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Abstract

In this paper we consider a model for the spread of a stochastic SIR (Susceptible
→ Infectious → Recovered) epidemic on a network of individuals described by a
random intersection graph. Individuals belong to a random number of cliques, each
of random size, and infection can be transmitted between two individuals if and
only if there is a clique they both belong to. Both the clique sizes and the number
of cliques an individual belongs to follow mixed Poisson distributions. An infinite-
type branching process approximation (with type being given by the length of an
individual’s infectious period) for the early stages of an epidemic is developed and
made fully rigorous by proving an associated limit theorem as the population size
tends to infinity. This leads to a threshold parameter R∗, so that in a large population
an epidemic with few initial infectives can give rise to a large outbreak if and only
if R∗ > 1. A functional equation for the survival probability of the approximating
infinite-type branching process is determined; if R∗ ≤ 1, this equation has no non-
zero solution, whilst, if R∗ > 1, it is shown to have precisely one non-zero solution.
A law of large numbers for the size of such a large outbreak is proved by exploiting a
single-type branching process that approximates the size of the susceptibility set of
a typical individual.
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1 Introduction

Traditional models for the spread of SIR (Susceptible → Infectious → Recovered) epi-
demics [2, 15] are based on the homogeneous mixing assumption, that is, all pairs of indi-
viduals in the population contact each other at the same rate, independently of each other.
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Generalizations of this model have been proposed by introducing household structure into
the population [4], where contacts between household members are more frequent than
other contacts; by introducing a (social) network structure [1, 25], where contacts are only
possible between pairs of individuals that share a connection in the network; or both [7, 8].
In most models for epidemics on networks, the network is modelled by a random graph
constructed via the configuration model [23],[16, Chapter 3]. In this construction one can
control the degree distribution of the vertices, but the resulting network is locally tree-
like, in the sense that the network contains hardly any cliques (small completely connected
groups) or short loops. In real social networks cliques are not sparse: ‘the friends of my
friends are likely to be my friends as well’. This feature of networks has been captured
(among other models, such as those in [30, 27, 17]) by random intersection graphs, intro-
duced in [22] and further studied in e.g. [11, 14, 34] (see [10] for a related model). Random
intersection graphs may be seen as models for overlapping groups/cliques, in which a con-
tact between two individuals is possible only if there is a group to which they both belong.
These graphs are also known as random key graphs in computer science [21] and are related
to Rasch models [32] in the social sciences. In our paper, and in most random intersection
graph models in the literature, the resulting graph still has a tree-like structure, though
now at the level of cliques. This structure allows for analysis, but arguably only captures
some features of real (social) networks. It is possible to make the graphs more realistic by
incorporating spatial location [19], but this makes the model intractable for our purposes.

The aim of this paper is to study SIR epidemics on random intersection graphs. Specif-
ically, we use branching process approximations to derive (i) a threshold parameter R∗,
which determines whether an epidemic with few initial infectives can become established
and infect a non-negligible proportion of the population, an event we call a large outbreak;
(ii) the probability that a large outbreak occurs; and (iii) the fraction of the population
that is infected by a large outbreak. These approximations are made fully rigorous as the
population size tends to infinity by proving associated limit theorems.

The only previous rigorous study of epidemics on random intersection graphs is [11].
We extend the analysis of [11] in three directions. First, we allow more general distributions
for both group size and the number of groups a typical individual belongs to. In [11], both
of these quantities follow Poisson distributions; here we allow them to follow mixed-Poisson
distributions. Moreover, as discussed in Section 6, we expect similar results to hold when
they both follow quite general distributions, though our proofs are valid only for the mixed-
Poisson case. Secondly, we allow for an arbitrary infectious period distribution, unlike
in [11] where a Reed-Frost type model [2, Section 1.2] (which effectively has a constant
infectious period) is used. Thirdly, we give a formal proof of a law of large numbers for
the final outcome of a large outbreak, a result that was conjectured but not proved in [11].
Introducing variable infectious periods significantly complicates the analysis. We note that
for random infectious periods, our model is not covered by [10, Section 5], since we need
directed inhomogeneous random graphs and the proofs in [10] rely heavily on the structure
of undirected graphs. Therefore, we need to develop alternative techniques to determine
the fraction of the population that is infected by a large outbreak.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction
to random intersection graphs and SIR epidemics defined upon them. The main results
of the paper, together with associated heuristic explanations, are given in Section 3. In
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particular, in Section 3.2 we show how the early stages of an epidemic in our model can be
approximated by a multitype (forward) branching process (whose type space is in general
uncountable), yielding a threshold parameter R∗ and the approximate probability of a
large outbreak. In Section 3.3, a single-type (backward) branching process, which enables
the proportion of the population that is infected by a large outbreak to be determined, is
described. The key limit theorems of the paper are stated in Section 3.4. They show that,
if there are few initial infectives, then in a large population: (i) a large outbreak occurs
with non-zero probability if and only if the forward branching process is supercritical; (ii)
the probability that a large outbreak occurs is close to the probability that the forward
branching process survives; and (iii) if there is a large outbreak, then the proportion of
the population that is infected by the epidemic is close to the survival probability of the
backward branching process. The forward branching process is studied in Section 4, where
it is shown that the process survives with non-zero probability if and only if R∗ > 1 and that
the survival probability may be obtained using a functional equation, which, as is proved in
Appendix A, has at most one non-zero solution. The limit theorems corresponding to the
forward and backward branching processes are proved in Sections 5.1 and 5.2, respectively.
Extension to more general distributions of clique size and the number of groups a typical
individual belongs to is discussed briefly in Section 6. Explicit expressions, in terms of
Gontcharoff polynomials, for R∗ and for the probability generating function(als) of the
offspring distributions of the backward and forward branching processes (which enable the
survival probabilities of these processes to be computed) are derived in Appendix B.

2 Random intersection graphs and epidemics thereon

2.1 Notation

Throughout, N denotes the set of natural numbers not including 0, while Z+ = N ∪ {0}.
For x ≥ 0, bxc = max(y ∈ Z+ : y ≤ x) is the floor of x, and dxe = min(y ∈ Z+ : y ≥ x) is
the ceiling of x.

Furthermore, we write

f(x) = O(g(x)) if lim sup
x→∞

|f(x)/g(x)| <∞,

f(x) = o(g(x)) if lim
x→∞

f(x)/g(x) = 0 and

f(x) = Θ(g(x)) if 0 < lim inf
x→∞

|f(x)/g(x)| ≤ lim sup
x→∞

|f(x)/g(x)| <∞.

A (directed or undirected) graph is simple if it contains no parallel edges (edges that share
both end-vertices) or self-loops (edges with only one end-vertex). In a directed graph,
edges are parallel if they share both end-vertices and have the same direction. In a multi-
graph self-loops and parallel edges are allowed. We may construct a directed graph from an
undirected one by replacing every undirected edge by two directed edges with the same end-
vertices but having opposite directions. If we construct a simple graph from a multi-graph,
we do this by merging parallel edges and removing self-loops.

We use P for general unspecified probability measures, for which the interpretation
is clear from the context, and E for the associated expectation. We use EX to denote
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expectation with respect to the random variable X. However, if no confusion is possible
we sometimes drop the subscript. For the non-negative random variable X, a mixed-
Poisson(X) random variable, Y , is defined by P(Y = k) = EX [X

k

k!
e−X ], for k ∈ Z+. We say

that a random variable is P(x) if it is Poisson distributed with mean x and MP(X) if it
has a mixed-Poisson(X) distribution. We use X̃ to denote the size-biased variant of the
non-negative random variable X, so, provided E[X] ∈ (0,∞), for x ≥ 0 we have

P(X̃ ≤ x) =

∫
y∈[0,x]

y P(X ∈ dy)

E[X]
=

E[X11(X ≤ x)]

E[X]
. (2.1)

Here 11(A), is the indicator function of A, which is 1 if A holds and 0 otherwise, and we
assume that X is not almost surely 0. Note that if Y ∼MP(X), then Ỹ ∼MP(X̃)+1; in
this situation we use the notation Y̌ to denote a random variable with the same distribution
as Ỹ − 1, so that if Y ∼ MP(X), then Y̌ ∼ MP(X̃). This implies that E[Y̌ ] = E[X̃].
Let Xn ⇒ X denote convergence in distribution. By [18, Theorem 7.2.19] we know that if
Xn ⇒ X, then E[Xn11(Xn ≤ x)]→ E[X11(X ≤ x)] for all points of continuity of P(X ≤ x).
This implies that if E[Xn]→ E[X] and Xn ⇒ X, then X̃n ⇒ X̃.

We also use the notation fX(s) = E[sX ] (s ∈ [0, 1]) for the probability generating
function of a Z+-valued random variable X and φX(θ) = E[e−θX ] (θ ≥ 0) for the moment
generating function of a real-valued random variable X. Note that if Y ∼ MP(X) then
E[Y ] = E[X] and fY (s) = φX(1− s). Lastly, for any set A we denote its cardinality by |A|.

2.2 Random intersection graphs

We consider a variant of random intersection graphs [11, 14, 22] constructed via a bipartite
generalization of Norros and Reittu’s Poissonian random graph model [28]. Random inter-
section graphs may be thought of as random graphs composed of overlapping groups/cliques
of individuals/vertices. We note that the model introduced in [22] is more general than
(the equal-weight variant of) the model presented in this paper.

We construct a sequence of random intersection graphs as follows. Consider two infinite
sets of vertices V = (vi, i ∈ N) and V ′ = (v′j, j ∈ N). Fix a real number α > 0. Assign
independent and identically distributed (i.i.d.) weights (Ai, i ∈ N) to the vertices in V ,
all distributed as the non-negative random variable A and, independently, i.i.d. weights
(Bj, j ∈ N) to the vertices in V ′, all distributed as the non-negative random variable B.
Assume that

µ = E[A] = αE[B] ∈ (0,∞). (2.2)

Define L(n) =
∑n

i=1 Ai and L′(n) =
∑bαnc

j=1 Bj, though see Remark 2.3 below. Let (Ω,F , ν)

be the corresponding probability space, where Ω = (R+)N × (R+)N is the product space
of non-negative real-valued infinite sequences (Ai, i ∈ N) and (Bj, j ∈ N). The σ-field F
is generated by the finite dimensional cylinders on Ω and ν is the appropriate (product)
measure determined by the distributions of A and B. We note that, by the strong law of
large numbers, both L(n)/(µn)

a.s.−−→ 1 and L′(n)/(µn)
a.s.−−→ 1 as n → ∞. Here

a.s.−−→ denotes
almost sure convergence with respect to the measure ν.

For given ω ∈ Ω, an auxiliary sequence of random undirected multigraphs (A(n), n ∈
N) = (A(n)(ω), n ∈ N) is constructed as follows. For each n, the vertex set of A(n) consists
of V (n) = (vi, 1 ≤ i ≤ n) and V ′(n) = (v′j, 1 ≤ j ≤ bαnc). Vertices vi ∈ V (n) and v′j ∈ V ′(n)
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Figure 1: Construction of G(n) from A(n).

share a P(AiBj/(µn)) number of edges (see Remark 2.1). Conditioned on the weights of
vertices, i.e. on ω, the numbers of edges between distinct pairs of vertices are independent
and there is no edge in A(n) connecting vertices either both in V (n) or both in V ′(n). Note
that in A(n), the degree of vertex vi ∈ V (n) is P(A

(n)
i ) with

A
(n)
i = AiL

′(n)/(µn)
a.s.−−→ Ai as n→∞, (2.3)

while the degree of vertex v′j ∈ V ′(n) is P(B
(n)
j ) with

B
(n)
j = BjL

(n)/(µn)
a.s.−−→ Bj as n→∞. (2.4)

The random variables A(n) and B(n) are defined by

P(A(n) ≤ x) = n−1|{1 ≤ i ≤ n : A
(n)
i ≤ x}|, (x ≥ 0) and (2.5)

P(B(n) ≤ x) = bαnc−1|{1 ≤ j ≤ bαnc : B
(n)
j ≤ x}|, (x ≥ 0). (2.6)

Thus, A(n)(ω) and B(n)(ω) are random variables with the empirical distribution of the

rescaled weights {A(n)
i } and {B(n)

j }, respectively. By the strong law of large numbers,

A(n) ⇒ A and B(n) ⇒ B as n→∞.
For the purpose of this paper it is not important how the graphs in the sequence depend

on each other. For simplicity we assume that, conditioned on ω = (Ai, i ∈ N)×(Bj, j ∈ N),
the graphs (A(n), n ∈ N) are independent.

The vertices of the random intersection graph G(n) are precisely those in V (n). Two
(distinct) vertices share an edge in G(n) if and only if there is at least one path of length
2 between them in A(n). Thus, G(n) is a simple graph. This construction is visualised
in Figure 1. We note that G(n) is slightly different from an ordinary random intersection
graph. In [11, 14] the conditional probability that vertices with weights Ai and Bj share
an edge in A(n) is given by min(1, AiBj/(µn)), as opposed to 1− exp[−AiBj/(µn)] in this
paper. (Note also that in [11] the weights are constant.)

Remark 2.1. Of course it is possible to construct a simple version of the (multi) graph A(n)

directly, in which the vertices vi and v′j share an edge with probability 1−exp[−AiBj/(µn)].
Indeed, this is sufficient to describe the population structure of our model. We use the
present construction, where vi and vj share a Poisson distributed number of edges, in order
to have the machinery ready for branching process approximations.
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Remark 2.2. The graph G(n) is a graph of overlapping cliques, in which, asymptotically
as n → ∞, the number of cliques a vertex is part of has an MP(A) distribution and the
clique sizes have an MP(B) distribution. Both of these distributions have finite mean by
assumption.

Remark 2.3. Since the random intersection graph does not change if, for some r ∈ (0,∞),
the random variables A and B are replaced by rA and B/r, condition (2.2) might be replaced
by E[A] < ∞ and E[B] < ∞ but this does not gain any generality. The linear scaling
|V ′(n)| = bα|V (n)|c is assumed in order to guarantee that, as n→∞, (i) clique sizes do not
grow to infinity, and (ii) two (or more) cliques contain at most one common vertex, with
high probability.

Remark 2.4. In this paper we make use of the following equivalent way of constructing
A(n). Initially all vertices are unexplored. Pick a vertex from V (n) according to some law
(e.g. uniformly at random), say vertex vi, which has weight Ai; this vertex becomes active.

Assign a P(A
(n)
i ) number of edges to it (see (2.3)). The end-vertices in V ′(n) of these edges

are chosen independently with replacement and the probability that v′j is chosen is Bj/L
′(n).

After this vertex vi is made explored, while the chosen vertices become active.
Now, if there are any, explore the active vertices from V ′(n) one by one. Suppose that we

explore vertex v′j, which has weight Bj; then assign a P(B
(n)
j ) number of edges to it. (We

observe that the number of edges between v′j and a previously unexplored vertex vl is indeed
P(AlBj/(µn)), independent of the numbers of edges between all other pairs of vertices, as
desired.) These edges connect to vertices chosen independently, with replacement, from
V (n); vertex vl being chosen with probability Al/L

(n). If the end vertex has already been
explored then the edge is ignored and not added to the graph, otherwise it is added and
the end vertex in V (n) becomes active. If all the edges from v′j are drawn, then v′j is made
explored.

The next step is to pick one of the active vertices from V (n), if there are any, according
to some, for now unspecified, law and explore it. Say that we choose vk, which has weight
Ak. Then we proceed as in the first step. We assign a P(A

(n)
k ) number of edges to it, then

the end-vertices in V ′(n) of these edges are chosen independently with replacement and the
probability that v′j is chosen is Bj/L

′(n). If the end vertex has been explored before, then the
edge is ignored and deleted. After this, vertex vk is made explored and the newly chosen
vertices in V ′(n) which are unexplored become active. We now explore all active vertices
in V ′(n) in turn, and so on until there is no active vertex left. After that an unexplored
vertex from V (n) is chosen and the process goes on until all vertices in V (n) are explored.
Note that if after this construction there are unexplored vertices left in V ′(n), they will have
degree 0, since there is no end-vertex left in V (n) to connect to.

2.3 SIR epidemics

We consider a stochastic SIR epidemic on the random intersection graph G(n). The vertices
of the graph correspond to individuals and the edges to relationships/possible contacts. We
assume that initially there is one infectious individual/vertex, chosen uniformly at random
from the population, while all other individuals are susceptible. Every individual, indepen-
dently of other individuals, makes (directed) contact with each of its neighbours in G(n)
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at the points of independent Poisson processes of unit intensity. If an infectious individual
contacts a susceptible one, the susceptible becomes infectious. Infectious individuals stay
infectious for a random infectious period, distributed as a random variable I, after which
the infectious individual recovers and plays no further part in the epidemic. Infectious
periods are i.i.d. and independent of the Poisson processes generating the contacts. An
infectious contact is a contact by an infectious individual, irrespective of the state of the
receiving individual. Note that there is no loss of generality in assuming that the intensity
of the Poisson processes governing the contacts is 1, since this can always be achieved by
rescaling time. We denote the above epidemic model by E (n)(A,B, I).

For ease of exposition, primarily to avoid multitype branching processes that are re-
ducible, we assume that P(I = 0) = 0. We omit the details but our results are readily
extended to the case P(I = 0) > 0. Note, however, that we do allow for the possibility that
P(I =∞) > 0; if an infectious individual has infinite infectious period then, almost surely,
that individual makes infectious contact with every member of each clique it belongs to.

In order to study properties of the epidemic on a graph, G say, we introduce the Epi-
demic Generated Graph, which is a directed graph constructed as follows. If G is undirected
then make it directed by replacing every edge by two edges connecting the same vertices
but in opposite directions. Assign every vertex i in G an independent realisation, xi, of the
random variable I. Now thin G by deleting, independently, each (directed) edge emanat-
ing from vertex i with probability e−xi . Thus an edge starting at vi is deleted if infection
would not pass along it were vi to become infected during the epidemic. The set of vertices
that can be reached in the Epidemic Generated Graph from an initially infectious vertex
v0 (including v0 itself) is distributed as the set of ultimately recovered individuals. The
set of vertices from which there is a path in the Epidemic Generated Graph to vertex v0,
including v0 itself, is said to be the susceptibility set of v0 [3, 5]. If one of the vertices in
the susceptibility set of v0 is the initially infectious individual, then v0 will be ultimately
recovered in the epidemic.

3 Main results and heuristics

3.1 Introduction

In this section we outline the main results of the paper, together with their heuristic
explanations. In Section 3.2, we explain how the early stages of an SIR epidemic on a
random intersection graph may be approximated by a (forward) branching process, yielding
a threshold parameter R∗ (see (3.1)) for the epidemic and the approximate probability
that such an epidemic becomes established when the population size n is large. Unless the
infectious period I is constant, this branching process is multitype, its type space being
the support of I and hence in general uncountable. This infinite type branching process
is studied separately in Section 4. In Section 3.3, we show how the susceptibility set of
an individual may be approximated by a (backward) branching process, which is single-
type even if I is not constant. Furthermore, we explain why, if n is large, the proportion
of the population that is ultimately infected by an epidemic that becomes established is
approximately the probability that the backward branching process avoids extinction. The
above approximations are made fully rigorous by considering SIR epidemics on a sequence of
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random intersection graphs, indexed by the population size n, and proving associated limit
theorems. These theorems are stated in Section 3.4 and proved in Section 5. Calculation
of extinction probabilities for the forward and backward branching processes requires exact
results concerning the final outcome and susceptibility sets for standard SIR epidemics in
closed homogeneously mixing populations, which are given in Appendix B.

3.2 Early stages of an epidemic

3.2.1 Fixed infectious period

Consider the epidemic model E (n)(A,B, I) defined in Section 2.3 and, for simplicity, suppose
first that the infectious period is constant, i.e. there exists ι > 0 such that P(I = ι) = 1. In
the limit as the population size n→∞, the initial infective, i∗ say, belongs to X ∼MP(A)
cliques, having sizes Y̌1 + 1, Y̌2 + 1, · · · , Y̌X + 1, where, given X, the random variables
Y̌1, Y̌2, · · · , Y̌X are mutually independent and (Y̌i|X) ∼ MP(B̃) (i = 1, 2, · · · , X). The
size biasing comes in because the probability of being part of a clique is proportional to
its weight. Moreover, apart from i∗, these cliques are almost surely disjoint as n → ∞.
The initial infective will trigger a local (within-clique) epidemic in each of the X cliques
it belongs to. The group of initial susceptibles in a single clique that are infected through
a local epidemic started by i∗ is called a litter of i∗. (Note that a litter may be empty,
i.e. if no susceptible in the corresponding clique is infected.) Let T (m) denote the size of
a typical litter, not counting the initial infective i∗, given that the clique has size m + 1.
(We call T (m) the size of a local epidemic or the size of a litter.) Then the total number
of individuals infected (excluding i∗) by the local epidemics in the cliques that i∗ belongs
to is distributed as

Cf =
X∑
i=1

T (Y̌i),

where T (Y̌1), T (Y̌2), · · · , T (Y̌X) are independent, since the infectious period is constant.
Now consider a typical individual, j∗ say, that is part of one of the litters of i∗. In the

limit as n→∞, (i) individual j∗ belongs to X̌ ∼MP(Ã) cliques, in addition to the clique
j∗ was infected through (i.e. the one also containing i∗), having sizes distributed indepen-
dently as MP(B̃) + 1 and (ii) apart from j∗, the X̌ + 1 cliques containing j∗ are disjoint.
(The size biasing here arises because, in the construction of G(n), the probability that a
vertex joins a given clique is proportional to the weight of that vertex; see Remark 2.4.)
Individual j∗ will trigger a local epidemic in each of the X̌ ‘new’ cliques it belongs to. The
total number of individuals infected (excluding j∗) in these X̌ local epidemics (the sum of
the sizes of the litters of j∗) is distributed as

C̃f =
X̌∑
i=1

T (Y̌i),

where, given X̌, the random variables T (Y̌1), T (Y̌2), · · · , T (Y̌X̌) are independent.
The construction of the epidemic process may be continued in the obvious fashion.

It follows that, if the population size n is large, the number of infected individuals in the
early stages of the epidemic process may be approximated by a (Galton-Watson) branching
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process, with one initial ancestor, and offspring distribution distributed as Cf in the initial
generation and as C̃f in all subsequent generations. This approximation is made precise
by using a coupling argument in Section 5.1. The coupling between the epidemic and
branching processes breaks down when a clique used to spread a local epidemic intersects
a previously used clique, which, with probability tending to one as n→∞, happens if and
only if the branching process does not go extinct.

Let
R∗ = E[C̃f ] = EY̌ [E[T (Y̌ )|Y̌ ]]E[X̌] = EY̌ [E[T (Y̌ )|Y̌ ]]E[Ã] (3.1)

and, for s ∈ [0, 1], let

fCf (s) = E[sC
f

] = fX(EY̌ [fT (Y̌ )|Y̌ (s)])

and
fC̃f (s) = E[sC̃

f

] = fX̌(EY̌ [fT (Y̌ )|Y̌ (s)]).

Let ρ be the survival probability of the above branching process (i.e. the probability that
it does not go extinct). Then, by standard branching process theory [20, Theorem 2.3.1],
if R∗ ≤ 1 then ρ = 0 and if R∗ > 1 then

ρ = 1− fCf (σ), (3.2)

where σ is the unique solution in [0, 1) of the equation

fC̃f (s) = s. (3.3)

The coupling of the epidemic and branching processes mentioned above implies that, if the
population size n is suitably large, R∗ is a threshold parameter for the epidemic process
and the probability that an epidemic initiated by a single infective becomes established
and leads to a major outbreak is given approximately by ρ. Note that in [11], the notation
R0 is used instead of R∗. We use the notation of [7, 8], because R0 is usually defined as
the expected number of new direct infections caused by an infectious individual in the first
stages of an epidemic [2, 15, 29], while in (3.1) all individuals infected by a local epidemic
are ‘assigned to’ the initial infectious individual in the clique.

3.2.2 General infectious period distribution

When the infectious period is not constant we can still approximate the epidemic E (n)(A,B, I)
by considering successive local epidemics as above, but the approximating process is no
longer a simple single-type branching process. There are two reasons for this. First, the
sizes of the litters of an individual, i∗ say, are not independent since the infectious period
of the initial infective in the corresponding cliques is the same (i.e. the infectious period
of i∗). Secondly, the infectious periods of infectives in a litter are not independent of the
size of that litter. These difficulties may be overcome by considering a multitype branching
process, in which individuals are typed by the length of their infectious period. If the
infectious period I has finite support then standard finite-type branching process theory
(see e.g. [20, Chapter 4]) may be used, so we now assume that I has infinite (possibly
uncountable) support. For ease of exposition we assume that I has support (0,∞].
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In view of these observations, we approximate the early stages of the epidemic E (n)(A,B, I)
by a multitype branching process

Zf = Zf (A,B, I) = (Zfi , i ∈ Z+),

defined as follows. The type space is (0,∞], with the type of an individual being given by
the infectious period of the corresponding individual in the epidemic process. For i ∈ Z+,
Zfi is a multiset of points in (0,∞] giving the types of individuals present in generation
i of the branching process. (Note that if the distribution of I has atoms, at infinity or
otherwise, then Zfi may contain repeated elements; on the other hand if the distribution
of I is continuous then, almost surely, all elements of Zfi are distinct and hence Zfi is
a set.) There is one initial ancestor, corresponding to the initial infective, i∗ say, in the
epidemic E (n)(A,B, I) and its type is distributed as I. As in the constant infectious period
case, i∗ belongs to X ∼ MP(A) cliques, having sizes distributed independently as Y̌ + 1,
where Y̌ ∼MP(B̃), and in Zf , the offspring of the initial ancestor corresponds to all the
individuals infected in the local epidemics triggered by i∗ in these X cliques, though now
of course we also keep track of their types (infectious periods). In the branching process,
a group of children corresponding to a litter in the epidemic process is also referred to as
a litter. The offspring of any individuals in a non-initial generation of Zf are defined in a
similar fashion, except X is replaced by X̌ ∼MP(Ã). Of course, the offspring of distinct
individuals in Zf are mutually independent.

The branching process Zf , which we call a forward branching process because it ap-
proximates the forward spread of the epidemic E (n)(A,B, I), is analysed in Section 4. Let
Z̃f be the multitype branching process defined analogously to Zf , except the offspring
distribution in all generations of Z̃f is that of the non-initial generations in Zf . Let ρ be
the probability that Zf survives and, for x ∈ (0,∞], let ρ̃(x) be the probability that Z̃f
survives given that the ancestor has type x. Let R∗ be defined as in (3.1), where T (m)
is distributed as the size of a local epidemic, initiated by a single infective in a clique of
size m+ 1, in which the infectious periods of infectives (including the initial one) are i.i.d.
copies of I. (An expression for EY̌ [E[T (Y̌ )|Y̌ ]] is given by equation (B.7) in Appendix B.2,
thus enabling R∗ to be computed.) Then ρ > 0 if and only if R∗ > 1 (see Theorem 4.2),
so R∗ is still a threshold parameter for the epidemic. Also, when R∗ > 1, ρ is given by an
infinite-type analogue of (3.2); see (4.2), which expresses ρ as the expectation of a func-
tional of ρ̃ with respect to the distribution I of x. Furthermore, ρ̃ satisfies a functional
equation (see (4.1)), which is essentially an infinite-type analogue of (3.3) and has at most
one non-zero solution (see Lemma 4.1).

3.3 Final outcome of an epidemic

Recall the definition of the susceptibility set of an individual given in Section 2.3. We
require also the concept of a local susceptibility set, which is defined in exactly the same
way as a susceptibility set but for an epidemic on a single clique. For m = 0, 1, · · · , let
S(m) denote the size of a typical local susceptibility set of an individual in a clique of size
m+ 1, where S(m) does not include the individual itself.

We may approximate the early growth of a susceptibility set of an individual, i∗ say, by
a branching process in much the same way as we did for the early stages of an epidemic. We
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consider first those individuals, not including i∗ itself, who belong to a local susceptibility
set of i∗. These are the offspring of i∗ in the branching process. We next repeat this process
for each individual, j∗ say, in the first generation of the branching process to obtain the
second generation, and so on. (When determining the offspring of j∗, we need only consider
its local susceptibility set in cliques other than that which contains i∗; any individual in j∗’s
local susceptibility set who is in that clique has already been counted as part of i∗’s local
susceptibility set.) In the limit as n→∞, this leads to a (backward) branching process

Zb = Zb(A,B, I) = (Zbi , i ∈ Z+)

having one initial ancestor, in which the number of offspring of the ancestor is distributed
as

Cb =
X∑
i=1

S(Y̌i),

and the number of offspring of any subsequent individual is distributed as

C̃b =
X̌∑
i=1

S(Y̌i),

where X, X̌, Y̌1, Y̌2, · · · are independent, X ∼ MP(A), X̌ ∼ MP(Ã) and Y̌i ∼ MP(B̃)
(i = 1, 2, · · · ).

Note that the local susceptibility set of an individual is independent of its infectious
period, so Zb is a single-type branching process; thus Zbi is determined by its cardinality
|Zbi |, in contrast to Zfi (which is single-type only if I is almost surely equal to a fixed
constant).

Let
Rb
∗ = E[C̃b] = EY̌ [E[S(Y̌ )|Y̌ ]]E[Ã] (3.4)

be the mean number of children of an individual in Zb who is not the ancestor and, for
s ∈ [0, 1], define the probability generating functions

fCb(s) = E[sC
b

] = fX(EY̌ [fS(Y̌ )|Y̌ (s)])

and
fC̃b(s) = E[sC̃

b

] = fX̌(EY̌ [fS(Y̌ )|Y̌ (s)]).

Denote by ρb = ρb(A,B, I) the survival probability of Zb. Then, by standard branching
process theory, if Rb

∗ ≤ 1 then ρb = 0 and if Rb
∗ > 1 then

ρb = 1− fCb(ξ), (3.5)

where ξ is the unique solution in [0, 1) of the equation

fC̃b(s) = s.

Note that an expression for EY̌ [fS(Y̌ )|Y̌ (s)] is given by equation (B.8) in Appendix B.2,

which enables ρb to be computed. In connection with this computation, also recall that
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fX(s) = φA(1 − s) and observe that fX̌(s) = φÃ(1 − s) = −φ′A(1 − s)/E[A], where φ′A is
the derivative of φA.

Before describing how the backward branching process Zb is used to study the final
outcome of an epidemic in a large population, we discuss briefly the relationship between
the forward and backward branching processes. In particular we note two important con-
sequences of this relationship.

Remark 3.1. Let G′ be the Epidemic Generated Graph (see Section 2.3) for an epidemic
on a single clique (G say) of m + 1 individuals, labelled 0, 1, · · · ,m. For distinct i, j ∈
{0, 1, · · · ,m}, let χi,j = 1 if there is a chain of directed edges from i to j in G′ and
let χi,j = 0 otherwise. Then T (m) and S(m) are distributed as

∑m
i=1 χ0,i and

∑m
i=1 χi,0,

respectively, so by symmetry, E[T (m)] = mP(χ0,1 = 1) and E[S(m)] = mP(χ1,0 = 1).
Further, by symmetry, P(χ0,1 = 1) = P(χ1,0 = 1), and it follows from (3.1) and (3.4) that
Rb
∗ = R∗. Thus we use only the notation R∗.

Remark 3.2. Consider the graphs G and G′ of the previous remark, and suppose that the
infectious period I is constant, say P(I = ι) = 1. Then G′ is obtained from the directed
version of G by deleting directed edges independently, each with probability e−ι. Thus,
if G′′ is obtained from G′ by reversing the direction of all arrows, then G′′ and G′ are
identically distributed, whence so are T (m) and S(m). It follows that in this case ρb = ρ.
This argument breaks down when I is not constant. In that case, apart from the branching
process Zf being multitype, the presence/absence of directed edges from a given vertex in G′

are not independent, whence T (m) and S(m) have different distributions. Thus generally
ρb 6= ρ.

Now we describe informally the relationship between the backward branching process
and the final outcome of an epidemic. (This description assumes that there is no vertex
with weight greater than log n; the full argument is given in Section 5.2.) Consider the
epidemic model E (n)(A,B, I) and suppose that the population size n is large. Choose
an initially susceptible individual uniformly at random from all initial susceptibles, j say,
and construct its susceptibility set on a generation basis as described above for Zb. Stop
this construction after tn = dlog log ne generations or when the susceptibility set process
goes extinct, whichever occurs first. The susceptibility set process can be coupled to the
backward branching process Zb so that, with probability tending to 1 as n→∞, the two
coincide over generations 0, 1, · · · , tn and their common size at generation tn is not greater
than nε for any ε > 0 (cf. the start of the proof of Lemma 5.8). Also, if R∗ > 1, there exists
c > 0 such that the probability that Zb

tn > (log n)c tends to ρb as n→∞ (cf. Lemma 5.8).
By symmetry, the initial infective in E (n)(A,B, I), i say, may be chosen by picking an

individual uniformly at random from the population excluding j. Thus, if j’s suscepti-
bility set process goes extinct before reaching generation tn then the probability that j’s
susceptibility set contains the initial infective (and hence that j is ultimately infected by
the epidemic) tends to zero as n→∞. Suppose instead that j’s susceptibility set process
does reach generation tn. Then we choose the initial infective i as above, construct the
forward epidemic process from i and determine whether or not the latter intersects the (at
least (log n)c and at most nε) individuals in generation tn of j’s partially constructed sus-
ceptibility set. If it does then j is ultimately infected by the epidemic, otherwise j remains
uninfected.
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Recall that the forward epidemic process originating from i is approximated by the
branching process Zf . If Zf goes extinct then, in the limit as n→∞, there are only finitely
many individuals infected in the epidemic and hence the probability that the epidemic
intersects generation tn of j’s partially constructed susceptibility set tends to zero. If Zf
does not go extinct then, by exploiting a lower bounding branching process for the epidemic
process, we show in Section 5.2 that, as n→∞, the epidemic process almost surely infects
Θ(n) individuals and hence the probability that it intersects generation tn of j’s partially
constructed susceptibility set tends to one.

The above implies that the asymptotic probability that an initial susceptible, chosen
uniformly at random, is ultimately infected by a major outbreak is ρb. Hence the asymptotic
expected proportion of the population ultimately infected by a major outbreak is also ρb.
Now consider two distinct initial susceptibles chosen uniformly at random, j1 and j2 say,
and construct their susceptibility sets on a generation basis as above, stopping each process
after tn generations or if it goes extinct. The two partially constructed susceptibility set
processes are asymptotically independent as n → ∞, which enables a weak law of large
numbers to be proved for the proportion of the population that is ultimately infected by a
major outbreak.

3.4 Limit theorems for SIR epidemics on random intersection
graphs

Let R(n) = R(n)(A,B, I) be the set of ultimately recovered vertices, including the sin-
gle initial infective, in the SIR epidemic E (n)(A,B, I) on the random intersection graph
G(n), constructed using the infectious period distribution I and the sequences (Ai, i ∈ N),
(Bj, j ∈ N) (as described in Section 2.2). Our focus is on the properties of |R(n)|, the num-
ber of ultimately recovered individuals in the epidemic. For a branching process, Zf say, let
|Zf | =

∑∞
i=0 |Z

f
i | denote its total size (total progeny), including the ancestor. Recall that

Zf = Zf (A,B, I) and Zb = Zb(A,B, I) are the (forward and backward) branching pro-
cesses, which approximate the epidemic process and the process exploring a susceptibility
set, respectively. Recall also that ρ and ρb are their respective survival probabilities.

Our first theorem establishes the precise sense in which the forward process approxi-
mates the early stages of an epidemic.

Theorem 3.3. For all k ∈ N,

lim
n→∞

P(|R(n)| = k) = P(|Zf | = k).

The next result establishes the connection between the backward process and the pro-
portion of individuals ultimately infected.

Theorem 3.4. Suppose that R∗ > 1. Then for every 0 < ε < ρb,

lim
n→∞

P
(∣∣∣∣ |R(n)|

n
− ρb

∣∣∣∣ < ε

)
= ρ.

Theorems 3.3 and 3.4 are proved in Sections 5.1 and 5.2, respectively. Finally, we use
these two results to establish the following convergence in distribution of the proportion of
individuals ultimately infected in the epidemic process.
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Theorem 3.5. Let TF be a random variable with P(TF = ρb) = ρ = 1− P(TF = 0). Then,
as n→∞,

n−1|R(n)| ⇒ TF .

Proof. First note that Theorem 3.3 implies that, for any ε > 0 and any k ∈ N,

lim inf
n→∞

P
(
n−1|R(n)| ≤ ε

)
≥ P(|Zf | ≤ k),

whence, letting k →∞,
lim inf
n→∞

P
(
n−1|R(n)| ≤ ε

)
≥ 1− ρ. (3.6)

Suppose that R∗ ≤ 1. Then ρ = 0 and (3.6) implies that

n−1|R(n)| ⇒ 0 as n→∞. (3.7)

On the other hand, suppose that R∗ > 1, so ρ > 0 and ρb > 0. Then Theorem 3.4 implies
that, for 0 < ε < ρb, lim supn→∞ P

(
n−1|R(n)| ≤ ε

)
≤ 1 − ρ, which, together with (3.6),

yields that, for such ε,
lim
n→∞

P
(
n−1|R(n)| ≤ ε

)
= 1− ρ.

The theorem then follows upon combining this observation with (3.7) and Theorem 3.4.

4 Properties of the forward branching process

In this section we study the survival probability of the branching process Zf introduced
in Section 3.2. Recall that individuals in Zf are typed by the length of the infectious
period of the corresponding individual in the epidemic process. There is one ancestor, i∗

say, whose type is distributed as I and who belongs to X ∼ MP(A) cliques. (That is,
the corresponding individual in the epidemic process E (n)(A,B, I) belongs to X ∼MP(A)
cliques.) Those cliques have sizes that are independent and identically distributed as 1+ Y̌ ,
where Y̌ ∼ MP(B̃). The offspring of the ancestor correspond to the individuals who, in
the corresponding epidemic process, are infected by the local epidemics triggered by i∗ in
the X cliques it belongs to. The offspring of i∗ are grouped into litters with each litter
corresponding to a clique of i∗. Note that some litters might be empty (if the epidemic fails
to spread further into some cliques to which i∗ belongs). The offspring of any subsequent
individual is defined similarly, except that such an individual belongs to X̌ ∼ MP(Ã)
cliques in addition to the clique it was infected through. The type space for Zf is given
by the support of I, which for ease of exposition we assume is (0,∞]. Extension to cases
where I is supported on a proper subset of (0,∞] is straightforward.

We investigate the survival probability of Zf using functionals defined on measurable
test functions h : (0,∞] → [0, 1] as follows (cf. [9, 10]). Let h(x) be a given test function.
Suppose that individuals in Zf are marked independently, with an individual of type x
being marked with probability h(x). Let F (h)(x) be the probability that an ancestor of
type x has at least one marked child in a given litter and let Φ(h)(x) be the probability that
an ancestor of type x has at least one marked child. Recall that the probability generating
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function of X is given by fX(s) = φA(1 − s) (s ∈ [0, 1]), where φA(θ) = E[e−θA] is the
moment generating function of A. It follows that

Φ(h)(x) = 1− φA(F (h)(x)).

Define the functional Φ̃(h)(x) similarly for the branching process Z̃f , defined in the final
paragraph of Section 3.2.2; thus

Φ̃(h)(x) = 1− φÃ(F (h)(x)).

Let ρi be the probability that generation i of the branching process Zf is non-empty,
that is ρi = P(|Zfi | > 0). By definition ρi is non-increasing, so ρ = limi→∞ ρi exists
and is the probability of survival of the branching process. Let ρ̃i(x) be the probability
that the lineage of an individual (i.e. the sub-process consisting of that individual and all
its descendants), which is not the ancestor and has type x, survives for at least i further
generations and let ρ̃(x) = limi→∞ ρ̃i(x) be the probability that this lineage survives forever.
Note that ρ̃1(x) = Φ̃(1)(x), where 1 is the function which is equal to 1 on its entire domain.
It is clear that ρ̃(x) satisfies

ρ̃(x) = Φ̃(ρ̃)(x), (4.1)

since in order for the lineage of an individual to survive, at least one of the children of that
individual must have a surviving lineage. Furthermore,

ρ =

∫
(0,∞]

Φ(ρ̃)(x)P(I ∈ dx) = E[Φ(ρ̃)(I)]. (4.2)

Let Φ̃i be the i-th iterate of Φ̃ and note that ρ̃i(x) = Φ̃i(1)(x). The functionals Φ(h)(x)
and Φ̃(h)(x) are monotonic increasing in h (e.g. if h1(x) ≥ h2(x) for all x ∈ (0,∞] then
Φ(h1)(x) ≥ Φ(h2)(x) for all x ∈ (0,∞]). Therefore, ρ̃(x) = limi→∞ Φ̃i(1)(x) is the pointwise
maximal solution of (4.1). Note that, since Zf is irreducible, either ρ̃(x) = 0 for all
x ∈ (0,∞] or ρ̃(x) > 0 for all x ∈ (0,∞]. The following lemma is proved and discussed in
Appendix A.

Lemma 4.1. There is at most one non-zero solution ρ̃(x) of (4.1).

Now recall the definition of R∗ from (3.1), where Y̌ ∼MP(B̃) and as before let T (m)
denote the size of a litter, in a clique of m initial susceptibles, in which the infectious periods
of infectives are i.i.d. copies of I. It is convenient here to show explicitly the dependence
on I and write T (m) = T (m, I), so

R∗ = EY̌ [E[T (Y̌ , I)|Y̌ ]]E[Ã].

Theorem 4.2. The survival probability satisfies ρ > 0 if and only if R∗ > 1.

Proof. Suppose first that R∗ > 1. For k ∈ Z+, let L(k, I) = E[T (Y̌ , I)|Y̌ = k]. Then there
exists K ∈ N such that

E[Ã]
K∑
k=0

L(k, I)P(Y̌ = k) > 1. (4.3)
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For ε > 0, let Iε be the discrete random variable obtained from I by Iε = εbI/εc (with
the convention that b∞c = ∞) and note that Iε is stochastically smaller than I. Since
L(k, I) depends on the realisation of an Epidemic Generated Graph defined on a finite
clique, there exists ε > 0 such that

E[Ã]
K∑
k=0

L(k, Iε)P(Y̌ = k) > 1.

Analagously to the derivation of (4.3), there exists K ′ε ∈ N such that for I ′ε = Iε11(Iε 6∈
(K ′ε,∞)), we have

E[Ã]
K∑
k=0

L(k, I ′ε)P(Y̌ = k) > 1. (4.4)

Consider the branching process Z̃f (A,B, I ′ε), which has finitely many types and is
irreducible. Let M̃ be the mean offspring matrix of Z̃f (A,B, I ′ε). Note that whether or
not an individual in a clique becomes infected is independent of that individual’s own
infectious period. It follows that the rows of M̃ are each proportional to the probability
mass function of I ′ε, so M̃ has rank one and the maximal eigenvalue of M̃ is given by its
trace, which is easily seen to be equal to the left hand side of (4.4) with K replaced by ∞.
Therefore, if R∗ > 1, the branching process Z̃f (A,B, I) dominates the irreducible finite-
type supercritical branching process Z̃f (A,B, I ′ε), which we know from standard theory [20,
Theorem 4.2.2] has a strictly positive probability of survival. Thus ρ̃(x) > 0 for all x ∈
(0,∞]; equation (4.2) then implies that ρ > 0.

For R∗ ≤ 1 we use a similar argument to [10]. Suppose that R∗ ≤ 1 and that ρ̃(x) > 0 for
some (and thus all) x ∈ (0,∞]. Recall that Φ̃(ρ̃)(x) is the probability that, in Z̃f (A,B, I)
and with individuals of type x being marked with probability ρ̃(x), an individual of type
x has at least one marked child. Note that this probability is strictly smaller than the
expectation of the number, TM(x, ρ̃) say, of marked children of such an individual. Let
T (x,m, I) denote the size of a single-clique epidemic with m initial susceptibles and a
single initial infective which has infectious period x. Then, again exploiting the fact that
whether or not an individual is infected is independent of its infectious period, we find that

E[TM(x, ρ̃)] = E[Ã]EY̌ [E[T (x, Y̌ , I)|Y̌ ]]E[ρ̃(I)],

whence, recalling (4.1),

ρ̃(x) = Φ̃(ρ̃)(x) < E[Ã]EY̌ [E[T (x, Y̌ , I)|Y̌ ]]E[ρ̃(I)]. (4.5)

Note that if x is a realisation of a random variable I0 that is distributed as I, then
E[T (m, I)] = EI0 [E[T (I0,m, I)|I0]] and (4.5) implies that E[ρ̃(I)] < R∗E[ρ̃(I)]. It then
follows that R∗ > 1, which is a contradiction. Thus, if R∗ ≤ 1 then ρ̃(x) is identically zero
on the support of I and it then follows from (4.2) that ρ = 0.

5 Proofs

In this section we give formal proofs of Theorems 3.3 and 3.4. Recall the probability space
(Ω,F , ν) defined in Section 2.2, where Ω is the product space of non-negative real-valued
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infinite sequences (Ai, i ∈ N) and (Bj, j ∈ N) and ν is the appropriate (product) measure
determined by the distributions of A and B. In the proofs we consider processes which
depend on ω ∈ Ω, that is on the sequences (Ai, i ∈ N) and (Bi, i ∈ N). The measure
governing a process conditioned on ω is denoted by Pω and the corresponding expectation
by Eω. We use the notation Xn

pν−−−→
n→∞

X to denote that Xn converges in probability to

X as n → ∞, with respect to the measure ν. That is, Xn
pν−−−→

n→∞
X means that for every

ε > 0, δ > 0, we have ν(|Xn−X| > ε) < δ for all sufficiently large n ∈ N. In particular, we

often use the notation Pω(Xn ∈ A)
pν−−−→

n→∞
P(X ∈ A), which is to be interpreted as meaning

that, for a subset A of the state space of Xn and X, we have that for every ε > 0,∫
ω∈Ω

11(|Pω(Xn ∈ A)− P(X ∈ A)| > ε)ν(dω)→ 0 as n→∞.

Additionally, we use the notation Xn = Opν (g(n)) if there exists a constant C > 0 such

that Pω(Xn < Cg(n))
pν−−−→

n→∞
1 and Xn = Θpν (g(n)) if there exist constants 0 < c < C such

that Pω(cg(n) < Xn < Cg(n))
pν−−−→

n→∞
1.

We prove the following conditioned versions of Theorems 3.3 and 3.4, in whichR(n)(ω, I)
denotes the set of ultimately recovered vertices, including the single initial infective, in an
SIR epidemic (as defined in Section 2.3) on the random intersection graph G(n), constructed
using the infectious period distribution I and the sequences (Ai, i ∈ N), (Bj, j ∈ N) denoted
by ω ∈ Ω.

Theorem 5.1. For k ∈ N, we have

Pω(|R(n)(ω, I)| = k)
pν−−−→

n→∞
P(|Zf (A,B, I)| = k).

Theorem 5.2. Suppose that R∗ > 1. Then for every 0 < ε < ρb(A,B, I),

Pω
(∣∣n−1|R(n)(ω, I)| − ρb(A,B, I)

∣∣ < ε
) pν−−−→

n→∞
ρ(A,B, I).

Proofs of Theorems 3.3 and 3.4. Note that, for fixed k ∈ N, the sequence of random vari-
ables (Pω(|R(n)(ω, I)| = k), n ∈ N) is uniformly integrable, so Theorem 3.3 follows imme-
diately from Theorem 5.1 (and [18, Theorem 7.10.3]), by taking expectations with respect
to the measure ν. Theorem 3.4 follows similarly from Theorem 5.2.

5.1 Proof of Theorem 5.1

In this proof we use three processes,

• the branching process Zf = Zf (A,B, I),

• the branching process Z(n) = Zf (A(n), B(n), I), defined similarly to Zf (A,B, I) but
with A and B replaced respectively by A(n) and B(n), defined in (2.5) and (2.6),

• the exploration process of the Epidemic Generated Graph on G(n), denoted by R(n) =
R(n)(ω, I) = (R(n)

0 ,R(n)
1 , · · · ).
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In the exploration process, R(n)
0 denotes the initially infective vertex v0, R(n)

1 denotes the

subset of vertices in V (n)\E (n)
0 that in the Epidemic Generated Graph have an edge to them

from v0, R(n)
2 denotes the subset of vertices in V (n) \ (R(n)

0 ∪ R
(n)
1 ) that in the Epidemic

Generated Graph have an edge to them from at least one member of R(n)
1 , and so on. With

slight abuse of notation we now use R(n) for the exploration process, where previously it
was the set of ultimately recovered vertices in E (n). As with the branching process Zf ,
|R(n)| =

∑∞
i=0 |R

(n)
i | is the total number of ultimately recovered vertices; note that this has

precisely the same meaning as in Section 3.4.
To prove Theorem 5.1 we first show that the distribution of the total size of Z(n) is ap-

proximately that of Zf , then that the distribution of the total size of R(n) is approximately
that of Z(n).

Lemma 5.3. For k ∈ N, it holds that Pω(|Z(n)| = k)
pν−−−→

n→∞
P(|Zf | = k).

Proof. Recall that a litter in a branching process is a group of children corresponding
with the number of individuals infected in a local epidemic in one clique, excluding the
initial susceptible. Let the total number of (possibly empty) litters in Zf and Z(n) be
denoted by H and H(n), respectively. Note that, using [18, Theorem 7.2.19], if Xn ⇒ X,
then MP(Xn) ⇒ MP(X). Recall further that A(n) ⇒ A and B(n) ⇒ B as n → ∞.
These latter convergence results also hold for the size-biased variants, as shown just below
equation (2.1). It follows that, as n → ∞, the number and sizes of litters spawned by
a typical individual in Z(n) converge in distribution to those of a corresponding typical
individual in Zf . Hence, for k ∈ N and l ∈ Z+,

Pω(|Z(n)| = k,H(n) = l)
pν−−−→

n→∞
P(|Zf | = k,H = l).

Therefore, for every l ∈ N, we have

Pω(|Z(n)| = k,H(n) ≤ l)
pν−−−→

n→∞
P(|Zf | = k,H ≤ l). (5.1)

Note that

Pω(|Z(n)| = k) = Pω(|Z(n)| = k,H(n) ≤ l) + Pω(|Z(n)| = k,H(n) > l) (5.2)

and
P(|Zf | = k) = P(|Zf | = k,H ≤ l) + P(|Zf | = k,H > l).

Fix k ∈ N and ε > 0. Let Hk be the total number of litters spawned by the first k
vertices evaluated in the branching process Zf , so Hk is distributed as X0 + X̌1 + X̌2 +
· · ·+ X̌k−1, where X0, X̌1, X̌2, · · · , X̌k−1 are independent, X0 ∼MP(A) and X̌i ∼MP(Ã)
(i = 1, 2, · · · , k − 1). Now, for any l ∈ Z+,

P(|Zf | = k,H > l) = P(|Zf | = k,Hk > l) ≤ P(Hk > l).

Further, Hk is a proper random variable, so P(Hk > l) ↓ 0 as l → ∞. Thus, there exists
L = L(k, ε) ∈ N, such that for all l > L,

P(|Zf | = k) < P(|Zf | = k,H ≤ l) + ε/3. (5.3)
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Let H
(n)
k be the total number of litters in the first k vertices evaluated in the branching

process Z(n). Then, H
(n)
k ⇒ Hk, since MP(A(n)) ⇒MP(A) and MP(Ã(n)) ⇒MP(Ã),

whence Pω(H(n) > l)
pν−−−→

n→∞
P(H > l), for any l ∈ Z+. Arguing similarly to above and

recalling (5.2), it follows that, given any δ > 0, there exists L′ = L′(k, ε, δ) ∈ N, such that
for all l > L′,

ν
(
Pω(|Z(n)| = k) < Pω(|Z(n)| = k,H(n) ≤ l) + ε/3

)
> 1− δ/2 (5.4)

for all sufficiently large n.
Fix δ > 0 and choose l > max(L,L′). Then (5.1) implies that

ν
(∣∣Pω(|Z(n)| = k,H(n) ≤ l)− P(|Zf | = k,H ≤ l)

∣∣ < ε/3
)
> 1− δ/2, (5.5)

for all sufficiently large n. Using the triangle inequality, we obtain∣∣Pω(|Z(n)| = k)− P(|Zf | = k)
∣∣ ≤ ∣∣Pω(|Z(n)| = k)− Pω(|Z(n)| = k,H(n) ≤ l)

∣∣
+
∣∣Pω(|Z(n)| = k,H(n) ≤ l)− P(|Zf | = k,H ≤ l)

∣∣
+
∣∣P(|Zf | = k)− P(|Zf | = k,H ≤ l)

∣∣ ,
whence, noting that the final term is independent of ω,

ν
(∣∣Pω(|Z(n)| = k)−P(|Zf | = k)

∣∣ ≥ ε
)

≤ ν
(
Pω(|Z(n)| = k) ≥ Pω(|Z(n)| = k,H(n) ≤ l) + ε/3

)
+ ν
(∣∣Pω(|Z(n)| = k,H(n) ≤ l)− P(|Zf | = k,H ≤ l)

∣∣ ≥ ε/3
)

+ 11
(
P(|Zf | = k) ≥ P(|Zf | = k,H ≤ l) + ε/3

)
.

By choosing l large enough, it follows, using (5.3), (5.4) and (5.5), that for all sufficiently
large n,

ν
(∣∣Pω(|Z(n)| = k)− P(|Zf | = k)

∣∣ ≥ ε
)
≤ δ/2 + δ/2 + 0 = δ

and the lemma then follows.

Lemma 5.4. For k ∈ N, Pω(|Z(n)| ≤ k)− Pω(|R(n)| ≤ k)
pν−−−→

n→∞
0.

Proof. The proof follows from a standard coupling argument, described below. Firstly
though, for each n ∈ N, let v

(n)
0 be a vertex chosen uniformly at random from V (n) and

let v
(n)
1 , v

(n)
2 , · · · be independently chosen vertices from V (n), where the probability that a

given vertex is chosen is proportional to its A-weight. Let a
(n)
0 , a

(n)
1 , · · · be the respective A-

weights of v
(n)
0 , v

(n)
1 , · · · . Let I(n)

0 be the type assigned to vertex v
(n)
0 . Let v

′(n)
1 , v

′(n)
2 , · · · be

independently chosen vertices (representing cliques) from V ′(n) where the probability that

a given vertex is chosen is proportional to its B-weight. The B-weights of v
′(n)
1 , v

′(n)
2 , · · ·

are denoted by b
(n)
1 , b

(n)
2 , · · · , respectively. Let the random variable

T (n) = min(i ∈ N : v
(n)
i = v

(n)
j for some j < i)
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be the smallest index at which a vertex from V (n) is chosen a second time. Similarly, define

T ′(n) = min(i ∈ N : v
′(n)
i = v

′(n)
j for some j < i).

The constructions of Z(n) and R(n) are coupled as follows. The ancestor of Z(n) spawns
a P(a

(n)
0 ) number of (possibly empty) litters, l′ say. The cliques that the initial infective

in R(n) belongs to are given by v
′(n)
1 , v

′(n)
2 , · · · , v′(n)

l′ , which might contain duplicates;

the B-weights associated with these litters are b
(n)
1 , b

(n)
2 , · · · , b(n)

l′ . If T ′(n) > l′, then there

are no duplicates amongst v
′(n)
1 , v

′(n)
2 , · · · , v′(n)

l′ and the processes stay coupled. If not, the
construction can be continued but the details are not important for our purposes.

If the coupling continues the sizes of the litters (recall that litters are defined both for the
epidemic process and the branching process) are then determined. For each i = 1, 2, · · · , l′,
the size of litter i is distributed as the number of initially susceptible individuals which are
ultimately infected by a local epidemic in a group with one initially infectious individual,
having infectious period I(n)

0 , and a P(b
(n)
i ) distributed number of initially susceptible

individuals. The litter sizes are all independent. Say that the total number of vertices in
the l′ litters is l, then they get A-weights a

(n)
1 , a

(n)
2 , · · · , a(n)

l and types I(n)
1 , I(n)

2 , · · · , I(n)
l ,

which are i.i.d. and distributed as I. If l < T (n) the coupling continues and the generation
1 vertices are v

(n)
1 , v

(n)
2 , · · · , v(n)

l . The coupling now proceeds in the obvious way. Note that
in this construction we have not yet decided which vertices are in the same clique (of the

random intersection graph) as v
(n)
1 but are not infected by the local epidemic.

Let H(n) be as in the proof of Lemma 5.3 and let H(∗n) be the corresponding number
for R(n). We need to prove that for k ∈ N and l ∈ Z+,

Pω(|Z(n)| = k,H(n) = l)− Pω(|R(n)| = k,H(∗n) = l)
pν−−−→

n→∞
0,

and then deduce the statement of the lemma as in the latter part of the proof of Lemma 5.3.
Note that the coupling gives

Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l) (5.6)

= Pω(|R(n)| = k,H(∗n) = l, T (n) > k, T ′(n) > l).

Furthermore, letting C(n)(k, l) = {T (n) ≤ k} ∪ {T ′(n) ≤ l}, we have

Pω(|Z(n)| = k,H(n) = l) = Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l)

+ Pω(|Z(n)| = k,H(n) = l, C(n)(k, l)).

Note that the second term on the right hand side of this expression is bounded above by
Pω(C(n)(k, l)).

Recall from Section 2.2 that µ = E[A] = αE[B] < ∞, which implies that the total
weight of vertices in V (n) with weight exceeding log n is ν-almost surely o(n). (To show
this, note that, since µ <∞, for any N > 0,

n−1

n∑
i=1

Ai11(Ai > N)
a.s.−−→ E[A11(A > N)] as n→∞
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and E[A11(A > N)]→ 0 as N →∞.) A similar result holds for the weights of the vertices

in V ′(n). Hence, for every k, l ∈ N, the probability that both max(a
(n)
i : 0 ≤ i ≤ k) ≤ log n

and max(b
(n)
j : 1 ≤ j ≤ l) ≤ log n converges to 1 as n → ∞. Thus, the total weight of

the first k vertices and the first l litters chosen in the branching process is ν-almost surely
O(log n). By a birthday problem argument we deduce that Pω(C(n)(l, k))

pν−−−→
n→∞

0. (Note

that if Mn(k) is the number of distinct pairs (i, j) with 0 ≤ i < j ≤ k and v
(n)
i = v

(n)
j , then

under the above restrictions, Eω[Mn(k)] ≤ k(k−1)
2

logn
L(n)

pν−−−→
n→∞

0). Thus, for every k, l ∈ N,

Pω(|Z(n)| = k,H(n) = l)− Pω(|Z(n)| = k,H(n) = l, T (n) > k, T ′(n) > l)
pν−−−→

n→∞
0.

Similarly, we deduce that, again for all k, l ∈ N,

Pω(|R(n)| = k,H(∗n) = l)− Pω(|R(n)| = k,H(∗n) = l, T (n) > k, T ′(n) > l)
pν−−−→

n→∞
0;

which, together with (5.6), yields the lemma.

Theorem 5.1 follows immediately by combining Lemmas 5.3 and 5.4.

5.2 Proof of Theorem 5.2

Before considering susceptibility sets and backward branching processes, we prove the fol-
lowing extension of Lemma 5.3 which is required later in this section.

Lemma 5.5. ρ(A(n), B(n), I)
pν−−−→

n→∞
ρ(A,B, I).

Proof. For every k ∈ Z+, define the random variable

Ik(I) =


2−kb2kIc if I < 2k,

2k if I ∈ [2k,∞),

∞ if I =∞.

That is, Ik is a random variable which can take only finitely many values and for j =
0, 1, · · · , 4k − 1,

P(Ik = j2−k) = P
(
I ∈ [j2−k, (j + 1)2−k)

)
,

while P(Ik = 2k) = P(I ∈ [2k,∞)) and P(Ik = ∞) = P(I = ∞). It is clear that Ik ⇒ I
as k →∞ and that Ik is stochastically smaller than Ik+1 for all k ∈ Z+.

For non-negative random variables X and Y , the function ρ̃(X, Y, Ik) is pointwise non-
decreasing in k, since it is the survival probability of a branching process and (stochasti-
cally) increasing the distribution of the infectious periods, and thus also of the offspring
distribution, cannot decrease the survival probability of the process. By monotonicity we
have that limk→∞ ρ̃(X, Y, Ik) exists pointwise, and by the monotone convergence theorem
this limit satisfies (4.1) for ρ̃(X, Y, I). By Lemma 5.3 we know that for every k ∈ N,

Pω(|Z(n)| > k)
pν−−−→

n→∞
P(|Zf | > k). This implies that for every ε > 0 and δ > 0, there exists

N0 ∈ N such that for n > N0, we have

ν
(
ρ(A(n), B(n), I) < ρ(A,B, I) + ε

)
> 1− δ/2. (5.7)
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Furthermore, for every ε > 0, there exists K ∈ N such that for k > K, we have

ρ(A,B, Ik) > ρ(A,B, I)− ε/2.

Similarly, for every ε > 0, δ > 0 and k ∈ N, there exist Nk ∈ N such that for n > Nk, we
have

ν
(
ρ(A(n), B(n), Ik) > ρ(A,B, Ik)− ε/2

)
> 1− δ/2,

while for every k ∈ N (and ω ∈ Ω), ρ(A(n), B(n), I) ≥ ρ(A(n), B(n), Ik). Combining these
statements establishes that, for every ε > 0 and δ > 0, there exists N ∈ N such that for all
n > N , we have

ν
(
ρ(A(n), B(n), I) > ρ(A,B, I)− ε

)
> 1− δ/2.

Combining this with (5.7) completes the proof of the lemma.

In order to prove Theorem 5.2, we investigate the susceptibility sets of two vertices
chosen uniformly at random in the subgraph Ĝ(n) (of G(n)), which is defined as follows. Let
Â(n) be constructed from A(n) by ignoring all vertices in V (n) and V ′(n) that have weights
larger than log n and ignoring all edges that are incident to such vertices. The graph Ĝ(n)

is constructed from Â(n) in the same way that G(n) is constructed from A(n).
We can create a realisation of Â(n) as follows. Define the vertex sets V̂ (n) = (vi ∈ V (n) :

Ai ≤ log n) and V̂ ′(n) = (v′j ∈ V ′(n) : Bj ≤ log n). Conditional upon the weights of the

vertices in A(n), (i) vertices vi ∈ V̂ (n) and v′j ∈ V̂ ′(n) share in Â(n) a P(AiBj/(µn)) number
of edges and (ii) the number of edges between distinct pairs of vertices are independent.
Let

L̂(n) =
∑

i:vi∈V̂ (n)

Ai and

L̂′(n) =
∑

j:v′j∈V̂ ′(n)
Bj.

Then the degree of vertex vi ∈ V̂ (n) in Â(n) is P(AiL̂
′(n)/(µn)) and the degree of v′j ∈ V̂ ′(n) is

P(BjL̂
(n)/(µn)). We construct from Â(n) an identically distributed copy of A(n) by adding

the vertices from V (n) \ V̂ (n) and V ′(n) \ V̂ ′(n) and, if vi ∈ V (n) and v′j ∈ V ′(n) are not both in

Â(n), letting vi and v′j share a P(AiBj/(µn)) number of newly-added edges, independently
of the number of edges between other vertices.

We construct a coupling of two independent branching processes and the susceptibility
sets of v1 and v2 in Ĝ(n) (which by exchangeability is equivalent to choosing two distinct
vertices uniformly at random), assuming that A1, A2 ≤ log n. We therefore define (cf. equa-

tions (2.3)–(2.6)) Â
(n)
i = Ai 11(Ai ≤ log n)L̂′(n)/(µn) and B̂

(n)
i = Bi 11(Bi ≤ log n)L̂(n)/(µn);

and let ĉ
(n)
A =

∑n
i=1 11(Ai ≤ log n) and ĉ

(n)
B =

∑bαnc
i=1 11(Bi ≤ log n). The random variables

Â(n) and B̂(n) are defined by

Pω(Â(n) ≤ x) = |{1 ≤ i ≤ ĉ
(n)
A : Â

(n)
i ≤ x}|/ĉ(n)

A (x ≥ 0) and

Pω(B̂(n) ≤ x) = |{1 ≤ i ≤ ĉ
(n)
B : B̂

(n)
i ≤ x}|/ĉ(n)

B (x ≥ 0).
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The processes through which the construction of the susceptibility set of vi (i ∈ {1, 2})
takes place are denoted by

Ŝ i = Ŝ i(Â(n), B̂(n), I) = (Ŝ ij, j ∈ Z+).

The two independent branching processes are Zb,i = Zb,i(Â(n), B̂(n), I), for i ∈ {1, 2},
where Â(n) and B̂(n) are as above. The corresponding susceptibility set processes in G(n)

are denoted by S i for i ∈ {1, 2}. When no confusion is possible, we sometimes suppress
the reference to the starting vertex i.

We compute the probability that the susceptibility sets of two vertices in Ĝ(n) survive
until at least generation

tn = dlog log ne.
We show that, with probability tending to 1 as n → ∞, if it survives, the total number
of individuals in the branching process Zb(Â(n), B̂(n), I) in generations 0, 1, · · · , tn is of
order O(nε), for any ε > 0, whence a standard coupling argument shows that, again with
probability tending to 1 as n → ∞, the susceptibility process Ŝ and its approximating
branching process Zb(Â(n), B̂(n), I) coincide over generations 0, 1, · · · , tn; see the start of
the proof of Lemma 5.8, which shows that for large n, if the susceptibility set process
survives until generation tn, its size will then be of order O((log n)c), for some c > 0.

Next, we show that, given any ε > 0, there exists K ∈ N such that the probability that
the tn-th generation of an individual’s susceptibility set is empty on Ĝ(n) and the total
size of its susceptibility set on G(n) exceeds K is less than ε for all sufficiently large n; see
Lemma 5.10. We then explore the forward process in G(n), where we ignore the vertices
and cliques already explored in the two backward processes. We show that if the epidemic
size is not Θ(1), then, with probability tending to 1 as n → ∞, it is Θ(n). After this we
attempt to connect the forward process with the generation tn vertices of the backward
processes and show that, in the event of a large outbreak, the probability that at least 1
of the vertices in generation tn of a susceptibility set (if this generation is not empty) is
ultimately recovered converges to 1 as n→∞.

We use the following lemmas.

Lemma 5.6. Let 0 < ε < 3/e − 1. For k ∈ N, let (Xi(k), i ∈ N) be a sequence of i.i.d.
P((1 + ε) log k) random variables. Then, for every C > 0,

P( max
1≤i≤bCkc

Xi(k) ≤ 3 log k)→ 1 as k →∞.

Proof. Since ek =
∑∞

i=0 k
i/i!, we have k! > kke−k. Then

P(X1(k) > 3 log k) =
∞∑

j=d3 log ke

((1 + ε) log k)j

j!

1

k1+ε

≤ 1

k1+ε

∞∑
j=d3 log ke

((1 + ε) log k)j

jje−j

<
1

k1+ε

∞∑
j=d3 log ke

((1 + ε)e/3)j

<
3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3).
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The probability that none out of bCkc independent copies of X1(k) exceeds 3 log k is thus
given by

(1− P(X1(k) > 3 log k))bCkc >

(
1− 3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3)

)Ck
> 1− Ck 3

3− (1 + ε)e
k−1−ε+3(1+log[1+ε]−log 3)

= 1− 3C

3− (1− ε)e
k3(1+log[1+ε]−log 3)−ε,

which converges to 1 as k →∞, since 0 < ε < 3/e− 1.

Recall that the distance between two vertices in a graph is the number of edges in the
shortest path connecting those vertices.

Lemma 5.7. For ν-almost all ω ∈ Ω, the probability that the total number and the total
weight of vertices within distance 2tn of the set {v1, v2} in Â(n) are both smaller than n1/3

converges to 1 as n→∞.

Proof. All vertices in Â(n) have weight at most log n, so their degrees in Â(n) are stochasti-
cally dominated by i.i.d. P(log nmax(L̂(n), L̂′(n))/(µn)) random variables. For every ε > 0,
we have by the strong law of large numbers that 11(max(L̂(n), L̂′(n))/(µn) < 1 + ε)

a.s.−−→ 1
as n → ∞. We know by Lemma 5.6 that, with probability tending to 1 as n → ∞, none
of the at most n+ bαnc vertices in Â(n) has degree exceeding 3 log n. Thus the number of
vertices within graph distance 2tn of v1 and v2 is, with probability tending to 1 as n→∞,
bounded above by

2
2tn∑
k=1

(3 log n)k = O((3 log n)2tn+1).

Since 2tn + 1 = 2dlog log ne+ 1 < 2 log log n+ 3, we have

(3 log n)2tn+1 < (3 log n)3+2 log logn

= (3 log n)3e2 log logn(log 3+log logn) = o(n1/3/ log n),

so the total weight of the vertices is o(n1/3).

For i ∈ {1, 2}, let Ki(tn) be the set of vertices in V (n) within distance 2tn of vi in Â(n),
and let K ′i(tn) be the set of vertices in V ′(n) within distance 2tn of vi in Â(n). Lemma 5.7
implies that, with probability tending to 1 as n → ∞, none of the sets K1(tn), K2(tn),
K ′1(tn) and K ′2(tn) has total vertex or clique weight exceeding n1/3. Furthermore, with
probability tending to 1 as n→∞, the total number of vertices in K1(tn) is less than n1/3.
Conditioned on K2(tn) having total weight less than n1/3 and K1(tn) containing less than
n1/3 vertices, the probability that K1(tn) and K2(tn) share an edge is bounded above by

1 − (1 − n1/3/L̂n)n
1/3

< n2/3/L̂n, which converges ν-almost surely to 0 as n → ∞. So, for
ν-almost all ω ∈ Ω, the Pω-probability that K1 and K2 share a vertex converges to 0 as
n→∞. Similarly, we deduce that for ν-almost all ω ∈ Ω, the Pω-probability that K ′1 and
K ′2 share a clique converges to 0 as n→∞.

Recall the definition of R∗ from (3.1) and write R∗ as R∗(A,B, I) to show explicitly its
dependence on the distributions of A,B and I.
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Lemma 5.8. Suppose that R∗ > 1. Then, for 0 < c < logR∗,

Pω
(
|Ŝtn| > (log n)c

∣∣ |Ŝtn| > 0
) pν−−−→

n→∞
1.

Proof. First note that, since all vertices in Â(n) have weight ≤ log n, the number of offspring
of any individual in the branching process Zb(Â(n), B̂(n), I) is stochastically smaller than
the product of two independent P(log n) random variables. Thus, a simple argument using
Markov’s inequality shows that the total number of individuals in generations 0, 1, · · · , tn
of the branching process Zb(Â(n), B̂(n), I) is Opν ([(log n)2]log logn+1+δ) for any δ > 0, and
hence Opν (n

ε) for any ε > 0. Therefore, by choosing ε < 1
3

(so that 2ε + 1
3
< 1) and using

Lemma 5.7, a standard coupling argument, similar to that used in the proof of Lemma 5.4,
shows that with probability tending to 1 as n→∞, the susceptibility set process Ŝ and the
branching process Zb(Â(n), B̂(n), I) coincide over generations 0, 1, · · · , tn. Thus, in proving
Lemma 5.8, we can replace Ŝ by Zb(Â(n), B̂(n), I).

For n ∈ N, let Â
(n)
∗ be a random variable having distribution function given by

Pω(Â(n)
∗ ≤ x) = sup

i≥n
Pω(Â(i) ≤ x) (x ∈ R)

and define B̂
(n)
∗ similarly. Observe that Â

(n)
∗ ⇒ A and B̂

(n)
∗ ⇒ B as n→∞. Furthermore,

for all n ∈ N, Â
(n)
∗ (respectively, B̂

(n)
∗ ) is stochastically dominated by Â

(n+1)
∗ (respectively,

B̂
(n+1)
∗ ). Therefore R∗(Â

(n)
∗ , B̂

(n)
∗ , I) is also stochastically increasing in n. By the Skorokhod

representation theorem [18, Theorem 7.2.14] and the monotone convergence theorem we
have that

R∗(Â
(n)
∗ , B̂(n)

∗ , I)
pν−−−→

n→∞
R∗(A,B, I).

In particular, there exists N = N(ω) such that R∗(Â
(n)
∗ , B̂

(n)
∗ , I) > ec, for every n > N . So,

by [20, Theorem 2.7.1] it follows that

Pω(|Zbtn(Â(n)
∗ , B̂(n)

∗ , I)| > (log n)c)− Pω(|Zbtn(Â(n)
∗ , B̂(n)

∗ , I)| > 0)
pν−−−→

n→∞
0.

The second probability in this expression converges to ρb(A,B, I) by [12, Lemma 4.1] and

the lemma then follows by observing that |Zbtn(Â
(n)
∗ , B̂

(n)
∗ , I)| is stochastically smaller than

|Zbtn(Â(n), B̂(n), I)|.

Up to now, we have investigated the behavior of the susceptibility sets of vertices in
Ĝ(n). This is only an intermediate step before analyzing susceptibility sets in G(n). To
make the connection between the two graphs we use the following two lemmas.

Lemma 5.9. For k ∈ N,

Pω(|Ŝ(Â(n), B̂(n), I)| = k)− Pω(|S(A(n), B(n), I)| = k)
pν−−−→

n→∞
0.

Proof. In order to simplify the notation we suppress the explicit dependence on Â(n), B̂(n)

and I. We denote by S ′i the set of cliques containing vertices in the susceptibility set S i.
We prove that

Pω(|Ŝ| = k, |Ŝ ′| = l)− Pω(|S| = k, |S ′| = l)
pν−−−→

n→∞
0, (5.8)

25



from which the lemma follows using similar arguments to those in the proof of Lemma 5.3,
which are not repeated here.

Recall that we can construct G(n) from Ĝ(n), by considering the vertices in V (n) \ V̂ (n)

and V ′(n) \ V̂ ′(n) and then connecting them in the usual way with each other and with
vertices in V (n) and V ′(n) to obtain A(n). As in the proof of Lemma 5.4, µ < ∞ implies
that

n∑
i=1

Ai11(Ai > log[n]) = L(n) − L̂(n) = o(n) ν-almost surely.

Therefore,
L(n) − L̂(n)

L(n)

a.s.−−→ 0 as n→∞.

This implies that 1 − L̂(n)/L(n) converges in probability to 0. In particular there is an
increasing sequence of natural numbers (pi, i ∈ N), such that for all n > pi, we have
ν(1 − L̂(n)/L(n) < 4−i) > 1 − 2−i. Define the function ξ : N → N by ξ(n) = 2i if
pi ≤ n < pi+1. This function increases to infinity and

11
(
L(n) − L̂(n) < (ξ(n))−1L(n)

)
pν−−−→

n→∞
1.

Similarly, there exists a function ξ′(n) which increases to ∞, such that

11
(
L′(n) − L̂′(n) < (ξ′(n))−1L′(n)

)
pν−−−→

n→∞
1. (5.9)

Let L̂
(n)
(k) (respectively, L̂

′(n)
(k) ) be the weight of the first k vertices from V̂ (n) (respectively,

V̂ ′(n)) explored in Ŝ. Note that

Pω
(
|Ŝ| = k, |Ŝ ′| = l

∣∣∣ L̂(n)
(k) ≥ (ξ′(n))1/2 ∪ L̂′(n)

(l) ≥ (ξ(n))1/2
)

pν−−−→
n→∞

0,

since if the conditioning event occurs then the probability that the susceptibility set does
not extend further goes to 0 as n→∞. It follows that

Pω
(
|Ŝ| = k, |Ŝ ′| = l, L̂

(n)
(k) < (ξ′(n))1/2, L̂

′(n)
(l) < (ξ(n))1/2

)
− Pω(|Ŝ| = k, |Ŝ ′| = l)

pν−−−→
n→∞

0. (5.10)

Given ω, when constructing the graph G(n) from Ĝ(n), the expected number of newly-added
edges between the first k vertices from V̂ (n) explored in Ŝ and V

′(n) \ V̂ ′(n) is

F
(n)
k =

L̂
(n)
(k)(L

′(n) − L̂′(n))

µn
.

Suppose that L̂
(n)
(k) < (ξ′(n))1/2. Then

F
(n)
k ≤ (ξ′(n))1/2 (L′(n) − L̂′(n))

L′(n)

L′(n)

nµ
,
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which, together with (5.9) and the fact that L′(n)/(nµ)
a.s.−−→ 1 as n→∞, yields

F
(n)
k 11(L̂

(n)
(k) < (ξ′(n))1/2)

pν−−−→
n→∞

0.

Combining this, and a corresponding result for the number of newly-added edges between
the first l vertices from V̂

′(n) explored in Ŝ and V (n) \ V̂ (n), with (5.10) establishes that

Pω
(
|Ŝ| = k, |Ŝ ′| = l,S ∩ (V (n) \ V̂ (n)) 6= ∅,S ′ ∩ (V ′(n) \ V̂ ′(n)) 6= ∅

)
pν−−−→

n→∞
0,

which completes the proof of (5.8) and thus of of the lemma.

Lemma 5.10. For every ε > 0 there exists K ∈ N such that

11(Pω(|Ŝtn(Â(n), B̂(n), I)| = 0, |S(A(n), B(n), I)| > K) < ε)
pν−−−→

n→∞
1.

Proof. For ease of presentation we suppress the dependence on the distributions of the
weights and infectious periods, writing Ŝ for Ŝ(Â(n), B̂(n), I) and S for S(A(n), B(n), I).
First note that, as in the proof of Lemma 5.8, we can use branching process approximations
to show that for every K ∈ N we have

Pω(|Ŝtn| = 0, |Ŝ| > K)− Pω(|Zbtn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K)
pν−−−→

n→∞
0. (5.11)

Now,

Pω
(
|Zbtn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K

)
= Pω

(
|Zb(Â(n), B̂(n), I)| > K

)
− Pω

(
|Zbtn(Â(n), B̂(n), I)| > 0, |Zb(Â(n), B̂(n), I)| > K

)
= Pω

(
|Zb(Â(n), B̂(n), I)| > K)− Pω(|Zbtn(Â(n), B̂(n), I)| > 0

)
, (5.12)

for all sufficiently large n, since |Zbtn(Â(n), B̂(n), I)| > 0 implies that |Zb(A(n), B(n), I)| > tn.
Arguing as in the proof of Lemma 5.3 shows that

Pω(|Zb(Â(n), B̂(n), I)| > K)
pν−−−→

n→∞
Pω(|Zb(A,B, I)| > K). (5.13)

To deal with the second term on the right hand side of (5.12), observe that

Pω(|Zbtn(Â(n), B̂(n), I)| > 0)

= Pω(|Zb(Â(n), B̂(n), I)| =∞) + Pω(|Zbtn(Â(n), B̂(n), I)| > 0, |Zb(Â(n), B̂(n), I)| <∞)
(5.14)

and

Pω(|Zbtn(Â(n), B̂(n), I)| > 0, |Zb(Â(n), B̂(n), I)| <∞) ≤ Pω(|Zb(Â(n), B̂(n), I)| ∈ (tn,∞)).

Now, given any ε > 0, there exists L ∈ N such that P(|Zb(A,B, I)| ∈ (L,∞)) < ε.
(If R∗ ≤ 1 then |Zb| is almost surely finite and the statement follows immediately. If
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R∗ > 1, the statement follows by writing P(|Zb| ∈ (L,∞)) = ρbP(|Zb| ∈ (L,∞)||Zb| <∞)
and using the fact that a supercritical Galton-Watson process conditioned on extinction
is probabilistically equivalent to an associated subcritical Galton-Watson process [13].)
Further, (5.13) and [12, Lemma 4.1] imply that

Pω(|Zb(Â(n), B̂(n), I)| ∈ (L,∞))
pν−−−→

n→∞
P(|Zb(A,B, I)| ∈ (L,∞)),

so
11(Pω(|Zb(Â(n), B̂(n), I)| ∈ (L,∞)) < ε)

pν−−−→
n→∞

1,

which implies that

11(Pω(|Zb(Â(n), B̂(n), I)| ∈ (tn,∞)) < ε)
pν−−−→

n→∞
1.

As this holds for any ε > 0, it follows from (5.12), (5.13) and (5.14), with another application
of [12, Lemma 4.1], that

Pω(|Zbtn(Â(n), B̂(n), I)| = 0, |Zb(Â(n), B̂(n), I)| > K)
pν−−−→

n→∞
P(|Zb(A,B, I)| ∈ (K,∞)). (5.15)

Now P(|Zb(A,B, I)| ∈ (K,∞)) can be made arbitrarily close to 0 by choosing K
sufficiently large. Thus (5.11) and (5.15) imply that, for every ε > 0, we can choose K ∈ N
such that

11(Pω(|Ŝtn| = 0, |Ŝ| > K) < ε)
pν−−−→

n→∞
1. (5.16)

Finally, note that

Pω(|Ŝtn| = 0, |Ŝ| > K) = Pω(|Ŝtn| = 0)− Pω(|Ŝtn| = 0, |Ŝ| ≤ K)

= Pω(|Ŝtn| = 0)− Pω(|Ŝ| ≤ K)

for all sufficiently large n. Similarly, since |S| ≥ |Ŝ|,

Pω(|Ŝtn| = 0, |S| > K) = Pω(|Ŝtn| = 0)− Pω(|S| ≤ K)

for all sufficiently large n. Hence, by Lemma 5.9,

Pω(|Ŝtn| = 0, |Ŝ| > K)− Pω(|Ŝtn| = 0, |S| > K)
pν−−−→

n→∞
0,

whence the lemma follows from (5.16).

For the remainder of the proof of Theorem 5.2, we re-analyze an exploration process of
the forward epidemic process and we couple it to a multi-type branching process, such that
the epidemic process is bigger than the branching process for as long as the total weight of
both the vertices and the clique vertices in the exploration process is less than a predefined
fraction of the total weight. The survival probability of this branching process can be made
arbitrarily close to the probability of a large outbreak as n→∞. After that we ‘glue’ the
susceptibility sets, if they are large, to the forward epidemic process.
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We need some extra notation. Since the weights of the vertices are exchangeable, the
model does not change if we order the vertices such that A

(n)
i ≤ A

(n)
i+1, and B

(n)
j ≤ B

(n)
j+1, for

1 ≤ i < n and 1 ≤ j < bαnc. For γ ∈ (0, 1), we define

R(n)(γ) = min

(
i ≤ n :

∑i
j=1 Aj

L(n)
≥ 1− γ

)
and

R′(n)(γ) = min

(
i ≤ bαnc :

∑i
j=1Bj

L′(n)
≥ 1− γ

)
.

Furthermore, define

γ̄ = γ̄(γ, n) = 1−
∑R(n)(γ)

j=1 Aj

L(n)
and

γ̄′ = γ̄′(γ, n) = 1−
∑R′(n)(γ)

j=1 Bj

L′(n)
.

We claim that, for γ ∈ (0, 1), γ̄
pν−−−→

n→∞
γ. This can be seen by the following reasoning. Let

x = inf(y ≥ 0 : µ−1E[A11(A < y)] > 1 − γ/2). Then x is finite, since µ = E[A] < ∞. By
the strong law of large numbers, we have n−1

∑n
i=1Ai11(Ai ≤ x)

a.s.−−→ E[A11(A ≤ x)] and

n−1L(n) a.s.−−→ µ as n→∞. Thus,∑n
i=1 Ai11(Ai ≤ x)

L(n)

a.s.−−→ µ−1E[A11(A ≤ x)] ≥ 1− γ/2

as n→∞, whence ν(AR(n) ≤ x)→ 1 as n→∞. Combining this with

1− γ̄ =

∑R(n)(γ)
j=1 Aj

L(n)
≥ 1− γ

and

1− γ̄ − AR(n)

L(n)
=

∑R(n)(γ)−1
j=1 Aj

L(n)
< 1− γ

completes the proof of the claim. Similarly we can prove that γ̄′
pν−−−→

n→∞
γ. This also shows

that the vertices in V (n) \ V̂ (n) (respectively, V ′(n) \ V̂ ′(n)) all have labels exceeding R(n)(γ)
(respectively, R′(n)(γ)) with probability tending to 1 as n→∞.

For c1 > 0, let I(c1) be the set of vertices with type/infectious period less than c1. Let
I(c1) denote a random variable having distribution function given by P(I(c1) ≤ x) = P(I ≤
x|I ≥ c1), for x ≥ c1. We use the multi-type branching process Zf (A(n), B(n), I(c1), γ),
which is obtained from Zf (A(n), B(n), I(c1)) by:

(i) Killing upon birth all children with A-weight strictly larger than the weight of vertex
R(n)(γ). Children with A-weight equal to the weight of vertex R(n)(γ) are killed
independently with probability given by the fraction of those vertices in V (n) having
weight equal to the weight of vertex R(n)(γ) that also have label strictly larger than
R(n)(γ).
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(ii) Killing upon birth all litters corresponding to local epidemics in cliques with B-
weight strictly larger than the weight of vertex R′(n)(γ). Cliques with B-weight equal
to the weight of clique R′(n)(γ) are killed independently with probability given by
the fraction of those vertices in V ′(n) having B-weight equal to the weight of clique
R′(n)(γ) that also have label strictly larger than R′(n)(γ).

If A1, A2, · · · , An are distinct, which happens ν-almost surely if the distribution of A has no
atoms, then (i) reduces to killing upon birth all children with A-weight strictly larger than
the weight of vertex R(n)(γ). If B1, B2, · · · , Bbαnc are distinct then (ii) simplifies similarly.

We observe that the corresponding survival probability function (cf. Section 4)
ρ̃(x;A(n), B(n), I(c1), γ) increases as γ ↓ 0. Thus, the limit function, as γ ↓ 0, exists
and satisfies (4.1) by the monotone convergence theorem. Invoking Lemma 4.1, this limit
function is

lim
γ↓0

ρ̃(x;A(n), B(n), I(c1), γ) = ρ̃(x;A(n), B(n), I(c1)).

Similarly, since ρ̃(x;A(n), B(n), I(c1)) is decreasing as c1 ↓ 0, one can show that

lim
c1↓0

ρ̃(x;A(n), B(n), I(c1)) = ρ̃(x;A(n), B(n), I).

For ρ(A(n), B(n), I) as in Section 4, this leads to the first assertion of the following lemma.
The second assertion then follows using Lemma 5.5.

Lemma 5.11. For every ε > 0, ω ∈ Ω and n ∈ N, there exist γ > 0 and c1 > 0 small
enough such that

|ρ(A(n), B(n), I(c1), γ)− ρ(A(n), B(n), I)| < ε/2.

For every ε > 0, there exist γ > 0 and c1 > 0 such that

11(|ρ(A(n), B(n), I(c1), γ)− ρ(A,B, I)| < ε)
pν−−−→

n→∞
1.

Let c1 > 0 and γ ≥ 0 be constants. We consider the forward epidemic process R̄(n,γ) =
R̄(n)(ω, I, c1, γ/3), which is obtained fromR(n)(ω, I) by removing all vertices (and adjacent
edges) in I(c1), K1(tn) and K2(tn) and not allowing for contacts in the cliques K ′1(tn) and
K ′2(tn) or in cliques with label R′(n)(γ/3) or larger. As before, we deduce that for every
γ > 0 and large enough n, all vertices in V ′(n) \ V̂ ′(n) have label at least R′(n)(γ/3), with
probability arbitrarily close to 1. Also define R̄(n) = R̄(n,0) = R̄(ω, I, c1, 0) and let the
total weight of the cliques in R̄(n) (i.e. in the set of ultimately recovered vertices in R̄(n))
be denoted by W̄ ′(n)(c1).

Lemma 5.12. Suppose that R∗ > 1. Then for every ε > 0, there exist constants η > 0 and
c1 > 0, such that

11
(
Pω(W̄ ′(n)(c1) > ηn)− (ρ(A,B, I)− ε) > 0

) pν−−−→
n→∞

1.

Proof. We explore R̄(n,γ) vertex by vertex (and clique by clique) and couple this with an
exploration process of the tree of the branching process

Z(n,γ) = Zf (Â(n), B̂(n), I(c1), γ).
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With some abuse of notation we use R̄(n,γ) and Z(n,γ) for the exploration processes as well.
We choose one vertex uniformly at random from V̂ (n). We assume that this vertex is

not in K1(tn) or K2(tn) and that its type/infectious period exceeds c1. The probability
that this assumption is met can be made arbitrarily close to 1 by choosing n large enough
and c1 small enough. Denote this vertex by v̄0. Define the ‘forbidden sets’ of vertices by

Γ0 = K1(tn) ∪K2(tn) ∪ I(c1) ∪ (V (n) \ V̂ (n)) ∪ {v̄0} and

Γ′0 = K ′1(tn) ∪K ′2(tn) ∪ {v′i ∈ V ′(n) : i ≥ R′(n)(γ/3)}.

For the vertices in V (n) \ Γ0, we re-randomize the infectious period in such a way that, for
every vertex in V (n) \ Γ0, we let it be an independent random variable with distribution
I(c1). This will not affect the distribution of the processes.

Let σ
(n)
0 (i) be a relabeling of the vertices in V (n) such that if vj ∈ Γ0 and vi ∈ V (n) \Γ0,

then σ
(n)
0 (i) < σ

(n)
0 (j), while if vi, vj ∈ V (n) \Γ0, then σ

(n)
0 (i) < σ

(n)
0 (j) if i < j. The precise

order of the labels of the vertices in the forbidden set is not important. Define σ
′(n)
0 (i)

similarly.
The A-weight and type of v̄0 are also assigned to the ancestor of Z(n,γ), say that the A-

weight is a0. Then we use a P(a0L
′(n)/(µn)) random variable, d0, to denote the ‘maximal’

number of cliques vertex v̄0 is part of and, coupled to this, the ‘maximal’ number of child
cliques the vertex has in Z(n,γ). The meaning of maximal is clarified below.

We now identify the first child clique. Choose a real number, x′ say, uniformly at
random from the unit interval. In R̄(n,γ) we try to connect vertex v̄0 to the clique with
label i, which satisfies ∑

j∈N:σ
′(n)
0 (j)<σ

′(n)
0 (i)

Bj < x′L′(n) ≤
∑

j∈N:σ
′(n)
0 (j)≤σ′(n)0 (i)

Bj.

Let this vertex be v̄′1. The B-weight of the corresponding possible litter in Z(n,γ) is Bi,
where i is such that

∑i−1
j=1Bk < x′L′(n) ≤

∑i
j=1 Bj. If v̄′1 ∈ Γ′0, then the clique is ignored in

R̄(n,γ). If x′ > 1− γ̄′, then the litter in Z(n,γ) is ignored. We note that as long as the weight
of Γ′0 is less than γ̄L′(n), a clique can be ignored in R̄(n,γ) only if the corresponding litter in
Z(n,γ) is also ignored. Furthermore, the B-weight of the litter in Z(n,γ) is not larger than
the B-weight of the clique in R̄(n,γ).

Let the label of v̄′1 be k. We now define

σ
′(n)
1 (i) =


σ
′(n)
0 (i), for i such that σ

′(n)
0 (i) < σ

′(n)
0 (k),

σ
′(n)
0 (i)− 1, for i such that σ

′(n)
0 (i) > σ

′(n)
0 (k),

bαnc, for i = k.

That is, we give v̄′1 the maximal label and keep the order of the labels of the other vertices.
Furthermore, we add v̄′1 to the forbidden set, i.e. set Γ′1 = Γ′0 ∪ {v̄′1}. We choose the next
clique in R̄(n,γ) and corresponding litter in Z(n,γ), say v̄′2, in the same way as we choose v̄′1,

with σ
′(n)
0 replaced by σ

′(n)
1 and Γ′0 replaced by Γ′1, and we continue this process until we

have identified all cliques that v̄0 is part of.
We then pick one of the cliques added to R̄(n,γ) whose corresponding litter was not

ignored in Z(n,γ). We realise a local epidemic in this group as follows. Assume that the
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B-weight of the clique is b̄1. Then let d′1 be P(b̄1L
(n)/(µn)). Consider a population with d′1

initial susceptible individuals and 1 initial infectious individual, all with infectious period
distributed as I(c1), and couple two continuous time epidemics in this population as follows.
Consider the first newly infected individual in this population. We associate this individual
with vertices in R̄(n,γ) and in Z(n,γ) as follows. Choose a real number, say x, uniformly at
random from the unit interval. In R̄(n,γ), we try to connect clique v̄′1 to the vertex with
label i, which satisfies ∑

j∈N:σ
(n)
0 (j)<σ

(n)
0 (i)

Aj < xL(n) ≤
∑

j∈N:σ
(n)
0 (j)≤σ(n)

0 (i)

Aj.

Suppose that this vertex is v̄2. The A-weight of the possible child in Z(n,γ) is Ai, where i is
such that

∑i−1
j=1Aj < xL(n) ≤

∑i
j=1Aj. The vertex we choose is denoted by v̄1. If v̄1 ∈ Γ0,

then the vertex is ignored in R̄(n,γ) and immediately killed. If x > 1− γ̄, then the child in
Z(n,γ) is ignored. We note that as long as the weight of Γ0 is less than γ̄L(n), a vertex can
be ignored in R̄(n,γ) only if the child in Z(n,γ) is also ignored. Furthermore, the A-weight
of the vertex in Z(n,γ) is not larger than the A-weight of the vertex in R̄(n,γ).

We identify the other vertices infected by local epidemics started by v0 and the corre-
sponding children in Z(n,γ) as we have identified the cliques v0 is part of, where at each
step the forbidden set of vertices might grow and the chosen vertex gets the highest label
for the next vertex pick. The infectious period/type assigned to every vertex (which is
not immediately killed) is distributed as I(c1) and coupled vertices get the same infectious
period/type. We continue in this way until we have identified all vertices infected by local
epidemics started by v0 and we then explore the cliques those individuals are part of one
by one, as before.

The exploration process R̄(n,γ) dominates the exploration process Z(n,γ) until the total
weight of the forbidden set in V (n) in R̄(n,γ) is at least γ̄L(n) or the total weight of the
forbidden set in V ′(n) in R̄(n,γ) is at least γ̄L′(n).

Note that we may choose c1 > 0 small enough such that P(I < c1) < γ/2. By the
law of large numbers this implies that c1 > 0 might be chosen such that the total weight
of vertices in I(c1) is less than (γ/2)L(n) with probability tending to 1 as n → ∞. By
Lemma 5.7, we know that the weights of K1, K2, K ′1 and K ′2 are each a.s. o(n) and we
know that the set of vertices with label ≥ R′(n)(γ/3) has total weight at least (γ/3)L(n)

and the probability that this total weight is is less than (γ/2)L(n) can be made arbitrary
close to 1 by choosing n sufficiently large.

If the ordering of the exploration processes R̄(n,γ) and Z(n,γ) stops because the total
weight of the forbidden set in V ′(n) exceeds γL′(n), then, using Lemma 5.11, the lemma is
immediate with η = γ/3. If this ordering stops because the total weight of the forbidden set
in V (n) exceeds γL(n), then the total weight of vertices in R̄(n,γ) that are not in the original
forbidden set exceeds (γ/3)L(n). Hence, in order to prove the lemma we have only to prove
that this implies that the total weight of cliques in this set which contain vertices in R̄(n,γ)

is Θpν (n). Now the fraction of cliques in V ′(n) with weight exceeding log n converges almost

surely to 0 as n→∞. It follows that the number of vertices in V̂ ′(n) with labels exceeding
R′(n)(γ/3) is Θpν (n). Hence, by the law of large numbers, the number of cliques V̂ ′(n) with
labels exceeding R′(n)(γ/3) that are chosen for the expansion of R̄(n,γ) is Θpν (n), which in
turn implies that the total weight of such cliques is also Θpν (n), as required.
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Proof of Theorem 5.2. We use the notation of Lemma 5.12. Recall that R̄(n) = R̄(n,0)

and that R(n) = R(n)(ω, I) is the set of ultimately infected vertices in a population of n
individuals.

We first provide bounds for

Eω[n−1|R(n)|
∣∣ W̄ ′(n)(c1) > ηn] = Eω[n−1

n∑
i=1

11(vi ∈ R(n))
∣∣ W̄ ′(n)(c1) > ηn]

= Pω(v1 ∈ R(n)
∣∣ W̄ ′(n)(c1) > ηn)

and for

Eω[n−2|R(n)|2
∣∣ W̄ ′(n)(c1) > ηn]

= Eω[n−2

n∑
i=1

n∑
j=1

11(vi, vj ∈ R(n))
∣∣ W̄ ′(n)(c1) > ηn]

= n−1Pω(v1 ∈ R(n)
∣∣ W̄ ′(n)(c1) > ηn)

+ (1− n−1)Pω(v1, v2 ∈ R(n)
∣∣ W̄ ′(n)(c1) > ηn).

Let ε′ > 0. By Lemma 5.8 and the asymptotic theory of supercritical general branching
processes [24] modified to the lattice case, we have that, if the susceptibility set of v1

in Ĝ(n) survives for tn = dlog log ne generations, then there exists c2 > 0 such that the
probability that the number and the total weight of the vertices in this generation is at
least c2 log log n is greater than 1−ε′ for all sufficiently large n. We denote the set of vertices
in generation tn of this susceptibility set by V̂

(n)
tn . The same holds for the susceptibility set

of v2. Furthermore, the events of survival up to generation tn of the two susceptibility sets
are asymptotically independent by a birthday problem type of argument and Lemma 5.7.

Conditioned on W̄ ′(n)(c1) > ηn, the law of large numbers establishes that the following

event occurs with probability exceeding 1− ε′. The number of vertices in V̂
(n)
tn that both (i)

are in the same clique as an infected vertex explored in R̄(n) and (ii) have infectious period

at least c1, grows to infinity as n→∞. Since each vertex in V̂
(n)
tn is infected independently

with probability at least 1− e−c1 > 0, we have that

11
(
Pω
(
v1 ∈ R(n)

∣∣ |Ŝ1
tn| > 0, W̄ ′(n)(c1) > ηn

)
> 1− 2ε′

)
pν−−−→

n→∞
1.

Furthermore, if the susceptibility set of v1 does not survive up to generation tn in Ĝ(n), then
Lemma 5.10 shows that the probability that the initial infective is in v1’s susceptibility set
converges to 0. More precisely, for every K ∈ N we have that

Pω
(
v1 ∈ R(n)

∣∣ |Ŝ1
tn| = 0

)
=

Pω(v1 ∈ R(n), |Ŝ1
tn| = 0)

Pω(|Ŝ1
tn| = 0)

≤
Pω(v1 ∈ R(n), |S1| ≤ K) + Pω(|S1| > K, |Ŝ1

tn| = 0)

Pω(|Ŝ1
tn| = 0)

.

The first term in the numerator of the right hand side of this inequality converges in
probability to 0 as n→∞, while by Lemma 5.10 we have that, for every ε > 0 and δ > 0,
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there exists K ∈ N such that the second term in the numerator is smaller than ε with
ν-probability at least 1− δ for all sufficiently large n. The denominator is trivially strictly
positive. We therefore conclude that

Pω(v1 ∈ R(n)
∣∣ |Ŝ1

tn| = 0)
pν−−−→

n→∞
0.

Note that in the proof of Lemma 5.12 we do not use whether |Ŝ1
tn| > 0 or not, so

Pω(W̄ ′(n)(c1) > ηn
∣∣ |Ŝ1

tn| > 0)− Pω(W̄ ′(n)(c1) > ηn
∣∣ |Ŝ1

tn| = 0)
pν−−−→

n→∞
0.

Therefore, by Bayes’ theorem, we find that

Pω(|Ŝ1
tn| > 0)− Pω(|Ŝ1

tn| > 0
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

0,

whence
Pω(v1 ∈ R(n)

∣∣ W̄ ′(n)(c1) > ηn)− Pω(|Ŝ1
tn| > 0)

pν−−−→
n→∞

0.

Now, arguing as at the start of the proof of Lemma 5.8,

Pω(|Ŝ1
tn| > 0)− Pω(|Zbtn(A(n), B(n), I)| > 0)

pν−−−→
n→∞

0,

whilst the end of the proof of Lemma 5.8 shows that

Pω(|Zbtn(A(n), B(n), I)| > 0)
pν−−−→

n→∞
ρb(A,B, I).

Thus, Pω(|Ŝ1
tn| > 0)

pν−−−→
n→∞

ρb(A,B, I), whence

Eω[n−1|R(n)|
∣∣ W̄ ′(n)(c1) > ηn]

pν−−−→
n→∞

ρb(A,B, I).

Since the first tn generations of the susceptibility sets of v1 and v2 in Ĝ(n) are non-
overlapping with probability tending to 1 as n→∞, we notice that

Pω(v1, v2 ∈ R(n)
∣∣ W̄ ′(n)(c1) > ηn)− (Pω(v1 ∈ R(n)

∣∣ W̄ ′(n)(c1) > ηn))2 pν−−−→
n→∞

0.

This gives that

Eω[n−2|R(n)|2
∣∣ W̄ ′(n)(c1) > ηn]

pν−−−→
n→∞

(ρb(A,B, I))2.

Therefore, var(n−1|R(n)|
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

0 and we conclude that, for all δ > 0,

Pω(|n−1R(n) − ρb(A,B, I)| < δ
∣∣ W̄ ′(n)(c1) > ηn)

pν−−−→
n→∞

1. (5.17)

On the other hand, we know by Lemma 5.12 that for every ε′ > 0, there exist constants
η > 0 and c1 > 0 such that

11(Pω(W̄ ′(n)(c1) > ηn) > ρ(A,B, I)− ε′) pν−−−→
n→∞

1. (5.18)
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Furthermore, by Theorem 5.1 there exists k ∈ N such that

11
( k∑
i=1

Pω(|R(n)| = i) > 1− ρ(A,B, I)− ε′
)

pν−−−→
n→∞

1. (5.19)

Now observe that

Pω(v1 ∈ R(n), W̄ ′(n)(c1) ≤ ηn) ≤ Pω(v1 ∈ R(n), |R(n)| ≤ k)

+ Pω(W̄ ′(n)(c1) ≤ ηn, |R(n)| > k).

By exchangeability, the first term on the right hand side of this inequality is bounded above
by k/n which converges to 0 as n→∞. Further, for any K ∈ N,

Pω(W̄ ′(n)(c1) > ηn, |R(n)| ≤ K)
pν−−−→

n→∞
0,

so (5.18) and (5.19) imply that for every ε > 0, there exists k ∈ N such that

11(Pω(W̄ ′(n)(c1) ≤ ηn, |R(n)| > k) < ε)
pν−−−→

n→∞
1.

It follows that
Eω[n−1|R(n)|

∣∣ W̄ ′(n)(c1) ≤ ηn]
pν−−−→

n→∞
0,

so for every δ > 0 we have

Pω(n−1|R(n)| < δ
∣∣ W̄ ′(n)(c1) ≤ ηn))

pν−−−→
n→∞

1. (5.20)

Combining (5.17) and (5.20) completes the proof of Theorem 5.2.

6 Extension

In this paper we study the spread of an SIR epidemic on a random intersection graph. A
variant of the random intersection graph is proposed in [26], where a configuration model
construction is used to create the graph. In our terminology and notation, independent
degrees are assigned to vertices in V and V ′, where the degrees of vertices in V are each
distributed as a random variable D and the degrees of vertices in V ′ are each distributed
as a random variable H. Each vertex in V ∪ V ′ is assigned a number of half-edges given
by its degree. In the auxiliary graph A(n) the half-edges of the first n vertices in V are
paired uniformly at random with the first L(n) half-edges in V ′, where L(n) is the number
of half-edges assigned to the first n vertices in V . Note that the final vertex in V ′ used in
this construction might not retain its full degree in A(n).

The forward and backward branching processes can be modified in the obvious fashion
to this setting and equivalent formulae to the key expressions (B.6), (B.7) and (B.8) in Ap-
pendix B.2 can be derived, thus facilitating calculation of the threshold parameter R∗ and
survival probabilities of these branching processes. We expect that, under mild conditions
on the distributions of D and H, theorems corresponding to Theorems 3.3–3.5 hold for this
model. Some additional dependencies arise since connecting to a vertex takes away one
of its available half-edges, however we anticipate that the impact of those dependencies is
very small.
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A Proof of Lemma 4.1

In order to prove Lemma 4.1 we use an idea from Riordan [33]. He considers the cor-
responding problem for a class of multitype branching processes having type space (0, 1]
in which, in crude terms, the number of children having type in any specified interval an
individual of type x has tends to infinity as x ↓ 0. We cannot use the result in [33] directly
because the number of children of an individual of type x tends to zero as x ↓ 0. How-
ever, we can apply the idea in [33] to a branching process that is intimately related to Z̃f ,
which we now describe, and exploit a connection between the functional Φ(ρ̃)(x) and an
equivalent functional for the new branching process to obtain the desired result.

Recall that in the branching process Z̃f , individuals arise in litters, with a litter being
distributed as the set of individuals that are infected in a local (single-clique) epidemic, not
including the individual who triggers that local epidemic. Consider such a local epidemic
and suppose that the clique contains the initial infective, i∗ say, and m susceptible indi-
viduals. The final outcome of the local epidemic can be obtained using the corresponding
Epidemic Generated Graph, by first determining the number of individuals, a say, that
are contacted directly by the initial infective, and then considering the epidemic, Es,a say,
triggered by those a individuals among the remaining s = m− a susceptibles in the clique.
Suppose that the epidemic Es,a infects Ts,a individuals, in addition to its a initial infectives.
(Thus, in the notation of Section 3.2, T (m) = a + Ts,a.) Note that the infectious periods
of the a initial infectives in Es,a are i.i.d. copies of I and also that, conditional upon the
value of (s, a), such epidemics in different cliques are mutually independent, even if they
arise from the same initial infective i∗. Thus the epidemic E (n) may be approximated by
a branching process of litters, in which each litter is typed by its value of (s, a) and its
offspring are the litters triggered by the a + Ts,a infectives in the corresponding Es,a. Let

Ẑf be the branching process derived in this fashion corresponding to the branching process
Z̃f . Clearly, litters with a = 0 are superfluous, so the type space for Ẑf may be taken to
be T̂ = {(s, a) : s ∈ Z+, a ∈ N}.

We now derive the next-generation functional (i.e. the analogue of Φ̃(h)(x)) associated
with Ẑf . For notational convenience we assume that I has an absolutely continuous distri-
bution, though this is not essential and the argument (and the proof of Lemma 4.1 below)
can be extended to the general case. Let ĥ(s, a) : T̂ → [0, 1] be a measurable test function
and suppose that litters are marked independently with a dagger (to distinguish from the
marks used on Zf ), with a litter of type (s, a) being marked with probability ĥ(s, a). Let
Φ̂(ĥ)(s, a) be the probability that a litter of type (s, a) directly spawns at least one litter
that is marked with a dagger.

Consider the epidemic Es,a described above and suppose that Ts,a = k. Let x−a+1, x−a+2, · · · , x0

and x1, x2, · · · , xk denote the lengths of the infectious periods of the a initial infectives and
the k subsequently infected individuals, respectively. Let ps,a(k;x−a+1, x−a+2, · · · , x0, x1, · · · , xk)
be the probability density that Ts,a = k and the infectious periods are given by x−a+1, · · · , xk.
Then,

Φ̂(ĥ)(s, a) = 1−
s∑

k=0

∫
(0,∞]a+k

ps,a(k;x−a+1, · · · , xk)
k∏

i=−a+1

Pĥ(xi) dx−a+1 · · · dxk, (A.1)

where Pĥ(x) is the probability that an individual, i∗ say, having infectious period of length
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x, does not spawn a litter which is marked with a dagger.
To determine Pĥ(x), note first that i∗ belongs to X̌ ∼MP(Ã) cliques, not counting the

clique it was infected through, and consider one such clique. Besides i∗, this clique contains
Y̌ ∼MP(B̃) individuals. Suppose that B̃ = b, then Y̌ ∼ P(b) and these Y̌ individuals are
infected independently by i∗, each with probability 1 − ex. Thus, given B̃ = b, the litter
has type (s, a), where s and a are independent realisations of the Poisson random variables
P(bex) and P(b(1− ex)), respectively. Hence, the unconditional probability that this litter
is not marked with a dagger is

E

[ ∞∑
s=0

∞∑
a=0

(e−xB̃)s

s!

((1− e−x)B̃)a

a!
e−B̃(1− ĥ(s, a))

]
,

where ĥ(s, 0) = 0 (s ∈ Z+). Given that i∗ has infectious period x, the local epidemics it
initiates in the above X̌ cliques are independent, so

Pĥ(x) = φÃ

(
E

[ ∞∑
s=0

∞∑
a=0

(e−xB̃)s

s!

((1− e−x)B̃)a

a!
e−B̃ĥ(s, a)

])
. (A.2)

Let ρ̂(s, a) be the survival probability of the branching process Ẑf , given that the
initial litter has type (s, a). Then ρ̂ is the maximal solution of ρ̂(s, a) = Φ̂(ρ̂)(s, a). If
either s → ∞ or a → ∞, then for any (s′, a′) ∈ T̂ and any K ∈ N, the probability that a
type-(s, a) individual has at least K type-(s′, a′) children in the next generation tends to 1.
Furthermore, it is easy to deduce that for any (s, a), (s′, a′) ∈ T̂ , the number of type-(s′, a′)
children an individual of type (s, a) begets is non-zero with positive probability, so Ẑf is
irreducible. Using the same argument as in [33, pp. 911-912], we conclude that there is at
most one non-zero solution of ρ̂(s, a) = Φ̂(ρ̂)(s, a).

Recall that Lemma 4.1 states that there is at most one non-zero solution ρ̃(x) of the
functional equation ρ̃(x) = Φ̃(ρ̃)(x). To prove this it is useful to derive an alternative
expression for Φ̃(h)(x). Suppose that the initial ancestor, i∗ say, in Z̃f has infectious
period of length x. By conditioning on the size of and the number of people directly
infected by i∗ in a given clique, the probability that i∗ has no marked child in that clique
is given by

E

[ ∞∑
s=0

∞∑
a=0

(e−xB̃)s

s!

((1− e−x)B̃)a

a!
e−B̃A(s, a, h)

]
, (A.3)

where

A(s, a, h) =
s∑

k=0

∫
(0,∞]a+k

ps,a(k;x−a+1, · · · , xk)
k∏

i=−a+1

(1− h(xi)) dx−a+1 · · · dxk, (A.4)

whence, since i∗ belongs to X̌ ∼ MP(Ã) further cliques (in addition to the one it was
infected through),

Φ̃(h)(x) = 1− φÃ

(
E

[ ∞∑
s=0

∞∑
a=0

(e−xB̃)s

s!

((1− e−x)B̃)a

a!
e−B̃(1− A(s, a, h))

])
. (A.5)
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Suppose that
h(x) = Φ̃(h)(x). (A.6)

Then (A.5) and (A.4) imply that

A(s, a, h) =
s∑

k=0

∫
(0,∞]a+k

ps,a(k;x−a+1, · · · , xk)×

k∏
i=−a+1

φÃ

(
E

[ ∞∑
si=0

∞∑
ai=0

(e−xiB̃)si

si!

((1− e−xi)B̃)ai

ai!
e−B̃(1− A(si, ai, h))

])
dx−a+1 · · · dxk.

Thus, by (A.1) and (A.2), if h is treated as fixed, ĥ(s, a) = 1− A(s, a, h) satisfies

ĥ(s, a) = Φ̂(ĥ)(s, a). (A.7)

Let h be a non-zero (i.e. not identically zero) solution of (A.6), assuming such a solution
exists. Then ĥ must be the unique non-zero solution of (A.7), ρ̂ say. (Note that if ĥ is
identically zero then (A.5) and (A.6) imply that h is identically zero.) Thus ĥ(s, a) =
1 − A(s, a, h) is independent of h, and h(x) is given by the right hand side of (A.5) with
A(s, a, h) replaced by 1− ρ̂(s, a), which proves the lemma.

B Calculation of properties of forward and backward

branching processes

In this appendix we give expressions for properties of the forward and backward branching
processes, Zf and Zb, which enable the threshold parameter R∗ and the survival proba-
bilities ρ and ρb which appear in Theorem 3.5 to be computed. These expressions rest on
results for the final outcome of homogeneously mixing SIR epidemic models. In a series of
papers, see for example [31], Lefèvre and Picard showed that many quantities related to
the final outcome of an SIR epidemic can be expressed compactly in terms of Gontcharoff
polynomials, and these were extended by Ball and O’Neill [6] to include so-called general
final state random variables. The latter are required to compute functionals associated
with the forward branching process Zf . Results for homogeneously mixing SIR epidemic
models are outlined in Section B.1 and their application to computing properties of Zf and
Zb is described in Section B.2.

B.1 Results for homogeneously mixing populations

In this section we give a restatement of Theorem 4.2 from Ball and O’Neill [6], adapted
to the purposes of this paper (cf. [8]). We note that Ball and O’Neill provide appreciably
more general results than their Theorem 4.2. In order to state the theorem, we need the
following notation. We consider an SIR epidemic in a homogeneously mixing population
with s initial susceptible individuals and a initial infectious individuals. The initial sus-
ceptible individuals are labeled 1, 2, · · · , s and the initial infectious individuals have labels
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−a + 1,−a + 2, · · · , 0. The random variable Ii represents the infectious period that indi-
vidual i will have if it becomes infected. Thus, the probability that individual i, if infected,
ultimately has an infectious contact with individual j is 1−e−Ii . (As before, infectious con-
tacts between pairs of individuals are governed by independent unit-rate Poisson processes.)
We assume that the random variables (Ii, i = −a+ 1,−a+ 2, · · · , s) are independent and
all distributed as I; they are also independent of the Poisson processes describing infec-
tious contacts. Note that this model is the epidemic Es,a introduced in Appendix A. Let

ĥ(x) : (0,∞]→ [0,∞] be a measurable function (the relevant measures are clear from the
context) and θ > 0. Furthermore, let

Û = Û(ĥ, θ) = (ûi(ĥ, θ), i ∈ Z+) = (ûi, i ∈ Z+)

be an infinite vector, where ûk = E[e−kIe−θĥ(I)]. Let R be the set of ultimately recovered
individuals in Em,a, including the initial infectives as well as any initial susceptibles that
become infected.

The Gontcharoff polynomials Gm(x|Û),m ∈ Z+, are defined recursively by

xm

m!
=

m∑
k=0

(ûk)
m−k

(m− k)!
Gk(x|Û), (B.1)

for m ∈ Z+. We note that Gm(x|Û) is a polynomial of order m, which depends on
û0, û1, · · · , ûm−1. Some properties of Gontcharoff polynomials are mentioned in Section 2
of [6]. In this paper we use only (B.1) and

Gm(x|Û) =

∫ x

û0

∫ ξ0

û1

· · ·
∫ ξm−2

ûm−1

dξm−1 · · · dξ1dξ0, (B.2)

for m ∈ Z+. The following theorem is a special case of Theorem 4.2 in [6], which allows ĥ
to be random.

Theorem B.1. For R, ĥ and Û as above, we have

E[xs+a−|R|e−θ
∑
i∈R ĥ(Ii)] =

s∑
k=0

s!

(s− k)!
(ûk)

s−k+aGk(x|Û).

We use the following corollary of this theorem.

Corollary B.2. Let U = U(h) = (ui(h), i ∈ Z+) = (ui, i ∈ Z+), where ui = E[e−iI(1 −
h(I))] and h(x) : (0,∞]→ [0, 1] is Borel-measurable, and let R be as above. Then

E[
∏
i∈R

(1− h(Ii))] =
s∑

k=0

s!

(s− k)!
(uk)

s−k+aGk(1|U). (B.3)

Proof. Set x = θ = 1 and ĥ = − log(1− h) in Theorem B.1.

Recall the random variable T (m) introduced in Section 3.2. In the present notation,
T (m) is the size of the epidemic Em,1, not including the initial infective. The mean of
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T (m) can be expressed in terms of Gontcharoff polynomials as follows (see e.g. [4, equation
(3.6)]):

E[T (m)] = m−
m∑
k=1

m!

(m− k)!
(vk−1)m+1−kGk−1(1|V ) (m = 1, 2, · · · ), (B.4)

where vk = E[e−(k+1)I ] and V = (vi, i ∈ Z+).
The distribution of the size of the local susceptibility set of an individual can also be

expressed using Gontcharoff polynomials. Recall from Section 3.3 that S(m) is the size of
the local susceptibility set of an individual in a clique of size m+ 1, where S(m) does not
include the individual in question. As in [8, Section 3], we have

P(S(m) = k) =
m!

(m− k)!
(vk)

m−kGk(1|V ) (k = 0, 1, · · · ,m), (B.5)

where vk and V are as in (B.4).

B.2 Application to branching processes Zf and Zb

Let h and U = U(h) be as in Corollary B.2 and suppose that individuals in Es,a are marked
independently, with individual i being marked with probability h(Ii) (i = −a + 1,−a +
2, · · · , s). Then (B.3) gives the probability that the epidemic Es,a contains no marked
infective. Recall from Section 4 that F (h)(x) is the probability that the initial ancestor
in Zf has at least one marked child arising from the local epidemic in a given clique.
Arguing as in the derivation of (A.3) gives, after repeatedly using Fubini’s theorem (note
that Gk(1|U) ≥ 0 for all k, using (B.2) and the fact that (uk ∈ [0, 1]) is decreasing in k),

1− F (h)(x) = E

[ ∞∑
s=0

∞∑
a=0

e−xsB̃s

s!

(1− e−x)aB̃a

a!
e−B̃

s∑
k=0

s!

(s− k)!
(uk)

s−k+aGk(1|U)

]

= E

[ ∞∑
s=0

s∑
k=0

e−xsB̃s

s!

s!

(s− k)!
(uk)

s−kGk(1|U)e−B̃(1−uk(1−e−x))

]

= E

[ ∞∑
k=0

∞∑
s=k

e−xsB̃s

(s− k)!
(uk)

s−kGk(1|U)e−B̃(1−uk(1−e−x))

]

= E

[ ∞∑
k=0

e−xkB̃ke−B̃(1−uk) Gk(1|U)

]

=
∞∑
k=0

(−e−x)kφ(k)

B̃
(1− uk)Gk(1|U), (B.6)

where φ
(k)

B̃
is the kth derivative of φB̃.

Finally, we derive expressions for EY̌ [E[T (Y̌ )|Y̌ ]] and EY̌ [fS(Y̌ )|Y̌ (s)], where Y̌ ∼MP(B̃),

which are required to compute R∗ and ρb, see (3.1) and (3.5), respectively. Recall that
(Y̌ |B̃ = b) ∼ P(b) and E[Y̌ ] = E[B̃]. Thus conditioning on B̃ and using (B.4) yields

EY̌ [E[T (Y̌ )|Y̌ ]] = E[B̃]− E

[ ∞∑
m=1

B̃m

m!
e−B̃

m∑
k=1

m!

(m− k)!
(vk−1)m+1−kGk−1(1|V )

]
.
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Interchanging the order of summation then yields, after elementary algebra, that

EY̌ [E[T (Y̌ )|Y̌ ]] = E[B̃]−
∞∑
k=1

vk−1(−1)kφ
(k)

B̃
(1− vk−1)Gk−1(1|V ). (B.7)

Turning to the size of the local susceptibility set of an individual in a typical clique,
first note that conditioning on B̃ and using (B.5) gives, for k ∈ Z+,

P(S(Y̌ ) = k) = E

[ ∞∑
m=k

B̃m

m!
e−B̃

m!

(m− k)!
(vk)

m−kGk(1|V )

]
= E

[
B̃ke−B̃(1−vk)Gk(1|V )

]
,

whence

EY̌ [fS(Y̌ )|Y̌ (s)] =
∞∑
k=0

(−s)kφ(k)

B̃
(1− vk)Gk(1|V ). (B.8)
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