which is a

variation of the Monte Carlo method, to create stochastic versions

of the original ODE models investigated in [1]. We aim to

reproduce the variability embedded in the ABMS systems to the

mathematical formulation and verify whether results resemble

each other. In addition, due to the fact that the Gillespie algorithm

also regards integer quantities for their elements, we hope that this

method overcomes some differences observed when comparing

atomic agents represented in the ABMS with possible fractions of

elements observable in the ODE results.

To the best of our knowledge, current literature regarding the

direct comparison of the Gillespie algorithm and ABMS is scarce.

We want therefore to answer research questions such as: (1) Does

this new stochastic formulation produce similar results to ABMS?

(2) Can these methods be used interchangeably for our case

studies? (3) Does the stochastic model implemented using the

Gillespie algorithm also find the extra patterns revealed by the

ABMS? We aim to establish a methodological discussion regarding

the benefits of each approach for biological simulation, rather than

provide further insights into the biological aspects of the problems

studied. We therefore intend to compare the dynamics of each

approach and observe the outcomes produced over time. We hope

that this study provides further insights into the potential usability

and contribution of ABMS to systems simulation.

Case Studies
The case studies used for our comparison regard models with

different population sizes, varying modelling effort and model

complexity. We hope that by tackling problems with different

characteristics, a more robust analysis of our experiments is

performed. The features of each case study are shown in Table 1.

The first case study considered is based on an ODE model

involving interactions between generic tumour and effector cells.

The second case study adds to the previous model the influence of

the IL-2 cytokine molecules in the immune responses. The third

case study comprises a model of interactions between effector cells,

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e95150

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095150&domain=pdf


tumour cells, and IL-2 and TGF-b molecules. For all case studies,

three approaches are presented: the original mathematical model,

its conversion into the Gillespie algorithm model and the ABMS

model. To answer our research questions, the Gillespie and ABMS

approaches outcomes are compared. Our results show that for

most cases the Gillespie algorithm does not produce outcomes

statistically similar to the ABMS. In addition, Gillespie is incapable

to reproduce the extreme patterns observed in the ABMS

outcomes for the last case study.

The remainder of this paper is organized as follows. The next

section introduces the literature review comparing stochastic ODE

models and ABMS for different simulation domains. First, we

show general work that has been carried out in areas such as

economics and operations research, and then we focus on research

concerned with the comparison for immunological problems.

Finally, we discuss gaps in the literature regarding cancer research.

In the following section we introduce our Gillespie and agent-

based modelling development processes and the methods used for

conducting the experimentation. Subsequently we present our case

studies, comparison results and discussions. In the final section we

draw our overall conclusions and outline future research

opportunities.

Related Work

Current in-silico approaches used in early-stage cancer research

include computational simulation of compartmental models,

individual-based models and rule-based models. Compartmental

models adopt an aggregate representation of the elements in the

system. They include deterministic methods such as ordinary

differential equation (ODE) models, system dynamics (SD) models

and partial differential equation (PDE) models. These models have

been largely employed in the study of dynamics between cancer

cells and tumour cells [5,6], therapies for cancer [7], tumour

responses to low levels of nutrients [8–11] and tumour vascular-

ization[12,13]. Although these models have been very useful to

understand and uncover various phenomena, they present several

limitations. For instance, they do not encompass emergent

behaviour and stochasticity. In addition, it is difficult to keep a

record of individual behaviour and memory over the simulation

course [14,15]. Stochastic compartmental models include Monte

Carlo simulation models, which are computational algorithms that

perform random sampling to obtain numerical results [16].

Amongst others, they are useful for simulating biological systems,

such as cellular interactions and the dynamics of infectious diseases

[17]. As these methods rely on stochastic process to produce their

outputs, they overcome some of the limitations of the deterministic

compartmental models, as they allow for variability of outcomes.

The individuals in these models, however, do not have any sort of

memory of past events. Rule-based models are a relatively new

research area mostly focused on modelling and simulating

biochemical reactions, molecular interactions and cellular signal-

ling. The literature regarding the application of rule-based models

to interactions between the immune system and cancer cells,

however, is scarce. Individual-based models, or agent-based

modelling and simulation (ABMS), relax the aggregation assump-

tions present in compartmental approaches and allow for the

observation of the behavior of the single cells or molecules

involved in the system. This approach has also been applied to

early-stage cancer research [1,18].

The differences between deterministic compartmental models

and individual-based models are well known in operations

research [2,19–21] and have also been studied in epidemiology

[22,23] and system’s biology [24–26]. Deterministic compartmen-

tal models assume continuous values for the individuals in the

system, whereas in ABMS individual agents are represented. This

peculiarity of each approach highly impacts the simulation results

similarity depending on the size of the populations [1]. There is

still however the need for further investigations between the

interchangeable use of some Monte Carlo methods and ABMS.

Approaches Comparison
As mentioned previously, there are few studies that compare the

Gillespie algorithm with ABMS. Most of these studies regard

Table 1. Case studies considered.

Case Study Number of populations Population size Complexity

1) Tumour/Effector 2 5 to 600 Low

2) Tumour/Efector/IL-2 3 104 Medium

b3) Tumour/Effector/IL-2/TGF- 4 104 High

doi:10.1371/journal.pone.0095150.t001

Table 2. Reactions for case 1.

Phenomenon Reaction equation Rate law (per cell)

Tumour cell birth T?2|T aT

Tumour cell death 2 � T?T abT2

Tumour cell death by effector cells TzE?E nTE

Effector proliferation E?2|E; T pTE
gzT

Effector death by fighting tumour TzE?T mTE

Effector death E? dE

Effector supply ?E s

doi:10.1371/journal.pone.0095150.t002

Gillespie and Agent-Based for Early-stage Cancer
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research in economic models and immunology. To the best of our

knowledge there is no literature regarding the direct comparison of

these methods to early-stage interactions between the immune

system and tumour cells. This section describes relevant researches

in several areas, which provided further insights into the gaps in

the current literature and the research questions addressed in this

paper.

There are a few attempts of re-conceptualizing agent-based

models into simpler stochastic models of complex systems in

economics. For instance, Daniunas et al. [27] start from simple

models with established agent-based versions (which they named

‘‘the model’s microscopic version’’) and try to obtain an equivalent

macroscopic behavior. They consider microscopic and macro-

scopic versions of the herding model proposed by Kirman [28]

and the diffusion of new products, proposed by Bass in [29]. They

conclude that such simple models are easily replicated in a

stochastic environment. In addition, the authors state that for the

economics field, only very general models, such as those studied in

their article, have well established agent-based versions and can be

described by stochastic or ordinary differential equations. How-

ever, as the complexity of the microscopic environment increases,

it becomes challenging to obtain resembling results with stochastic

simulations and further developments need to be pursuit.

Furthermore, the authors debate that the ambiguity present in

the microscopic description in complex systems is an objective obstacle

for quantitative modeling and needs further studying.

Stracquadanio et al. [30] investigate the contributions of ABMS

and the Gillespie method for immune modelling. The authors,

however, do not apply both methods to the same problem.

Instead, for the first approach, they chose to investigate a large-

scale model involving interactions of immune cells and molecules.

This model’s objective was to simulate the immune elements

interplay over time. For the Gillespie approach, the authors

investigate a stochastic viral infection model. The authors point

out three factors that play a major role in the modeling outcome

when comparing ABMS and Gillespie: simulation time, model

precision and accuracy, and model applicability. Regarding time,

the authors state that stochastic models implemented with the

Gillespie algorithm are preferred. On the other hand, ABMS

permits more control over simulation runtime as it keeps record of

the behavior of each single entity involved in the system.

Regarding applicability, the authors argue that traditional

Gillespie methods do not account for spatial information, which

can be detrimental to the model accuracy given the fact that many

immune interactions occur within specific spatial regions of the

simulation environment.

Karkutla [31] compares two biological simulators: GridCell,

which is a stochastic tool based on Gillespie’s, and his new

developed ABMSim, which is a simulation tool based on ABMS.

GridCell was developed to overcome the issues in traditional

Gillespie’s, as pointed out by Stracquadanio et al. [30]. It is a

stochastic tool able to tackle non-homogeneity effectively by

addressing issues of crowding and localization. In GridCell,

however, the problem of tracking individual behaviour and

determining particular characteristics to each element still exists.

ABMSim was therefore developed to overcome these issues.

GridCell has been compared with ABMSim qualitatively and

quantitatively and the two tools have produced similar results in

the author experiments.

In our work we further study the differences between the

approaches outcomes and investigate whether under different

problem characteristics for early-stage cancer we still obtain

Table 3. Agents’ parameters and behaviours for case 1.

Agent Parameters Reactive behaviour Proactive behaviour

Tumour Cell ba and Dies (with age)

ba and Proliferates

m Damages effector cells

n Dies killed by effector cells

Effector Cell m Dies (with age)

d Dies per apoptosis

gp and Proliferates

s Is injected as treatment

doi:10.1371/journal.pone.0095150.t003

Table 4. Transition rates calculations from the mathematical equations for case 1.

Agent Transition Mathematical equation Transition rate

Tumour Cell proliferation aT(1{Tb) a{(TotalTumour:b)

death aT(1{Tb) a{(TotalTumour:b)

dieKilledByEffector nTE n:TotalEffectorCells

causeEffectorDamage mTE m

Effector Cell Reproduce pTE
gzT

p:TotalTumourCells
gzTotalTumourCells

DiePerAge dE d

DiePerApoptosis mTE message from tumour

doi:10.1371/journal.pone.0095150.t004
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similar results. In the next section we introduce the methodology

used to conduct our investigations.

Methods

This section introduces the research methodology used for the

development of our simulation models and for the experimenta-

tion performed in the following sections. As mentioned previously,

our investigations concern the use of three cases to answer

research questions regarding the application of the Gillespie

algorithm and ABMS interchangeably for early-stage cancer

models. For each case study, there is a well established ODE

model from the literature and its correspondent agent-based

model, that we previously developed in [1]. The ODE model

simulations are implemented using the ODE solver module from

MATLAB (2011)

The Gillespie algorithm is implemented by the direct conversion

of the original mathematical equations into reactions and

simulating them under the COPASI 4:8 (Build35) simulator

environment. The method used for the stochastic simulations is the

Gillespie algorithm adapted using the next reaction method [32],

with interval sizes of 0:1, integration interval between 0 and 1 and

maximum internal steps of 106.

ABMS is a modelling and simulation technique that employs

autonomous agents that interact with each other. The agents’

behaviour is described by rules that determines how they learn,

interact and adapt. The overall system behaviour is given by the

agents individual dynamics as well as their interactions. Our agent-

based models are implemented using the AnyLogicTM 6.5

educational version (XJ Technologies 2010) [33]. This approach

is developed by using state charts and tables containing each agent

description. The state charts show the different possible states of an

entity and define the events that cause a transition from one state

to another. In order to facilitate the understanding of the agent-

based model, we reproduce here the models developments, which

were based on [1] (The ABMS and Gillespie models are available

for download in http://anytips.cs.nott.ac.uk/wiki/index.php/

Resources).

Methodology for Results Comparison
As the Gillespie and ABMS are both stochastic simulation

methods, we ran five hundred replications for each case study and

calculated the mean values for the outputs. For all approaches, the

rates (for cellular death, birth, etc.) employed were the same as

those established by the mathematical model.

In addition, in order to investigate any statically significant

differences between the ABMS and Gillespie techniques for the

case studies, we implement a mixed effect model. This is a type of

regression that considers both fixed and random effects. This

method accounts for correlation caused by repeating the measure

over time (i.e., the tumour cell count is correlated over time for

each simulation run). The mixed effect analysis was implemented

in the programming language R using the package NLME [34].

As a mixed effect model requires finding parameters for a

regression model, it is not suitable when considering the whole

time period. This is because in cases 2 and 3 the tumour dynamics

has a damping oscillation and the function describing this

dynamics is unknown (see pages 11 and 14). Instead, the sequence

of local maxima and minima are used. It can been seen that these

are converging and any statistical deviation between these

sequences for the different simulation techniques indicate differ-

ences between the output of the techniques. If the simulations from

the ABMS and the Gillespie technique come from the same

distribution, then there would be no statistical difference between

the maxima and minima over time. Therefore, we investigate two

Figure 1. ABMS state charts for case 1.
doi:10.1371/journal.pone.0095150.g001

Table 5. Simulation parameters for the four different scenarios under investigation.

Scenario b d s

1 0.002 0.1908 0.318

2 0.004 2 0.318

3 0.002 0.3743 0.1181

4 0.002 0.3743 0

For the other parameters, the values are the same in all experiments, i.e. a~1:636, g~20:19, m~0:00311, n~1 and p~1:131.
doi:10.1371/journal.pone.0095150.t005
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null hypotheses. The first is that the function of local maxima is the

same for the ABMS and the Gillespie algorithm simulations. And

the second is that the function of local minima is the same for the

ABMS and the Gillespie algorithm simulations. We use a 1%

significance level.

There is no standard technique for estimating the required

sample size for non-linear mixed effect models for a defined power

when the measure of effect is known [35]. Therefore, the

simulations are run 500 times as this will increase the statistical

power and increase the probability of a true positive in the

statistical analysis. A false negative is still possible if there is only a

small effect size, but if the effect is small, it is of less interest.

Case 1: Interactions between Tumour Cells and Generic
Effector Cells

The first case considers tumour cells growth and their

interactions with general immune effector cells, as defined in [8].

According to the model, effector cells search and kill the tumour

cells inside the organism. They proliferate proportionally to the

number of existing tumour cells. As the quantities of effector cells

increase, their capacity of eliminating tumour cells is augmented.

Immune cells proliferate and die per apoptosis, which is a

programmed cellular death. In the model, cancer treatment is also

considered and it consists of injections of new effector cells in the

organism.

Mathematically, the interactions between tumour cells and

immune effector cells are defined as follows [8]:

dT

dt
~Tf (T){dT (T ,E) ð1Þ

dE

dt
~pE(T ,E){dE(T ,E)

{aE(E)zW(T)

ð2Þ

where

N T is the number of tumour cells,

N E is the number of effector cells,

N f (T) is the growth of tumour cells,

N dT (T ,E) is the number of tumour cells killed by effector cells,

N pE(T ,E) is the proliferation of effector cells,

N dE(T ,E) is the death of effector cells when fighting tumour

cells,

Figure 2. Results for the first case study.
doi:10.1371/journal.pone.0095150.g002

Table 6. The fixed parameter values returned by the mixed-effect model and their significance.

Method Parameter Value std error p-value

ABS a 0.03393 0.0004397 0

SODE a 0.02925 0.0006126 0

ABS b 41.15847 0.6149638 0

SODE b 52.07957 1.0328222 0

doi:10.1371/journal.pone.0095150.t006
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PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e95150



N aE(E) is the death (apoptosis) of effector cells,

N W(T) is the treatment or influx of cells.

The Kuznetsov model [8] defines the functions f (T), dT (T ,E),
pE(E,T), dE(E,T), aE(E) and W(t) as shown below:

f (T)~a(1{bT) ð3Þ

dT (T ,E)~nTE ð4Þ

pE(E,T)~
pTE

gzT
ð5Þ

dE(E,T)~mTE ð6Þ

aE(E)~dE ð7Þ

W(t)~s ð8Þ

Table 2 shows the mathematical equations converted into

reactions and their respective rate laws per cell.

In the agent-based model there are two classes of agents, the

tumor cells and the effector cells, as described in [1]. Table 3

shows the parameters and behaviours corresponding to each agent

state. For our agents, state charts are used to represent the

different states each entity is in. In addition, transitions are used to

indicate how the agents move from one state to another. Events

are also employed and they indicate that certain actions are

scheduled to occur in the course of the simulation, such as

injection of treatment. The state chart representing the tumour

cells is shown in Figure 1(a), in which an agent proliferates, dies

with age or is killed by effector cells. In addition, tumour cells

Table 7. Reactions for case 2.

Name Reaction equation Rate law (per cell)

Effector cell recruitment ?E; T cT

Effector cell proliferation E?2|E; I p1 E:IL

(g1zIL )

Effector cell death E? m2E

Effector cell supply ?E s1

Tumour cell birth T?2|T aT

Tumour cell death 2 � T?T abT2

Tumour cell death by effector cells TzE?E; T aa TE
g2zT

IL-2 production ?I ; ET p2 ET
g3zT

IL-2 decay I? m3

IL-2 supply ?I s2

doi:10.1371/journal.pone.0095150.t007

Table 8. Agents’ parameters and behaviours for case 2.

Agent Parameters Reactive behaviour Proactive behaviour

Effector Cell mu2 Dies

g1p1 and Reproduces

c Is recruited

s1 Is injected as treatment

g3p2 and Produces IL-2

g2aa and Kills tumour cells

Tumour Cell ba and Dies

ba and Proliferates

g2aa and Dies killed by effector cells

c Induces effector recruitment

IL-2 g3p2 and Is produced

mu3 Is lost

s2 Is injected

doi:10.1371/journal.pone.0095150.t008

Gillespie and Agent-Based for Early-stage Cancer
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contribute to damage to effector cells, according to the same rate

as defined by the mathematical model (Table 4). Figure 1(b) shows

the state chart for the effector cells. In the figure, the cell is either

alive or dead by age or apoptosis. While the cell is alive, it is also

able to kill tumour cells and proliferate. In the transition rate

calculations, the variable TotalTumourCells corresponds to the

total number of tumour cell agents; and the variable

TotalEffectorCells is the total number of effector cell agents. In

the simulation model, apart from the agents, there is also an event

– namely, treatment – which produces new effector cells with a

rate defined by the parameter s.

Experimental design for the simulations. Similarly to the

experiments from [1], four scenarios are investigated. The

scenarios have different rates for the death of tumour cells (defined

by parameter b), effector cells apoptosis (defined by parameter d)

and different treatments (parameter s). The values for these

parameters are obtained from [6] (Table 5). In the first three

scenarios, cancer treatment is considered, while the fourth case

does not consider any treatment. The simulations for the ABMS

and the Gillespie algorithm are run five hundred times and the

mean values are displayed as results.

Results and discussion. Figure 2 shows the results of our

experiments. In the first column we display the results from the

ODE model for guidance. The second column shows the results

from the Gillespie algorithm and the third column presents the

ABMS results. Each row of the figure represents a different

scenario.

Results for Scenario 1 appear similar for the three approaches,

although the effector cells curve from the ABMS show more

variability. To evaluate whether the results are significantly

different for the two simulation methods, we apply a mixed effect

model. The null hypothesis is that there is no significant difference

between the methods (and therefore there will be no significant

fixed effect for the method type). We use a 1% significance level.

We are testing the similarity for the population of effector cells.

The effector cells follow a dynamic similar to 1/x for the time

between 1 and 100:

f (t)~
5

a|(tzb)
ð9Þ

We apply a mixed-effect model where the simulation run is

considered to have a random effect on the parameter a and the

simulation method has a fixed effect on a and b. The results are

presented in Table 6. At a 1% significance level the results of the

two techniques are significantly different as the p-values for the

fixed effect of the method on the parameters are less than 0:1.

We believe that the variability observed in the ABMS and

Gillespie curves, given their stochasticity, also influenced the

statistical test results. The number of effector cells for all

simulations follow a similar pattern, although the similarity

hypothesis was rejected. This variability of Gillespie and ABMS

is very evident with regards to the effector cells population as the

size of the populations involved in the first scenario is relatively

small, which increases the impacts of stochasticity in the outcomes.

Results for scenario 2 are shown in the second row of Figure 2.

The outcomes seem fairly different. By observing the ODE results,

during about the first ten days, the tumour cells decrease and then

grow up to a value of about 240 cells, subsequently reaching a

Table 9. Transition rates calculations from the mathematical equations for case 2.

Agent Transition Mathematical equation Transition rate

Effector Cell Reproduce p1 :ILE
g1zIL 2

p1 :TotalIL 2:TotalEffector
g1zTotalIL 2

Die m2E mu2

killTumour aaET
g2zT

aa TotalTumour
g2zTotalTumour

ProduceIL2 p2ET
g3zT

p2:TotalTumour
g3zTotalTumour

Tumour Cell Reproduce aT(1{bT) a{(TotalTumour:b)

Die aT(1{bT) a{(TotalTumour:b)

DieKilledByEffector aaTE
g2zT

message from effector

IL-2 Loss m3IL mu3

doi:10.1371/journal.pone.0095150.t009

Figure 3. ABMS state charts for the agents of case 2.
doi:10.1371/journal.pone.0095150.g003
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steady-state. This initial decrease is also observed in both Gillespie

and ABMS curves. However, only the Gillespie method shows a

similar increase in the numbers of tumour cells when compared to

the ODEs. Similarly to the previous scenario, the Gillespie and

ABMS simulation curves present an erratic behaviour throughout

the simulation days. There is, however, an unexpected decay of

tumour cells over time in the ABMS simulation, which does not

happen in the Gillespie outcome. We believe the difference

observed in the ABMS is due to the the individual characteristics

of the agents and their growth/death rates attributed to their

instantiation. While both ODEs and Gillespie are compartmental

models and therefore they apply the model rates to the cells

population, ABMS on the contrary, employs these rates in an

individual basis. As the death rates of the tumour cells agents are

defined according to the mathematical model, when the tumour

cell population grows, the newborn tumour cells have higher death

probabilities, which leads to a considerable number of cells dying

out. This indicates that the individual behaviour of cells can lead

to a more chaotic behaviour when compared to the aggregate view

observed in the compartmental simulation.

For scenarios 3 and 4, shown in third and fourth rows of

Figure 2, respectively, the results for the three approaches differ

completely. The differences are even more evident for the tumour

cells outcomes. The ODEs results for scenario 3 reveal that

tumour cells decreased as effector cells increased, following a

predator-prey trend curve. For the ABMS, however, the number

of effector cells decreased until a value close to zero was reached,

while the tumour cells numbers were very different from those in

the ODEs results. The ODE pattern noticed was possible given its

continuous character. In the ODE simulation outcome curve for

the effector cells it is therefore possible to observe, for instance,

that after sixty days the number of effector cells ranges between

one and two. These values could not be reflected in the ABMS

simulation, as it deals with integer values. Similarly, the Gillespie

approach outcomes did not resemble those from the ODE model.

There is more variability in the tumour cells curve than in the

ABMS outcomes, although the number of tumour cells also

reaches zero after around sixty days.

In the fourth scenario, although effector cells appear to decay in

a similar trend for both approaches, the results for tumour cells

vary largely. In the ODE simulation, the numbers of effector cells

reached a value close to zero after twenty days and then increased

to a value smaller than one. For the ABMS simulation, however,

these cells reached zero and never increased again. For the

Gillespie model results, a similar pattern as that from the ABMS

model occurs, although there seems to be less variance in the

outcome curve. In addition, the mean numbers for tumour cells

for the Gillespie approach seem smaller that those observed in the

ABMS.

Summary. An outcome comparison between an ABMS and

a Gillespie algorithm model was performed for case study 1. We

considered an ODE model of tumour cells growth and their

interactions with general immune effector cells as the baseline for

results validation. Four scenarios considering small population

numbers were investigated and results from ABMS and Gillespie

were different for both populations for all scenarios. Furthermore,

both approaches differed largely from the original mathematical

outcomes. These results indicate that, for this case study, the

stochasticity applied to the population as a whole when compared

to that applied to the individual has a higher impact given the

small population sizes. The result analysis also reveals that

conceptualizing the stochastic approaches from the mathematical

equations does not always produce statistically similar outputs.

Case 2: Interactions between Tumour Cells, Effector Cells
and Cytokines IL-2

Case two regards the interactions between tumour cells, effector

cells and the cytokine IL-2. It extends the previous study as it

considers IL-2 as molecules mediating the immune response

towards tumour cells. These molecules interfere in the prolifera-

tion of effector cells, which occurs proportionally to the number of

tumour cells in the system. For this case, there are two types of

treatment, the injection of effector cells or the addition of

cytokines.

The mathematical model used in case 2 is obtained from [9].

The model’s equations described bellow illustrate the non-spatial

Table 10. Parameter values for case 2.

Parameter Value

a 0.18

b 0.000000001

c 0.05

aa 1

g2 100000

s1 0

s2 0

mu2 0.03

p1 0.1245

g1 20000000

p2 5

g3 1000

mu3 10

doi:10.1371/journal.pone.0095150.t010

Table 11. The results of the mixed model for the sequence of local maxima in case study 2.

Technique Parameter Value Std Error p-value

ABMS a 0.122 0.00073 0

Gillespie a 0.131 0.00102 0

ABMS b 442.249 1.160664 0

Gillespie b 432.243 1.52861 0

ABMS c 23149.344 23.67208 0

Gillespie c 22694.685 31.88635 0

doi:10.1371/journal.pone.0095150.t011
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dynamics between effector cells (E), tumour cells (T) and the

cytokine IL-2 (IL):

dE

dt
~cT{m2E

z
p1EIL

g1zIL

zs1

ð10Þ

Equation 10 describes the rate of change for the effector cell

population E [9]. Effector cells grow based on recruitment (cT )

and proliferation (
p1EIL
g1zIL

). The parameter c represents the

antigenicity of the tumour cells (T) [5,9]. m2 is the death rate of

the effector cells. p1 and g1 are parameters used to calibrate the

recruitment of effector cells and s1 is the treatment that will boost

the number of effector cells.

dT

dt
~a(1{bT){

aaET

g2zT
ð11Þ

Equation 11 describes the changes that occur in the tumour cell

population T over time. The term a(1{bT) represents the logistic

growth of T (a and b are parameters that define how the tumour

cells will grow) and aaET
g2zT

is the number of tumour cells killed by

effector cells. aa and g2 are parameters to adjust the model.

dIL

dt
~

p2ET

g3zT
{m3ILzs2 ð12Þ

The IL-2 population dynamics is described by Equation 12.
p2ET

g3zT

determines IL-2 production using parameters p2 and g3. m3 is the

IL-2 loss. s2 also represents treatment. The treatment is the

injection of IL-2 in the system.

Table 7 shows the mathematical model converted into reactions

for the Gillespie algorithm model. The first column of the table

displays the original mathematical equation, followed by the

equivalent reactions and rate laws in the subsequent columns.

As described in [1], the agents represent the effector cells,

tumour cells and IL-2. Their behaviours are shown in Table 8.

The state charts for each agent type are shown in Figure 3. The

ABMS model rates are the same as those defined in the

mathematical model and are given in Table 9. In the transition

rate calculations, the variable TotalTumour corresponds to the

total number of tumour cell agents, the variable TotalEffector is

the total number of effector cell agents and TotalIL 2 is the total

number of IL-2 agents. In the simulation model, apart from the

agents, there are also two events: the first event adds effector cell

agents according to the parameter s1 and the second one adds IL-

2 agents according to the parameter s2.

Experimental design for the simulation. The experiment

is conducted assuming the same parameters as those of the

mathematical model (Table 10). For the ABMS and the Gillespie

algorithm model, the simulation is run five hundred times and the

average outcome value for these runs is collected. Each run

simulates a period equivalent to six hundred days, following the

same time span used for the numerical simulation of the

mathematical model.

Results and discussion. The results obtained are shown in

Figure 4 for tumour cells (left), effector cells (middle) and IL-2

(right), respectively. As the figure reveals, the results for all

populations are analogous; the growth and decrease of all

populations occur at similar times for all approaches. ABMS has

a little more variability in the results, specially regarding IL-2. We

believe that for this case, the large population sizes (around 104)

Table 12. The results of the mixed model for the sequence of local minima in case study 2.

Technique Parameter Value Std Error p-value

ABMS a 0.080 0.00033 0

Gillespie a 0.088 0.00047 0

ABMS b 462.004 1.12224 0

Gillespie b 444.888 1.46963 0

ABMS c 17118.133 25.43450 0

Gillespie c 17416.363 34.44740 0

doi:10.1371/journal.pone.0095150.t012

Figure 4. Results for the second case study: tumour cells, effector cells and IL-2.
doi:10.1371/journal.pone.0095150.g004
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produce a lower variability in the outcomes of the stochastic

approaches. For statistical comparison, results were contrasted by

applying a non-linear mixed effect model, as shown next.

The local maxima sequence follows a second order polynomial

function of the form:

f (t)~cza(t{b)2 ð13Þ

The local minima sequence follows a second order polynomial

function of the form:

f (t)~c{a � (t{b)2 ð14Þ

For the mixed-effect model, we consider a and b to have fixed

effects based on the type of simulation (e.g., ABMS or Gillespie

algorithm) and a and b to have random effects based on the

individual simulation run. The results of the mixed effect model

Figure 5. Illustration of the regression models fit for the sequences of the local maxima and local minima for the two different
simulation techniques. The Gillespie simulations are plotted in purple with the mixed effect models plotted in blue. The ABMS simulation runs are
plotted in orange with the mixed effect models plotted in red.
doi:10.1371/journal.pone.0095150.g005

Table 13. Reactions for case 3.

Name Equation Rate law (per cell)

Effector cell recruitment ?E; TS c|T
1zc|S

Effector death E? m1|E

Effector proliferation TzE?E; T p|I|E
gzI

� �
| p{( q1|S

q2zS

� �

Tumour cell growth T?2|T a|T

Tumour cell death 2|T?T aT2

K

Tumour cell death by effector cells TzE?E; T aa TE
g2zT

bTumour growth caused by TGF- T?2|T ; S p2|S|T
g3zS

IL-2 production ?I ; ETS p3|E|T
(g4zT)(1zaS)

IL-2 decay I? m2|I

TGF-b production ?I ; T p4 T2

h2zT2

TGF-b decay S? m3|S

doi:10.1371/journal.pone.0095150.t013
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are presented in Tables 11 and 12. It can been seen that there is a

significant difference between the a and b parameter values for the

two different techniques. We therefore reject the null hypotheses

and accept that there is a significance difference between the two

techniques in terms of the sequence of maxima and sequence of

minima, at a 1% significance level. Furthermore, the results show

that the ABMS simulations tend to have larger local maxima and

smaller local minima, which is clear in Figure 5.

Summary. Interactions between tumour cells, effector cells

and the cytokine IL-2 were considered to investigate the potential

differences and similarities of ABMS and Gillespie algorithm

outcomes. Statistical comparison between the Gillespie and the

ABMS results show a significant difference in the outcomes.

Compared to the original ODE model used as validation, ABMS

displayed a little more variability in the results, whereas the

Gillespie algorithm followed mostly the same patterns as those

produced by the ODEs for all populations in the simulation. As for

these simulations a bigger number of individuals was required, it

was also observed that, regarding the use of computational

resources, ABMS was far more time- and memory-consuming

than the Gillespie approach.

Case 3: Interactions between Tumour Cells, Effector Cells,
IL-2 and TGF-b

Case study three comprises interactions between tumour cells

and immune effector cells, as well as the immune-stimulatory and

suppressive cytokines IL-2 and TGF-b [5]. According to the ODE

model developed by Arciero et al. in [5], TGF-b stimulates tumour

growth and suppresses the immune system by inhibiting the

activation of effector cells and reducing tumour antigen expres-

sion.

The mathematical model is described by the differential

equations below:

dE

dt
~

cT

1zcS
{m1E

z
p1EI

g1zI

� �
p1{

q1S

q2zS

� � ð15Þ

Equation 15 describes the rate of change for the effector cell

population E. According to [5], effector cells are assumed to be recruited

to a tumour site as a direct result of the presence of tumour cells. The

parameter c in cT
1zcS

represents the antigenicity of the tumour,

which measures the ability of the immune system to recognize

Table 14. Agents’ parameters and behaviours for case 3.

Agent Parameters Reactive behaviour Proactive behaviour

Effector Cell mu1 Dies

q2p1, g1, q1 and Reproduces

c Is recruited

g2aa and Kills tumour cells

Tumour Cell a Dies

a Proliferates

g2aa and Dies killed by effector cells

p2g3 and Has growth stimulated

tethap4 and bProduces TGF-

c Induces effector recruitment

IL-2 g4alpha, p3 and Is produced

mu2 Is lost

bTGF- tethap4 and Is produced

mu3 Is lost

g3p2 and Stimulates tumour growth

doi:10.1371/journal.pone.0095150.t014

Figure 6. ABMS state charts for the agents of case 3.
doi:10.1371/journal.pone.0095150.g006
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tumour cells. The presence of TGF-b (S) reduces antigen

expression, thereby limiting the level of recruitment, measured

by the inhibitory parameter c. The term m1E represents loss of

effector cells due to cell death. The proliferation term
p1EI

g1zI

� �
p1{

q1S

q2zS

� �
asserts that effector cell proliferation depends

on the presence of the cytokine IL-2 and is decreased when the

cytokine TGF-b is present. p1 is the maximum rate of effector cell

proliferation in the absence of TGF-b, g1 and q2 are half-

saturation constants, and q1 is the maximum rate of anti-

proliferative effect of TGF-b.

dT

dt
~aT 1{

T

K

� �
{

aaET

g2zT
z

p2ST

g3zS
ð16Þ

Equation 16 describes the dynamics of the tumour cell population.

The term aT 1{ T
K

� �
represents a logistic growth dynamics with

intrinsic growth rate a and carrying capacity K in the absence of

effector cells and TGF-b. The term aaET
g2zT

is the number of tumour

cells killed by effector cells. The parameter aa measures the

strength of the immune response to tumour cells. The third term
p2ST

g3zS
accounts for the increased growth of tumour cells in the

presence of TGF-b. p2 is the maximum rate of increased

proliferation and g3 is the half-saturation constant, which indicates

a limited response of tumour cells to this growth-stimulatory

cytokine [5].

dI

dt
~

p3ET

(g4zT)(1zaS)
{m2I ð17Þ

Table 15. Transition rates calculations from the mathematical equations for case 3.

Agent Transition Mathematical equation Transition rate

Effector Cell Reproduce p1IE

g1zI
|

p1|TotalIL 2

g1zTotalIL 2
|

p1{
q1S

q2zS

� �
p1{

q1|TotalTGFBeta

q2zTotalTGFBeta

� �

Die m1E mu1

ProduceIL2 p3TE

(g4zT)(1zalphaS)

p3:TotalTumour

(g4zTotalTumour)(1zalpha:TotalTGF )

KillTumour aaTE
g2zT

aa|TotalTumour|TotalEffector

g2zTotalTumour

Tumour Cell Reproduce
aT 1{

T

1000000000

� �� �
TotalTumour:a 1{

TotalTumour

1000000000

� �� �

Die
aT 1{

T

1000000000

� �� �
TotalTumour:a 1{

TotalTumour

1000000000

� �� �

DieKilledByEffector aa:TE

g2zT

message from effector

ProduceTGF p4T2

teta2zT2

p4:TumourCells

teta2zTumourCells2

EffectorRecruitment cT

1zcS

c

1zgamma:TotaltGF

IL-2 Loss m2I mu2

bTGF- Loss m3S mu3

stimulates

TumourGrowth p2T

g3zS

p2:TotalTGF

g3zTotalTGF

doi:10.1371/journal.pone.0095150.t015

Table 16. Parameter values for case 3.

Parameter Value

a 0.18

aa 1

alpha 0.001

c 0.035

g1 20000000

g2 100000

g3 20000000

g4 1000

gamma 10

mu1 0.03

mu2 10

mu3 10

p1 0.1245

p2 0.27

p3 5

p4 2.84

q1 10

q2 0.1121

theta 1000000

k 10000000000

doi:10.1371/journal.pone.0095150.t016
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The kinetics of IL-2 are described in equation 17. The first term
p3ET

(g4zT)(1zaS)
represents IL-2 production which reaches a maximal

rate of p3 in the presence of effector cells stimulated by their

interaction with the tumour cells. In the absence of TGF-b, this is

a self-limiting process with half-saturation constant g4S [5]. The

presence of TGF-b inhibits IL-2 production, where the parameter

a is a measure of inhibition. Finally, m2I represents the loss of IL-2.

dS

dt
~

p4T2

h2zT2
{m3S ð18Þ

Equation 18 describes the rate of change of the suppressor

cytokine, TGF-b. According to [5], experimental evidence
suggests that TGF-b is produced in very small amounts when
tumours are small enough to receive ample nutrient from the
surrounding tissue. However, as the tumour population grows
sufficiently large, tumour cells suffer from a lack of oxygen and
begin to produce TGF-b in order to stimulate angiogenesis and to
evade the immune response once tumour growth resumes. This

switch in TGF-b production is modelled by the term
p4T2

h2zT2, where

p4 is the maximum rate of TGF-b production and t is the critical

tumour cell population in which the switch occurs. The decay rate

of TGF-b is represented by the term m3S.

Table 13 presents the Gillespie algorithm model used for our

simulations. The model was obtained by converting the ODEs into

reaction equations.

The agents established for the ABMS represent the effector

cells, tumour cells, IL-2 and TGF-b populations, as described in

[1]. The agents’ behaviour is defined in Table 14. The state charts

for each agent type are illustrated in Figure 6.

The ABMS model rates corresponding to the mathematical

model are given in Table 15. In the transition rate calculations, the

variable TotalTumour corresponds to the total number of tumour

cell agents; the variable TotalEffector is the total number of

effector cell agents, TotalIL 2 is the total number of IL-2 agents

and TotalTGFBeta is the total TGF-b agents. This model does

not include events.

Experimental Design for the Simulation
The experiment is conducted assuming the same parameters as

those defined for the mathematical model (Table 16). Similarly to

the previous case studies, for the ABMS and Gillespie models the

simulation is run five hundred times and the average outcome

value for these runs is displayed as result. Each run simulates a

Figure 7. Results for the third case study: mean values of tumour cells, effector cells and IL-2.
doi:10.1371/journal.pone.0095150.g007

Figure 8. Results for the third case study: 50 runs for tumour cells.
doi:10.1371/journal.pone.0095150.g008
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period equivalent to six hundred days, following the time interval

used for the numerical simulation of the mathematical model. The

parameters used for the simulations of all approaches are shown in

Table 16.

Results and discussion. The mean results of 500 runs for

the Gillespie algorithm and the ABMS contrasted with the ODE

model are shown in Figure 7. The left graph in the figure presents

the outcomes for tumour cells; the graph in the middle shows the

outputs for effector cells; the graph on the right shows the mean

IL-2 outcomes (the TGF-b results have some particularities and

therefore are discussed next). The figure shows that both Gillespie

and ABMS do not match properly the original results from the

mathematical model. Additionally, ABMS is far more dissimilar

than what was anticipated. In order to understand why the mean

values were that much different from what was expected, we

plotted fifty individual runs for each approach, as shown in

figures 8, 9, 10 and 11. These runs illustrate the variations

observed in both ABMS (left side of the figures) and Gillespie (right

side of the figures) approaches, due to its stochastic character. In

the figures, the ODE model results were also plotted (dashed black

line) in order to highlight the range of variation produced by the

stochastic approaches. As it can be observed in the figures, both

Gillespie and ABMS outcomes produce various slightly distinct

starting times for the growth of populations. In addition to these

variations, for a few runs the populations in ABMS decreased to

zero, as previously reported in [1]. This behaviour was not

reflected in the Gillespie algorithm results. This indicates that it is

not always possible to replicate similar results within both

approaches.

The use of ABS modelling has therefore led to the discovery of

additional ‘‘rare’’ patterns, which we would have not been able to

derive by using analytical methods or the dynamic Monte Carlo

Figure 9. Results for the third case study: 50 runs for effector cells.
doi:10.1371/journal.pone.0095150.g009

Figure 10. Results for the third case study: 50 runs for IL2 cells.
doi:10.1371/journal.pone.0095150.g010
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method, i.e. the Gillespie algorithm. These ‘‘extreme cases’’ found

by ABMS suggest that there might be circumstances where the

tumour cells are completely eliminated by the immune system,

without the need of any cancer therapies.

We believe that ABMS when compared to Gillespie produces

extra patterns because of the agents individual behaviour and their

interactions. While ODEs and the Gillespie algorithm always use

the same values for the parameters over the entire population

aggregate, ABMS rates vary with time and number of individuals.

Each agent is likely to have distinct numbers for their probabilities

and therefore have its own memory of past events (Gilespie,

however, does not encompass individual memory for its elements).

The agents individual interactions, which give raise to the overall

behaviour of the system, are also influenced by the scenario

determined by the random numbers used. By running the ABMS

multiple times with different sets of random numbers, the

outcomes vary according to these sets and the emerging

interactions of the agents also produce the rare outcome patterns.

For further statistical comparison of the results that follow the

same pattern of behaviour for ABMS and Gillespie, a mixed-effect

model is used. In 236 of the 500 ABMS simulations the tumour

cell population dies out early in time. The remaining 264 ABMS

simulations (where the tumour cell population does not die out

over the [0,600] time period) is compared with the 500 Gillespie

simulations by a non-linear mixed effect model.

The local maxima sequence follows a second order polynomial

function of the form:

f (t)~40311za(t{b)2 ð19Þ

The local minima sequence follows a second order polynomial

function of the form:

f (t)~a � (t{b)2 ð20Þ

For the mixed-effect model we considered a and b to have fixed

effects based on the type of simulation (e.g., ABMS or Gillespie

algorithm) and a and b to have random effects based on the

individual simulation run. The results of the mixed effect model

are presented in Tables 17 and 18. It can been seen that there is a

significant difference between the a and b parameter values for the

two different techniques. We therefore reject the null hypotheses

and accept that there is a significance difference between the two

techniques in terms of the sequence of maxima and sequence of

minima, at a 1% significance level.

Tables 17–18 and Figure 12 show that the sequence of local

maxima of the ABMS diverge from that of the Gillespie algorithm

over time. In the ABMS the tumour cells tend to increase to a

larger count than the Gillespie algorithm simulations causing the

function of local maxima for the ABMS to be significantly greater

than the Gillespie. A possible explanation for this, as mentioned

previously, is the fact that agents have memory and therefore the

rates (death, proliferation, etc) for a certain cell are determined by

the cells (and their proportions) present in the system at the

moment the cell was created. For the Gillespie algorithm, instead,

the rates are applied globally to the entire population and remain

constant over the simulation course. Consequently, for Gillespie,

the individuals do not keep a record of the previous population

dynamics. This explanation is supported by the observation that

the function describing the sequence of local minima of the ABMS

is significantly lower than the Gillespie algorithm over time, as the

same argument would account for the ABMS simulations reaching

lower levels.

Regarding the TGF-b outcomes, the ODEs results reveal

numbers smaller than one (Figure 11 on the right), which is not

possible to achieve with the ABMS and the Gillespie algorithm.

The simulation results regarding these molecules are therefore

completely different for both stochastic approaches. By observing

the multiple runs graph of ABMS, however, results indicate that

the TGF-b grows at around 100 and 200 days, which resembles

what occurs in the ODE simulation for the first two peaks of TGF-

b concentration. This suggests that ABMS, as opposite to

Gillespie, is capable of capturing some of the behaviours of the

analytical results even when the outputs are different. We believe

that these observations need to be further investigated in order to

determine whether this happens in other case studies. In addition,

it is necessary to investigate in what circumstances and range of

Table 17. The results of the mixed model for the sequence of local maxima in case study 3.

Technique Parameter Value Std Error p-value

ABMS a 0.1354 0.001403 0

Gillespie a 0.2244 0.002242 0

ABMS b 747.8501 2.876438 0

Gillespie b 595.3515 3.338526 0

doi:10.1371/journal.pone.0095150.t017

Table 18. The results of the mixed model for the sequence of local minima in case study 3.

Technique Parameter Value Std Error p-value

ABMS a 0.01325 0.0002059 0

Gillespie a 0.01823 0.0002514 0

ABS b 37.33220 2.1334837 0

Gillespie b 5.93249 2.4013484 0

doi:10.1371/journal.pone.0095150.t018
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values ABMS is still capable to reflect behaviours of numbers

smaller than one agent present in the ODE model.

Summary
The third case study simulations investigated interactions

between effector cells, tumour cells and two types of cytokines,

namely IL-2 and TGF-b. When compared to the original ODE

results, both Gillespie algorithm and ABMS produced more

variability in the outcomes. For each of the five hundred runs, a

slightly different start of population growth was observed. In

addition, ABMS produced extra patterns not observed in the

original mathematical model and in the Gillespie results. These

extra patterns have been reported previously in [1] and with the

present work we wanted to find out whether the Gillespie

algorithm simulation results would be as informative. This

indicates that, for this case study, both methods should not be

employed interchangeably, as some extra possible population

patterns of behaviour might not be uncovered without ABMS. We

believe that these emergent examples occur due to the individual

interactions of the agents and their chaotic character. With these

results, we answer our third research question that it is not possible

in this case to obtain extreme patterns using the Gillespie

algorithm.

Conclusions

In this work, we employed three case studies to investigate

circumstances where we can use ABMS and the Gillespie

algorithm interchangeably. We aimed at reproducing the

variability embedded in the ABMS systems to the mathematical

formulation and verify whether results resemble. Current literature

Figure 11. Results for the third case study: 50 runs for TGF-b. The figure on the right is a zoomed version of the figure in the centre.
doi:10.1371/journal.pone.0095150.g011

Figure 12. Illustration of the regression models fit for the sequences of the local maxima and local minima for the two different
simulation techniques. The Gillespie simulations are plotted in purple with the mixed effect models plotted in blue. The ABMS simulation runs are
plotted in orange with the mixed effect models plotted in red.
doi:10.1371/journal.pone.0095150.g012
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regarding the comparison of the Gillespie algorithm and ABMS is

scarce and we wanted therefore to answer the questions: (1) Does

the Gillespie algorithm produce similar results to ABMS? (2) Can

these two methods be used interchangeably for our case studies?

(3) Does the Gillespie algorithm also find the extra patterns

revealed by the ABMS in the third case study? The case studies

investigated regarded models with different characteristics, such as

population sizes, modelling effort demanded and model complex-

ity.

The first case study involved interactions with general immune

effector cells and tumour cells. Four different scenarios regarding

distinct sets of parameters were investigated and in the first three

scenarios treatment was included. ABMS and Gillespie produced

different results for all scenarios. It appears that two major

characteristics of this model influenced the differences obtained: (1)

The small quantities of individuals considered in the simulations

(especially regarding the effector population size, which was always

smaller than ten) that significantly increased the variability of both

stochastic approaches; and (2) the stochasticity of the Gillespie

algorithm is applied to the aggregates, while in the ABMS there is

individual variability.

Case study 2 referred to the investigation of a scenario

containing interactions between effector cells, cytokines IL-2 and

tumour cells. For this case the Gillespie and ABMS approaches

produced similar outcome curves, which also matched the pattern

of behaviour of the mathematical model used for validation. As

populations sizes had a magnitude of 104 individuals, the erratic

behaviour of both stochastic approaches was no longer evident in

the outcomes. However, although results seemed similar, further

statistical tests reject their similarity hypothesis. It was observed

that, for case 2 in general, ABMS simulation outcome curves tend

to have larger local maxima and smaller local minima.

Case study 3 includes the influence of the cytokine TGF-b in the

interactions between effector cells, cytokines IL-2 and tumour cells

from the previous case. The simulation outcomes for the ABMS

were mostly following the same pattern as those produced by the

Gillespie algorithm, although the results were statistically different.

In addition, Gillespie failed to replicate the alternative outcomes

found by the ABMS. This indicates that for this case study the

ABMS results are more informative, as they illustrate another set

of possible dynamics to be validated in real-world. Furthermore,

ABMS was also able to indicate two peaks where TGF-b
concentrations have grown, although the corresponding values

in the mathematical model were smaller than one.

In response to our research questions, we conclude that

regarding the interchangeable use of Gillespie and ABMS,

population size has a positive impact on result similarity. This

means that bigger populations tend to result in close simulation

output patterns. However, the stochasticity of both approaches

and the memory present in the ABMS produce outcome

differences which are statistically significant, although visually

the outcomes look similar. Finally, the emergent behaviour of

ABMS can contribute additional insight (extra patterns), which

was not obtained by the aggregate stochasticity present in

Gillespie, given its incapacity of retaining memory of past events

for their elements.

Currently, it is acknowledged that the necessary levels of detail

present a system’s conceptual model might require the adoption of

multiple simulation approaches, under different scales of abstrac-

tion, in order to produce satisfactory outcomes. For certain cases,

multi-scale and multi-modelling solutions represent the only

possible manner to properly implement a set of requirements,

even though these practices are generally more resource-intensive.

Several models, especially those regarding biological systems,

encompass elements with distinct time and length scales coupled

together. Multiple layers involving different levels of granularity

need therefore to be considered. Phenomena such as cellular

gradient-based chemotaxis and nutrient-dependent cell cycles are

better implemented by employing numerical simulation (such as

partial and ordinary differential equations). On the other hand,

cellular random movement, memory, adaptability, explicit repre-

sentation of space, heterogeneous populations, etc. represent

suitable concepts to be represented within an agent-based

approach. There are also subsets of characteristics in a system

that can be implemented under more than one approach.

Despite of the well-known domains of applicability of each

simulation technique, other factors such as the real-world data

availability, the computing resources, the required granularity of

the model, the time available to develop the simulation, the

research questions and the expertise of the simulation developer

also influence the decision on the paradigms to be adopted. By

understanding the strengths and weaknesses of each approach, it is

possible decide on which route to take and also the implications of

this decision to the final outcome. We hope that our study results

can assist simulation researchers on this debate.
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