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Abstract

We consider unit root testing allowing for a break in trend when partial information is available

regarding the location of the break date. This takes the form of knowledge of a relatively narrow

window of data within which the break takes place, should it occur at all. For such circumstances,

we suggest employing a union of rejections strategy, which combines a unit root test that allows

for a trend break somewhere within the window, with a unit root test that makes no allowance

for a trend break. Asymptotic and �nite sample evidence shows that our suggested strategy works

well, provided that, when a break does occur, the partial information is correct. An empirical

application to UK interest rate data containing the 1973 `oil shock' is also considered.

JEL Classi�cation: C22.

Keywords: Unit root test; Breaks in trend; Minimum Dickey-Fuller test; Local GLS detrending;

Union of rejections.

1 Introduction

When testing for a unit root in economic and �nancial time series, it is now a matter of regular practice

to allow for a possible break in linear trend in the underlying deterministic speci�cation. In doing so, it

is almost always the case that the timing of the potential break is treated as an unknown quantity, and

a variety of methods have been proposed to deal with this uncertainty. Popular approaches typically

either directly estimate a break date endogenously from the data, then subsequently apply a unit root

test conditional on a break at this estimated point, or simply take an in�mum functional of unit root

�We thank the editor, Anindya Banerjee, and two anonymous referees for their helpful and constructive comments on

an earlier version of this paper. Financial support provided by the Economic and Social Research Council of the United

Kingdom under research grant RES-000-22-3882 is gratefully acknowledged by the authors.
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statistics applied at each candidate break point. Examples of the conditional approach include the

OLS-based tests presented in Banerjee et al. (1992), Perron and Vogelsang (1992), Perron (1997).

Examples of the in�mum approach include the OLS-based tests of Zivot and Andrews (1992), Harvey

et al. (2012c) and Harvey and Leybourne (2012); of these three tests only the latter does not su�er

from over-sizing when a break is present under the unit root null hypothesis. However, none of these

OLS-based tests exploits the power gains a�orded by GLS detrending. Perron and Rodr��guez (2003)

[PR] suggest GLS-based variants of both conditional and in�mum tests, recommending the latter on

the grounds of superior power. Harvey et al. (2011) [HLT] further demonstrate that PR's in�mum

GLS-based test is, importantly, not over-sized when a break is present under the unit root null.

A potentially unattractive feature of all tests discussed above is that since they always allow for a

break, in a situation where no break occurs power is forfeited relative to the corresponding test that

excludes the trend break component in the deterministic speci�cation. In response to this, Kim and

Perron (2009), Carrion-i-Silvestre et al. (2009) and Harris et al. (2009) have proposed alternative

procedures based on a prior break detection step before the implementation of either a with-trend

break or without-trend break unit root test (the last two of these are GLS-based tests, while the �rst

of the three is OLS-based, and so is less powerful, other things being equal).

A major concern with the procedures that rely on break detection is that unless the trend break

magnitude is fairly large, the break detection steps can easily fail to detect it, resulting in the incorrect

application of without-trend break unit root tests. As a consequence, e�orts to recover some extra

unit root test power in the no-break case can have the unpleasant side e�ect of surrendering power

when a break is present but not detected, as documented in Harvey et al. (2012b) in a doubly-

local asymptotic power analysis (i.e. a local to unit root alternative combined with a local to zero

assumption regarding the break magnitude). Indeed, HLT show that the extent of such asymptotic

power losses are su�ciently severe that the straightforward in�mum unit root test of PR arguably

provides the more robust inference overall, and certainly so when extended to a multiple trend break

environment where break detection failures can pose even more of an issue.

What all of the aforementioned unit root test procedures have in common is that they treat the

location of the break as unrestricted, other than making various arbitrary assumptions to exclude a

common proportion of break dates at the beginning and end of the sample period (so-called trim-

ming). However, it is often the case that a practitioner will have some degree of con�dence as to the

approximate location of a putative break, despite not knowing it precisely. Andrews (1993), in the

context of testing for general structural instability, introduces this possibility motivated by two sets

of examples: (i) where a political or institutional event has occurred during a de�ned time-frame (e.g.

a war) but it is unknown exactly when any change-point takes e�ect; (ii) where an event occurs at

a known date but its e�ect is either anticipated or occurs after a delay. In each case, an analyst has

information on the approximate timing of any break, but remains unsure over its exact date and its

magnitude, or indeed its presence at all.

In this paper, we consider the case where true partial information of this form is available. In this

context it makes sense to follow the spirit of the Andrews (1993) approach and restrict the search
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region for the trend break to an appropriately narrow window of possible break dates. All of the

above unit root test procedures could be adapted to a restricted search set of this form; however, in

this paper we analyse the in�mum unit root test recommended by PR and HLT, on the grounds of

its appealing power properties amongst those procedures that do not rely on break detection, and its

relative robustness compared to those that do.

Taking the in�mum of GLS-detrended unit root statistics over a restricted rather than unrestricted

region of trend break dates would be expected, prima facie, to yield improvements in test power by

reducing uncertainty about the break location, should one be present. However, this procedure on its

own includes no mechanism for capturing the additional power that a without-trend break unit root

test can o�er when no break occurs. We attempt to overcome this impediment by suggesting a union

of rejections strategy whereby the unit root null is rejected if either the restricted-range with-trend

break in�mum unit root test or the without-trend break unit root test rejects. This approach builds on

the ideas in Harvey et al. (2009, 2012a) and Hanck (2012), who suggested accounting for uncertainty

regarding the presence of a �xed linear trend in the data by taking a union of rejections of with-

and without-trend unit root tests as an alternative to pre-testing for a linear trend prior to unit root

testing. In the current context, the union of rejections over with-trend break in�mum unit root tests

and without-trend break unit root tests obviates the need for prior trend break detection (which, as

noted above, can seriously compromise unit root test power). We �nd that the combination of the

restricted-range approach, together with application of a union of rejections strategy, provides a unit

root test with very attractive properties in terms of size and power.

The plan of the paper is as follows. In section 2 we present the trend break model and describe

our union of rejections testing strategy in detail. Section 3 details the large sample distributions

of the union strategy under local-to-zero trend breaks and for a local-to-unity autoregressive root;

asymptotic critical values are given for our procedure for a selection of window widths and break

locations. We then examine the asymptotic size and power of our procedure across di�erent local

trend break magnitudes, including situations where the break exists outside of the restricted region.

The �nite sample behaviour of our strategy is considered in section 4 and an empirical illustration

using UK bond market data is given in section 5. Some conclusions are o�ered in section 6.

In the following `b�c' denotes the integer part of its argument, `)' denotes weak convergence,
`x := y' (`x =: y') indicates that x is de�ned by y (y is de�ned by x), Iyx := 1(y > x), and `1(�)' denotes
the indicator function.

2 The Model and Test Statistic

We consider a time series fytg to be generated according to the following DGP,

yt = �+ �t+ TDTt(�0) + ut; t = 1; :::; T (1)

ut = �Tut�1 + "t; t = 2; :::; T (2)
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where DTt(�) := 1(t > b�T c)(t � b�T c). In this model �0 is the (unknown) putative trend break
fraction, with T the associated break magnitude parameter; a trend break therefore occurs in fytg at
time b�0T c when T 6= 0. The break fraction is assumed to be such that �0 2 � where � is a closed
subset of (0; 1). It would also be possible to consider a second model which allows for a simultaneous

break in the level of the process at time b�0T c in the model in (1)-(2). However, as argued by Perron
and Rodr��guez (2003, pp.2,4), we need not analyze this case separately because a change in intercept

is an example of a slowly evolving deterministic component (see Condition B of Elliott et al., 1996,

p.816) and, consequently, does not alter any of the large sample results presented in this paper.1

In (2), futg is an unobserved mean zero stochastic process, initialized such that u1 = op(T
1=2).

The disturbance term, "t, is taken to satisfy the following conventional stable and invertible linear

process-type assumption:

Assumption 1 Let "t = C(L)�t; C(L) :=
P1
i=0CiL

i; C0 := 1, with C(z) 6= 0 for all jzj � 1 andP1
i=0 ijCij <1, and where �t is an independent and identically distributed (IID) sequence with mean

zero, variance �2 and �nite fourth moment. We also de�ne the short-run and long-run variances of

"t as �
2
" := E("2t ) and !

2
" := limT!1 T�1E(

PT
t=1 "t)

2 = �2C(1)2, respectively.

Our interest in this paper centres on testing the unit root null hypothesis H0 : �T = 1, against the

local alternative, Hc : �T = 1�c=T , c > 0. In order to appropriately model the case where uncertainty
exists as to the presence of a break, we assume that the trend break magnitude is local-to-zero, i.e.

T = �!"T
�1=2 where � is a �nite constant, thereby adopting the appropriate Pitman drift for a trend

break in a local-to-unit root process.2 Given a degree of prior information concerning the location of

the putative break, we assume that �0 2 �(�m; �), where �(�m; �) := [�m� �=2; �m+ �=2]; here, � > 0
de�nes the width of the window containing all permissible break fractions and �m denotes the window

mid-point. For cases where �m� �=2 < 0 or �m+ �=2 > 1, we use the truncated windows [�; �m+ �=2],
or [�m � �=2; 1� �], respectively, for some small � > 0.

For an arbitrary break fraction � , let DFGLS (�) denote the PR unit root test, that is, the standard

t-ratio associated with �̂ in the �tted ADF-type regression

�~ut = �̂~ut�1 +
kX
j=1

 ̂j�~ut�j + êt;k; t = k + 2; :::; T (3)

with ~ut := yt�~��~�t�~DTt(�), where [~�; ~�; ~]0 is obtained from a local GLS regression of y�� := [y1; y2�
��y1; :::; yT � ��yT�1]0 on Z��;� := [z1; z2 � ��z1; :::; zT � ��zT�1]0, zt := [1; t;DTt(�)]

0 with �� := 1 � �c=T:
Following HLT, we set �c = 17:6.3 The without-break version of this test, which we denote by DFGLS ,

1It should, however, be noted that a change in level can have a signi�cant impact in �nite samples; see Rodr��guez

(2007). For that reason a simultaneous level shift dummy, DUt(�) := 1(t > b�T c), might also be added to the determin-
istic vector zt in the with-break case in what follows without altering the stated large sample properties of the resulting

tests.
2Scaling the trend break by !" is merely a convenience device allowing it to be factored out of the limit distributions

that arise later.
3We suppress the dependence of quantities such as ~ut on � for notational economy.
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is computed in exactly the same way as DFGLS (�), but with zt := [1; t]
0 and using �c = 13:5 as in Elliott

et al. (1996). It is assumed that the lag truncation parameter, k, is chosen according to an appropriate

model selection procedure, such as the modi�ed Akaike information criterion (MAIC) procedure of Ng

and Perron (2001) and Perron and Qu (2007), starting from a maximum lag truncation, kmax, which

satis�es the usual condition that 1=kmax + k
3
max=T ! 0 as T !1.

For given choices of the break window parameters �m and �, the in�mum GLS detrended Dickey-

Fuller statistic that we consider is

MDF (�m; �) := inf
�2�(�m;�)

DFGLS (�)

Clearly, the test recommended by HLT based on an unrestricted search set for � , but using 15%

trimming (denoted byMDF 1 in their paper) is a special case of the above, equivalent toMDF (0:5; 0:7).

Our union of rejections strategy is then given by the following decision rule:

U(�m; �) := Reject H0 if
�
DFGLS < �cvDF or MDF (�m; �) < �cvMDF

	
where cvDF denotes the asymptotic null critical value associated with DF

GLS , and cvMDF denotes

the asymptotic critical value for MDF (�m; �) obtained under the null with no break in trend ( = 0).

The parameter � (> 1) is a scaling constant applied to both cvDF and cvMDF , chosen so that the

asymptotic size of U(�m; �) is correctly controlled when  = 0; the value of � will of course depend

on the signi�cance level at which DFGLS and MDF (�m; �) are conducted, as well as the window

parameters �m and �. Observe that U(�m; �) can alternatively be expressed as

U(�m; �) := Reject H0 if

�
DFGLSU (�m; �) := min

�
DFGLS ;

cvDF
cvMDF

MDF (�m; �)

�
< �cvDF

�
(4)

a form that proves useful for determining �, as outlined in the next section.

3 Asymptotic Behaviour

In this section, we begin by stating the large sample properties of DFGLS and MDF (�m; �), the proof

of which follows directly from Harvey et al. (2012b) and HLT, for parts (i) and (ii) respectively.

Theorem 1 Let yt be generated according to (1) and (2) under Assumption 1. Let Hc : �T = 1�c=T ,
c � 0 hold, and let T = �!"T

�1=2. Then, for any �0,

(i)

DFGLS ) Kc;�c(1; �0; �)
2 � 1

2
qR 1

0 Kc;�c(r; �0; �)2dr
=: DDFc;�c (�0; �)

where

Kc;�c(r; �0; �) :=Wc(r) + �(r � �0)Ir�0 � fbc;�c + �fc;�c(�0)gr=a�c
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with

bc;�c := (1 + �c)Wc(1) + �c
2
R 1
0 sWc(s)dr

fc;�c(�0) := (1� �0) fa�c � �c2�0(1 + �0)=6g

a�c := 1 + �c+ �c2=3

and Wc(r) :=
R r
0 e
�(r�s)cdW (s), W (r) a standard Wiener process.

(ii)

MDF(�m; �)) inf
�2�(�m;�)

Lc;�c(1; �0; � ; �)
2 � 1

2
qR 1

0 Lc;�c(r; �0; �0; �)
2dr

=: DMDFc;�c (�m; �; �0; �) (5)

where

Lc;�c(r; �0; � ; �) := Wc(r) + �(r � �0)Ir�0

�
"

r

(r � �)Ir�

#0 "
a�c m�c(�)

m�c(�) d�c(�)

#�1 "
bc;�c + �fc;�c(�0)

bc;�c(�) + �fc;�c(�0; �)

#

with

m�c(�) := a�c � �(1 + �c+ �c=2� �c�2=6)

d�c(�) := a�c � �(1 + 2�c� �c� + �c� �c� + �c�2=3)

bc;�c(�) := (1 + �c� �c�)Wc(1)�Wc(�) + �c
R 1
� (s� �)Wc(s)ds

fc;�c(�0; �) := (1� �0)fa�c � �c� � �c�(1� �0)=2� �c�0(1 + �0)=6g

�(� � �0)f1� �c(� � �0)2=6gI��0

Given the results of Theorem 1, it is straightforward to establish the asymptotic behaviour of the

union of rejections statistic DFGLSU in (4). Under the conditions of Theorem 1, application of the

continuous mapping theorem gives

DFGLSU (�m; �)) min

�
DDFc;�c (�0; �);

cvDF
cvMDF

DMDFc;�c (�m; �; �0; �)

�
(6)

Remark 1 Notice that when � = 0, the limit distributions DDFc;�c (�0; �) and DMDFc;�c (�m; �; �0; �), and

therefore the limit of DFGLSU (�m; �), do not depend on �0, since no break occurs.

We next obtain asymptotic null critical values for MDF (�m; �) (the critical values for DF
GLS are

well known, e.g. �2:85 at the nominal 0:05 signi�cance level) for a range of window locations �m and
the window width settings � = f0:05; 0:10; 0:15; 0:20g.4 These are obtained for the case of no break
in trend (an investigation into the size properties of the tests for non-zero breaks is considered in the

next sub-section), and so we simulate (5) with c = 0 and � = 0. Table 1 reports critical values for

the nominal 0:10, 0:05 and 0:01 signi�cance levels; here and throughout the paper, we used 50,000

4Here we set � = 0:001.
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Monte Carlo replications, and approximated the Wiener processes in the limiting functionals using

NIID(0; 1) random variates, with the integrals approximated by normalized sums of 1,000 steps.

Given choices of �m and �, together with the corresponding critical values cvDF and cvMDF ,

the appropriate constant � to be used in (4) can be determined, so as to ensure U(�m; �) has the

correct asymptotic size when no break occurs. These values can be obtained by simulating the limit

distribution of DFGLSU in (6), calculating the asymptotic critical value for this empirical distribution

at the desired signi�cance level, say cvU , and then computing � := cvU=cvDF . We obtained constants

in this way at the 0:10, 0:05 and 0:01 nominal signi�cance levels, and the results are presented in

Table 2, for the same combinations of �m and � as considered in Table 1.

Asymptotic Size

We now consider the asymptotic sizes of MDF (�m; �) and U(�m; �) under a local break in trend, for

the four window widths � = f0:05; 0:10; 0:15; 0:20g, and setting �m = �0, so we assume the true break

fraction coincides with the mid-point of the window. In Figure 1 we show the sizes, as functions of the

local trend break magnitude � = f0; 0:2; :::; 15g, for break fractions �0 = f0:3; 0:5; 0:7g at the nominal
0.05 level; for purposes of comparison, we also show the asymptotic sizes of DFGLS and the MDF 1

procedure of HLT (i.e. MDF (0:5; 0:7)).

The general pattern of results is as follows. Firstly, DFGLS displays the predictable feature of

its size rapidly decaying from 0:05 towards zero as � increases, since a local trend break of growing

magnitude is being omitted from its underlying deterministic speci�cation. TheMDF (�m; �) statistics

have sizes which demonstrate quite di�erent behaviour; their sizes increase from 0:05 as � increases,

before levelling o� then decreasing slightly. The maximum size is reached more rapidly in � the

larger is �; but the maximum attained is higher the smaller is �.5 The corresponding U(�m; �) testing

strategies demonstrate sizes that are fairly close to 0:05 across all � - they are all slightly undersized

for � > 0, though with less undersizing the smaller is �. What is happening here is that, as � is

increasing, any over-sizing inherent in MDF (�m; �) is being counteracted by the diminishing size of

DFGLS .6 The sizes of the U(�m; �) strategies are pretty much in line with those of the HLT test

MDF 1 when �0 = 0:3 and �0 = 0:5, but are less undersized when �0 = 0:7.

By way of a more comprehensive check on the asymptotic size properties of the U(�m; �) strategies,

we simulated the limit distribution of DFGLSU in (6) using the � values of Table 2, that, is those

calculated for � = 0, across a grid of values � = f0; 1; 2; :::; 15g and �0 = f0:025; 0:050; :::; 0:975g for
every case considered in Table 2 (i.e. each �m, � and signi�cance level combination). This allows us to

examine size in cases where (i) �m = �0, (ii) �0 2 �(�m; �), �m 6= �0 such that the partial information

on break location remains true but the break no longer occurs at the mid-point of the window, and

(iii) �0 =2 �(�m; �) so that the partial information is entirely wrong. The pertinent �nding of this
analysis is that, for any given signi�cance level, the maximum asymptotic size obtained across all

5For � = 0:05, the maximum size is not obtained until � = 30 at which point the size is 0:086.
6Note that although the size of U for � = 0:05 is still rising slightly when � = 15, its size reaches a ceiling of 0:049

when � = 30.

7



�m, � combinations considered was always within 0:0009 of the nominal level, thereby con�rming the

suitability of the � values of Table 2 to deliver what is, to all intents and purposes, a size-controlled

procedure.7

Asymptotic Power

Figure 2 plots the asymptotic local power functions of nominal 0.05 level tests across � = f0; 0:2; :::; 15g,
with �m = �0 = f0:3; 0:5; 0:7g, for the two alternatives c = 20 and c = 25. We do not report plots

for the MDF (�m; �) statistics alone (other than MDF 1), since these are oversized. The results may

be summarized as follows. The power of DFGLS starts at a high level, but then decays towards zero

as � increases, due to the increasing magnitude of the unattended break. As regards the U(�m; �)

testing strategies, for all four � settings considered we observe that they are all able to harness most

of the high power available from DFGLS for zero or small values of �, as well as power arising from

MDF (�m; �). Then, as � further increases, their power drops down to a lower level since the power

contribution of DFGLS is declining towards zero and all their power is obtained from the MDF (�m; �)

statistics alone. Outside of small values of �, that is, in the region where MDF (�m; �) and not DF
GLS

dominates the power pro�le, it becomes quite clear that the smaller is �, the higher is the power which

is achieved.

The non-union test MDF 1 cannot access any of the high power associated with DF
GLS for zero or

very small values of �. For the larger values of �, when �0 = 0:3 and �0 = 0:5, the U(�m; �) strategies

are more powerful than MDF 1 apart from when � = 0:20, where the power is marginally lower. When

�0 = 0:7, all the U(�m; �) strategies have substantially higher power than MDF 1, for large (as well as

small) �.

We therefore see that the more accurate the true partial information available regarding the location

of the trend break (i.e. the smaller is �), the higher the power that can be achieved with U(�m; �).

As we might expect, the level of information accuracy has little e�ect on power when the local break

does not occur, or is small, but allows for very decent power gains otherwise.

Asymptotic Behaviour when �m 6= � 0

Finally, we jointly investigate the size and power properties of U(�m; �) when �m 6= �0. Here we set

�0 = 0:57 and �m = 0:50 such that � = 0:15 and � = 0:20 correspond to case (ii) discussed in the

�rst sub-section above, with the break being "least central" for � = 0:15; and such that � = 0:05 and

� = 0:10 correspond to case (iii), with the partial information being "most in error" for � = 0:05.

Asymptotic sizes for U(�m; �) are given in Figure 3(a). The sizes for U(�m; �) with � = f0:15; 0:20g
across � are always very close to their counterparts for �m = �0 = 0:5 in Figure 1, indicating that the

issue of whether or not the break occurs towards the window midpoint has little e�ect on size. For

� = f0:05; 0:10g, the sizes approach zero in �, and this occurs particularly quickly for � = 0:05, where
the partial information is the more incorrect. In Figure 3(b) we present the corresponding powers for

7The full results of these simulation experiments are available from the authors on request.
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c = 20. Once more we see that the power pro�les for U(�m; �) with � = f0:15; 0:20g lie very close to
their counterparts for �m = �0 = 0:5 in Figure 2, while the powers for � = f0:05; 0:10g are decreasing
in �, reaching zero for � = 0:05.

From this analysis we make two observations. First, that the asymptotic size and power are little

a�ected by the placement of a break within a given window, which endows the U(�m; �) strategy with

a degree of robustness. Secondly, and not surprisingly, that size and power are both driven towards

zero by false partial information (more quickly when the more in error is that information). While

this may be considered a negative, we can at least rest assured that our strategy is very unlikely to

yield spurious rejections of the unit root null when one is present but the trend break exists outside

of the chosen window.

4 Finite Sample Results

In this section we present �nite sample simulation results for the empirical size and power of the

U(�m; �) tests. We set T = 200 and simulate the DGP given by (1) and (2) with � = � = 0 (without

loss of generality), "t � IIDN(0; 1) and u1 = "1. We use the same local trend break magnitudes

as in the previous section, and the same choices for �0. As in the �rst two sub-sections of section 3

we set �m = �0 and consider the four window widths � = f0:05; 0:10; 0:15; 0:20g. The Dickey-Fuller
regressions are implemented with k set to zero in (3), thereby abstracting from issues of lag selection.

Figures 4 and 5 report, respectively, the size (c = 0) and local power (c = 20; 25) of the U(�m; �)

testing strategies, with the tests conducted using nominal 0.05 level asymptotic critical values and the

corresponding union of rejections scaling constants.

We �nd that the reliable asymptotic size performance of the U(�m; �) strategies is largely replicated

in the �nite sample situation. The relative size pro�les across � for the four settings of � follow the

same pattern as was observed for the limit case in Figure 1. The sizes for T = 200 are a little above

the nominal level for some values of �, but such oversizing is very moderate, never being in excess of

0:066.

Turning now to the �nite sample power results of Figure 5, we again observe the same relative

power rankings among the four union of rejections strategies as in the limit, i.e. very similar power

for all values of � when the local break magnitude is zero or very small, but then for larger �, power

increases as the window width narrows. The level of �nite sample power for each strategy is a little

higher than the corresponding local asymptotic power level, as expected given the moderate degree

of �nite sample oversize observed in Figure 4. Overall then we �nd that the attractive asymptotic

properties of the U(�m; �) testing strategies carry over to the �nite sample context, reinforcing the

case for use of the union of rejections approach in practical applications.
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5 An Empirical Illustration

By way of an illustration of the how the U(�m; �) strategies might work in practice, we applied them to

UK interest rate data. The interest rate series we consider is the natural log of the monthly gross at

yield on UK government 2.5% Consols for the period January 1954 to November 1994.8 The series,

comprising 491 observations, is shown in Figure 6. Observation 238, located near the middle of the

series (and also indicated in Figure 6), represents October 1973, the month in which the Middle East

Oil Crisis began. Few would argue that the period around the Oil Crisis should not be considered a

serious candidate for the location of a potential trend break in the long-term behaviour of economic

and �nancial markets. Arguably, it was the most seismic economic event of the twentieth century,

aside from the Great Depression.

In what follows all ADF statistics are implemented with the MAIC lag selection procedure of Ng

and Perron (2001) and Perron and Qu (2007), using kmax = b12(T=100)1=4c = 17. All test procedures
are carried out at the nominal 0.05 level, using asymptotic critical values and scaling constants.

As a benchmark, we took the view that a trend break did occur in October 1973. That is,

we assumed complete knowledge of the break location. The appropriate unit root statistic is then

DFGLS (�) with � = 238=491 = 0:485. We found that this statistic does not yield a rejection of the

unit root null. Moving to the other extreme, we eschewed all relevant information on break location

around the occurrence of the Oil Crisis and calculated the MDF 1 test of HLT, i.e. MDF (0:5; 0:7).

This test did not reject the unit root null either.9

To examine whether taking a partial information position might uncover evidence of stationarity

around a broken trend, we then calculated U(�m; �) for � = f0:05; 0:10; 0:15; 0:20g. Intuition led us to
set �m = 0:485 such that each break window midpoint is �xed at October 1973, thereby incorporating

the e�ects of uncertainty caused by both anticipation (before) and delayed reactions (after) this date.

However, we also calculated U(�m; �) setting �m � �=2 = 0:485, so that October 1973 is now always

the earliest date in the window (the midpoint now varies) to allow for e�ects of delayed reactions alone

(in keeping with the the Oil Crisis being termed a \shock" in the vernacular).

The results are shown in Table 3, where NR and R denote non-rejection and rejection, respectively,

of the unit root null at the 0.05 level. In analyzing these results, it should be borne in mind that the

DFGLS component of each U(�m; �), i.e. the without break unit root test, is never responsible for

triggering a rejection; its value is �0.90, compared with a critical value of �2.85, even before any �
scaling is applied. Therefore, the pattern of rejections in Table 3 is solely within the purview of the

corresponding with-break MDF (�m; �) component of U(�m; �).

If we set �m = 0:485 then only the � = 0:15 window yields a rejection. It seems reasonable to

argue, informally at least, that this arises because the � = f0:05; 0:10g windows are excluding a true
break point which is contained in the � = 0:15 window. Of course, this break point is also included

8This same data set was examined by Leybourne et al. (1998) in the context of unit root tests allowing for smooth

transition trend deterministics.
9Non-rejection was also found using a Zivot-Andrews-type OLS detrended variant of MDF (0:5; 0:7).
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in the � = 0:20 window, but the price here is a more left-shifted critical value, which overturns the

rejection. Once we set �m � �=2 = 0:485 we no longer consider pre-October 1973 dates as candidate

break points for any window. The � = 0:15 window still produces a rejection but is now joined by

rejections for the � = f0:05; 0:10g windows, which leads us to presume that both of these now include
the trend break point. Interestingly, the � = 0:20 window also now yields a rejection. Essentially,

this is because the rightward shift of the window midpoint (relative to �m = 0:485) means the critical

value is less left-shifted.10

Our �ndings lead us to conclude that this interest rate series is stationary, around a trend break,

though it would seem that the break point appears much less likely to have occurred before the onset

of the Oil Crisis than at some stage shortly thereafter. It therefore seems doubtful that the Oil Crisis

was anticipated by the bond market to any appreciable extent. In fact, our results with window width

� = 0:05 suggest that the trend break occurred between observations 251 and 262; that is, between

November 1974 and October 1975.11 Visual inspection of Figure 6 would not appear to contradict

this suggestion.

6 Conclusions

In this paper we have proposed a union of rejections-based approach to testing for a unit root when

partial information is available regarding the location, but not necessarily the presence, of a break in

linear trend. The union of rejections approach, comprised as it is of both a with-break and without-

break unit root test, allows the capture of most of the high power available when no break is actually

present, while also ensuring a reliable level of power should a break occur. Our recommended approach

relies on the user specifying a window within which the putative trend break must lie, and the narrower

this window width is, the greater is the level of power achievable for non-zero break magnitudes. Our

results demonstrate that this new approach can outperform existing approaches and delivers a reliable

procedure for testing for a unit root when such partial information is available. Of course, the decision

regarding the window width and location lies with the practitioner, and should reect their degree of

belief regarding the approximate date of any trend break that might occur. While the obvious caveat

exists that a mis-speci�ed window choice could result in low power, we think that this new procedure

has attractive properties, and should prove desirable to users. Our procedure can be seen as bridging

the gap between an often unrealistic assumption that the putative trend break date is known with

complete certainty, and the highly conservative assumption of no knowledge whatsoever regarding

the break location; both extremes being rather unappealing for many events likely to generate trend

breaks in economic or �nancial data.

10This window midpoint is actually now �m = 0:585 instead of 0:485. Table 1 shows that the critical value of

MDF (�m; �) changes to �3:59 from �3:62. In addition, from Table 2, the � scaling reduces to 1:062 from 1:066.
11This interval is calculated by noting that with � = 0:05, MDF (�m; �) involves potential break points between

observations 225 and 250 when �m = 0:485, and observations 238 to 262 when �m � �=2 = 0:485.
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TABLE 3
Application of U(τm, δ) at the nominal 0.05-level to yield on UK 2.5% Consols

δ τm = 0.485 τm − δ/2 = 0.485

0.05 NR R
0.10 NR R
0.15 R R
0.20 NR R

T.2



(a) τ0 = 0.3

(b) τ0 = 0.5

(c) τ0 = 0.7

Figure 1. Asymptotic size: DFGLS : · · ·H· · · , MDF 1: � ;
U(τ 0, 0.05): , U(τ 0, 0.10): – – , U(τ 0, 0.15): - - -, U(τ 0, 0.20): – · – ;

MDF (τ 0, 0.05): N , MDF (τ 0, 0.10): –N– , MDF (τ 0, 0.15): - -N -, MDF (τ 0, 0.20): – ·N–
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(a) c = 20, τ0 = 0.3 (b) c = 25, τ0 = 0.3

(c) c = 20, τ0 = 0.5 (d) c = 25, τ0 = 0.5

(e) c = 20, τ0 = 0.7 (f) c = 25, τ0 = 0.7

Figure 2. Asymptotic local power: DFGLS : · · ·H· · · , MDF 1: � ;
U(τ 0, 0.05): , U(τ 0, 0.10): – – , U(τ 0, 0.15): - - -, U(τ 0, 0.20): – · –
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(a) c = 0 (b) c = 20

Figure 3. Asymptotic size and local power, τ 0 = 0.57:
U(0.5, 0.05): , U(0.5, 0.10): – – , U(0.5, 0.15): - - -, U(0.5, 0.20): – · –

F.3



(a) τ0 = 0.3

(b) τ0 = 0.5

(c) τ0 = 0.7

Figure 4. Finite sample size, T = 200, ρT = 1, γT = κT−1/2:
U(τ 0, 0.05): , U(τ 0, 0.10): – – , U(τ 0, 0.15): - - -, U(τ 0, 0.20): – · –

F.4



(a) c = 20, τ0 = 0.3 (b) c = 25, τ0 = 0.3

(c) c = 20, τ0 = 0.5 (d) c = 25, τ0 = 0.5

(e) c = 20, τ0 = 0.7 (f) c = 25, τ0 = 0.7

Figure 5. Finite sample power, T = 200, ρT = 1− c/T , γT = κT−1/2:
U(τ 0, 0.05): , U(τ 0, 0.10): – – , U(τ 0, 0.15): - - -, U(τ 0, 0.20): – · –
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Figure 6. Yield on UK 2.5% Consols: January 1954–November 1994
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