
Noname manuscript No.
(will be inserted by the editor)

Adaptive Selection of Heuristics for Improving Exam
Timetables

Edmund K. Burke · Rong Qu · Amr Soghier

the date of receipt and acceptance should be inserted later

Abstract This paper presents a hyper-heuristic approach which hybridises low- level heuris-
tic moves to improve timetables. Exams which cause a soft-constraint violation in the timetable
are ordered and rescheduled to produce a better timetable. It is observed that both the or-
der in which exams are rescheduled and the heuristic moves used to reschedule the exams
and improve the timetable affect the quality of the solution produced. After testing differ-
ent combinations in a hybrid hyper-heuristic approach, the Kempe chain move heuristic and
time-slot swapping heuristic proved to be the best heuristic moves to use in a hybridisa-
tion. Similarly, it was shown that ordering the exams using Saturation Degree and breaking
any ties using Largest Weighted Degree produce the best results. Based on these observa-
tions, an iterative hybrid approach is developed to adaptively hybridise the Kempe chain
move and timeslot swapping heuristics in two stages. In the first stage, random heuristic
sequences are generated and automatically analysed. The heuristics repeated in the best se-
quences are fixed while the rest are kept empty. In the second stage, sequences are generated
by randomly assigning heuristics to the empty positions in an attempt to find the best heuris-
tic sequence. Finally, the generated sequences are applied to the problem. The approach is
tested on the Toronto benchmark and the exam timetabling track of the second International
Timetabling Competition, to evaluate its generality. The hyper-heuristic with low-level im-
provement heuristics approach was found to generalise well over the two different datasets
and performed comparably to the state of the art approaches.

1 Introduction

For more than 40 years exam timetabling has become one of the most studied domains in
the AI and OR research communities. This is due to its importance in many academic insti-
tutions worldwide. However, much of the research has been aimed at developing method-
ologies that produce the best quality timetables for a single problem [26]. A more recent
direction in this field, namely, hyper-heuristics, aims to raise the level of generality of search
methodologies to create algorithms that act well over a range of problems. A hyper-heuristic

School of Computer Science, University of Nottingham
Nottingham, NG8 1BB, UK
E-mail: {ekb,rxq,azs}@cs.nott.ac.uk



2 Edmund K. Burke et al.

is seen as a heuristic to choose heuristics [8]. In this case the low-level heuristics represent
the search space. In timetabling, the low-level heuristics can be categorised as heuristics
which construct a timetable or heuristics which perform certain moves to improve a con-
structed timetable. This paper presents a random iterative hyper-heuristic approach which
uses improvement low-level heuristics. This approach was tested on the Toronto benchmark
and the second International Timetabling Competition (ITC2007) exam timetabling prob-
lems. It was found to generalise well over the two datasets. Furthermore, very competitive
results have been produced against other approaches in the literature.

The following section presents a brief description of the benchmarks. Section 2.3 and
2.4 provide an overview on different approaches developed in the exam timetabling domain.
Furthermore, section 2.5 concentrates on hyper-heuristic approaches. A random iterative
hyper-heuristic to improve timetables is proposed in section 3. An adaptive methodology
to select low-level heuristics and the results obtained are presented in section 4. The future
extensions of this work are summarised in section 5.

2 Exam Timetabling

2.1 The Toronto Benchmark

An exam timetabling problem consists of the allocation of a set of exams to a given set of
timeslots. The generated timetable must satisfy the hard constraints of the problem which
are the requirements that cannot be violated, e.g. no one student must be scheduled to sit
two exams during the same period. A timetable which meets all the hard constraints given
is called a feasible timetable. A timetabling problem can also have a set of soft constraints.
Soft constraints are constraints that can be violated and the level of violations determines
the quality of the timetable generated. An example of a soft contraint is that there must
be a certain number of periods between two exams sat by the same student. Therefore,
high quality timetables contain the least number of soft constraint violations. The Toronto
benchmark problem is well known in the exam timetabling community since it was firstly
introduced by Carter et al. [12] in 1996 . Over the years, a slightly different version was made
available and used to test some approaches in the literature. The characteristics of the two
versions of this dataset are presented in Table 1. The problem has one hard constraint where
conflicting exams cannot be assigned to the same time slot. In addition, a soft constraint is
present where conflicting exams should be spread throughout the timetable as far as possible
from each other. The objective here is to minimise the sum of proximity costs given as:∑4

i=0(wi x n)/S

where

– wi = 24−i is the cost of assigning two exams with i time slots apart. Only exams with
common students and are four or less time slots apart are considered as violations

– n is the number of students involved in the conflict
– S is the total number of students in the problem

Since then this problem has been used to test and compare many approaches in the literature.
Recently, a more constrained set of benchmarks was made available as part of the Interna-
tional Timetabling Competition (ITC2007) [18]. The next section describes the ITC2007
dataset in detail.



Adaptive Selection of Heuristics for Improving Exam Timetables 3

Problem Exams I/II/IIc Students I/II Enrolments I/II Density Time Slots
car91 682 16925 56877 0.13 35
car92 543 18419 55522 0.14 32

ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8057 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 I 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18

sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5417 0.19 35
tre92 261 4360 14901 0.18 23

uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.12 35
ute92 184 2750 11793 0.08 10
yor83 181 941 6034 0.29 21

yor83 II 180 919 6002 0.3 21

Table 1 Characteristics of the two versions of the Toronto Benchmark datasets

2.2 The International Timetabling Competition (ITC2007) dataset

The ITC2007 exam timetabling track could be considered as a complex and a more prac-
tical dataset in comparison to the Toronto benchmark. This is due to the larger number of
constraints it contains. A full description of the problem and the evaluation function can be
found in [18]. In addition, the characteristics which define the instances are summarised in
Table 2. The problem consists of the following:

– A set of timeslots covering a specified length of time. The number of timeslots and their
durations are provided.

– A set of exams which should be allocated to the timeslots.
– A list of the students enrolled in each exam.
– A set of rooms with different capacities.
– A set of additional hard constraints (e.g. exam X must be after exam Y or exam A must

use Room R).
– A set of soft constraints and their associated penalties.

In comparison to the Toronto benchmark, the ITC2007 dataset has more than one hard
constraint. The hard constraints are as follows:

– No student sits more than one exam at the same time.
– The capacity for each individual room should not be exceeded at a given period.
– Period lengths should not be violated.
– All period related hard constraints need to be satisfied e.g. Exam A after Exam B.
– All room related hard constraints need to be satisfied e.g. Exam A must use Room X.

The soft constraints violations are summarised as follows:

– Two Exams in a Row The number of occurrences where a student sits two exams in a
row on the same day.

– Two Exams in a Day The number of occurrences where a student sits two exams on
the same day. If the exams are back to back then this is considered as a Two Exams in a
Row violation to avoid duplication.



4 Edmund K. Burke et al.

Instance Conflict Density Exams Students Periods Rooms no. of Hard Constraints
exam 1 5.05 607 7891 54 7 12
exam 2 1.17 870 12743 40 49 14
exam 3 2.62 934 16439 36 48 185
exam 4 15.0 273 5045 21 1 40
exam 5 0.87 1018 9253 42 3 27
exam 6 6.16 242 7909 16 8 23
exam 7 1.93 1096 14676 80 15 28
exam 8 4.55 598 7718 80 8 21

Table 2 Characteristics of the ITC2007 dataset

– Period Spread The exams have to be spread a certain number of timeslots apart.
– Mixed Durations The number of occurrences where exams of different durations are

assigned to the same room.
– Larger Exams Constraint The number of occurrences where the largest exams are

scheduled near the end of the examination session. The number of the largest exams and
the distance from the end of the exam session are specified in the problem description.

– Room Penalty The number of times where certain rooms, which have an associated
penalty, are used.

– Period Penalty The number of times where certain timeslots, which have an associated
penalty, are used.

2.3 Exam timetabling approaches for the ITC2007 dataset

A three phased approach was developed by Muller [19] to solve the problems in the ITC2007
exam timetabling track. The first phase consists of an Iterative Forward Search algorithm to
find a feasible solution. Hill climbing is used to find the local optima in the second phase.
Finally, a Great Deluge Algorithm is applied to further explore the search space.

Gogos et al. [15] proposed a method which used a GRASP (Greedy Randomised Adap-
tive Search Procedure) approach. In the construction phase, five orderings of exams based
on various criteria are generated. Tournament selection is used to select exams until they
are all scheduled. A backtracking strategy using a tabu list is employed as required. In the
improvement phase, Simulated Annealing is used. Finally, room allocations are arranged
using integer programming in the third phase.

Atsuta et al. [4] used a constraint satisfaction solver incorporating tabu search and iter-
ated local search. The solver differentiates between the constraints and their corresponding
weights during computation to improve performance. De Smet [13] also incorporated local
search techniques in a solver called Drools, an Open-Source Business Rule Management
System (http://www.jboss.org/drools/).

Pillay [20] introduced a biological inspired approach which mimics cell behaviour. The
exams are initially ordered using the saturation degree heuristic and scheduled sequentially
in the available ”cells” i.e. timeslots. If more than one timeslot is available, the slot which
causes the least overall constraint violation is chosen. Rooms are chosen using the best fit
heuristic. If a conflict occurs before all the exams are scheduled, the timetable is rearranged
to lower the soft constraint violation. This is described as cell division. If the overall soft
constraint violation is not improved without breaking the hard constraints, cell interaction
occurs. The timeslots are swapped in this process to remove hard constraint violations. The



Adaptive Selection of Heuristics for Improving Exam Timetables 5

process continues until a feasible solution is achieved. Finally, the contents of cells having
equal durations are swapped to improve the solution. This is called cell migration.

McCollum et al. [17] proposed a two phased approach where an adaptive heuristic is
used to achieve feasibility during the first phase. The second phase improves the solution
through the employment of a variant of the Great Deluge Algorithm.

Finally, Pillay [20] presented an evolutionary algorithm based hyper-heuristic using
three different chromosome representations. An initial population is created and iteratively
improved by applying the processes of evaluation, selection and recreation.

2.4 Exam timetabling approaches for the Toronto Benchmark

Abdullah et. al [1] presented a hybridisation of an electromagnetic-like mechanism (EM)
and the Great Deluge algorithm. The technique estimates the quality of the solution and
calculates a decay rate at every iteration during the search process. These values depend on
a force value calculation using the EM approach. This approach produced the best quality
solution for four of the instances. An approach which uses a sequential construction method,
employed by Caramia et al. [11], to assign exams in the least number of timeslots was able
to produce the best quality timetables for another four of the Toronto benchmark instances.
It uses a greedy scheduler to obtain a feasible solution. A penalty decreaser and trader are
then applied to improve the quality of the constructed solution. Burke et al. [7] introduced an
approach which combines a variable neighbourhood search with a genetic algorithm which
produced the best quality solution for one of the Toronto instances. In addition Burke et. al
[6] proposed a method where a hill-climber compares the candidate solution with a solution
produced a couple of iterations back instead of the current solution. This was called the ”late
acceptance criteria” and it produced the best quality solutions for another two instances. The
results obtained by these approaches are presented in section 4.1.

Recently, some new methods were investigated to automatically find the best heuristic
to solve a set of instances. This has led to the introduction of Hyper-heuristics. The next
section summarises some of the hyper-heuristic methods applied to the exam timetabling
domain.

2.5 Hyper-heuristics in exam timetabling

A hyper-heuristic can be seen as a method to choose low-level heuristics depending on
the problems in hand. Furthermore, it could be used to adapt or tune heuristics and meta-
heuristics. Hyper-heuristics in exam timetabling can be categorised, according to the low-
level heuristics they use, into two types as follows:

1. Hyper-heuristics with constructive low-level heuristics
2. Hyper-heuristics with improvement low-level heuristics

A Tabu search was developed by Burke et al. [9] to optimise a search space of heuristic
sequences comprised of two or more low-level heuristics. This work was extended in later
research by Qu et al. [25] to construct heuristic sequences which produce feasible timetables.
The combinations are then analyzed to find distribution patterns of low-level heuristics,
based on which the heuristic sequences are adaptively adjusted to construct better timetables.
In addition, hybridisations of the graph based hyper-heuristic with local search methods was
investigated in [24].



6 Edmund K. Burke et al.

Asmuni et al. [2] used fuzzy logic to combine two out of three graph colouring heuristics.
The idea was to combine the two heuristics into a single value which calculates the difficulty
of allocating an exam to a timeslot. The exams are ordered using this value and are scheduled
in order. Furthermore, the approach was extended to tune the fuzzy rules instead of keeping
them fixed [3].

Ersoy et al. [14] developed an approach called the hyperhill-climber where a hyper-
heuristic is embedded in a memetic algorithm. The aim of this hyper-heuristic was to select
the best hill-climber to apply or decide the best order in which hill-climbers are executed. In
addition, Pillay et al. [22] created another approach where genetic programming was used
to evolve hyper-heuristics.

Biligan et al. [5] presented different heuristic selection methods and acceptance criteria
for hyper-heuristics in exam timetabling. Finally, a different method of combining heuristics
was presented by Pillay et al. [23]. The low-level heuristics were combined hierarchically
and applied simultaneously instead of being applied sequentially.

3 A Hyper-heuristic with low-level improvement heuristics

Several low-level heuristics can be used to improve a timetable with varying quality. The
different low-level heuristics used could be considered as different methods for escaping
from local optima. However, the order in which exams are moved and the type of move
performed play an important role in finding the best quality solution. An initial feasible
solution is constructed using the Largest Degree heuristic where the exams in the ordering
are assigned to the timeslot causing the least penalty. In case there is more than one timeslot
with the lowest penalty, one of them is randomly chosen. Our objective is to analyse the
performance of the different low-level heuristics used to minimise the penalty incurred from
a constructed solution. In addition, we test the effect of using different orderings for the
exams causing penalties in the solution. Finally we develop an adaptive approach which
orders the exams causing violations and automatically selects the best heuristic to use for
each exam to produce an improvement.

3.1 The low-level heuristics

In this paper we investigate the effect of using different low-level heuristics or neighbour-
hood operators to improve timetables. A combination of two improvement low-level heuris-
tics is used in our approach. The following is a list of the heuristics investigated:

1. Move Exam (ME): This heuristic selects an exam and reassigns it to the timeslot causing
the least penalty.

2. Swap Exam (SE): This heuristic selects an exam and tries swapping it with a scheduled
exam leading to the least penalty timetable.

3. Kempe Chain Move (KCM): This is similar to the SE heuristic but is more complex
as it involves swapping a subset of conflicting exams in two distinct timeslots. This
neighbourhood operator proved success in some previous research [7,27].

4. Swap Timeslot (ST) : This heuristic selects an exam and swaps all the exams in the same
timeslot with another set of exams in a different timeslot. After testing all the timeslots,
the swap producing the least penalty timetable is applied.



Adaptive Selection of Heuristics for Improving Exam Timetables 7

3.2 The random iterative hyper-heuristic

The study presented in this paper takes a similar approach to that presented in [25] where a
random iterative hyper-heuristic generates heuristic sequences of different quality to solve
the benchmark problem mentioned in section 2.1. Instead of using the heuristic sequences to
construct solutions, they are used here to improve constructed feasible solutions by reschedul-
ing exams causing penalties. Algorithm 1 presents the pseudo-code of this random iterative
hyper-heuristic. The process starts by constructing an initial feasible solution. Since the ini-
tial solution constructed affects the improvement process, a random largest degree graph
colouring heuristic which orders exams according to the number of conflicts each exam has
with others is used [7]. This allows us to compare our approach to other approaches in the
literature which use a similar method in construction. At every iteration, the exams causing
violations in the constructed solution are identified and a random sequence of moves is gen-
erated. A move is the application of one of the low-level heuristics described in section 3.1.
The sequence of moves is then applied to the sequence of exams as they are unscheduled
one by one. Only moves that improve the current solution are accepted. If a move does not
improve the solution, it is skipped and the exam stays in its current position. A sequence is
discarded if an improvement is not obtained after the whole sequence is employed.

This approach was applied to four instances (hec92 I, sta83 I,yor83 I and tre92) of the
Toronto benchmark exam timetabling problems described in section 2.1 for off-line learning
of the best heuristic hybridisations and the order of execution leading to the best improve-
ment. These instances were chosen as they vary in size and cover a range of conflict den-
sities. After running this process for (ex50) times, where e is the number of exams causing
soft constraint violations in the constructed solution, a set of sequences and the penalties
of their corresponding solutions are obtained for further investigation on the effectiveness
of the different heuristics used. Note that, only 50 samples were collected for each rate of
hybridisation as we found that using more samples does not improve the quality of the fi-
nal outcome at this point. Finally, an adaptive approach was developed and applied to the
Toronto benchmark. Furthermore, to test the generality of the approach, it was applied to
the ITC2007 exam timetabling track. The approach is presented in section 4.

Algorithm 1 The pseudo-code of the random iterative hyper-heuristic with low-level im-
provement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot causing the least penalty
create a random ordered list of the exams contributing to the overall penalty incurred
for i = 1 → i = 50 do

for n = 1 → n = e //e: number of exams causing penalty do
initialise heuristic sequence h = [KCM KCM KCM KCM] //h has size e
h = randomly change n heuristics in h to ME, SE or ST
construct a solution sc using h
if solution sc is feasible then

save h and the penalty of its corresponding solution sc
end if

end for
end for



8 Edmund K. Burke et al.

hec92 I yor83 I sta83 I tre92
KCM without hybridisation Best 13.50 43.84 160.43 8.99

KCM with ME Best 12.03 43.84 157.48 8.91
KCM with SE Best 12.03 42.37 157.75 8.75
KCM with ST Best 11.30 41.79 157.27 8.57

Table 3 Results using KCM without a hybridisation and with several different moves.

3.3 Analysis of hybridising improvement low-level heuristics

In order to clearly observe the effect of the different low-level heuristics in improving solu-
tions, the heuristic sequences generated consist of two heuristics. We use the Kempe chain
move heuristic as the basic heuristic in the sequences as it has proved to be successful in
previous work [7,27]. The Kempe chain move involves swapping a subset of exams in two
distinct timeslots making sure that a hard constraint violation does not occur. The rest of the
heuristics (ME, SE and ST) are randomly hybridised into the list of KCM.

The random sequences are generated with different percentages of hybridisation by in-
serting n ME, SE or ST, n = [1,..,e] in the sequences. For each hybridisation of KCM with
either ME, SE or ST, 50 samples are obtained for each amount of hybridisation. Duplicate
sequences are discarded and another sequence is generated instead. The sequences are re-
initialised in each iteration to avoid guiding the search and to explore a wider area of the
search space at this stage.

We applied this approach to four instances of the Toronto benchmark exam timetabling
problems [12]. Table 3 presents the results obtained using ME, SE and ST in a hybridisation
with KCM as well as a comparison against using KCM only.

It is observed that using a Kempe chain only produces the worst results. After introduc-
ing other heuristics in a hybridisation with the Kempe chain moves, better results were ob-
tained. Another observation from Table 3 is that swapping timeslots and performing Kempe
chain moves produces the best improvement for all the problems. One possible reason may
be that swapping timeslots allows the search to be more diverse and to sample different areas
of the search space to find good solutions faster. In addition, no obvious trends could be ob-
tained on the amount of ST hybridisation within the best heuristic sequences. However, it is
observed in all the sequences leading to the best timetables that the ST heuristic is randomly
distributed within the sequence and the percentage of hybridisation is less than 50%.

3.4 Variations of orderings of the exams causing a penalty

To analyse the effect of ordering the unscheduled exams causing a soft constraint violation
in a previous solution, we decided to test different orderings while using the Kempe Chain
and swapping timeslot hybridisation stated in the previous section. After the exams causing
violations are identified, they are ordered first before being reassigned to a timeslot. Several
orderings can be used to help guide the search as follows:

– Largest Degree (LD) : The exams are ordered decreasingly according to the number of
conflicts each exam has with others.

– Largest Weighted Degree (LWD) : The exams are ordered similarly to LD but weighted
according to the number of students involved in the conflict.



Adaptive Selection of Heuristics for Improving Exam Timetables 9

hec92 I yor83 I sta83 I tre92
KCM with ST + RO Average 11.99 42.63 159.74 9.02

KCM with ST + RO Best 11.60 41.33 158.46 8.66
KCM with ST + LD Average 12.69 42.10 163.32 9.00

KCM with ST + LD Best 12.50 39.69 159.50 8.66
KCM with ST + LWD Average 12.06 42.08 159.74 8.91

KCM with ST + LWD Best 11.39 39.69 157.76 8.64
KCM with ST + LP Average 12.15 42.09 159.52 8.85

KCM with ST + LP Best 11.32 39.69 157.49 8.56
KCM with ST + SD tb LWD Average 11.45 41.96 159.39 8.74

KCM with ST + SD tb LWD Best 11.25 39.56 157.37 8.54

Table 4 Results of hybridising KCM with ST using different orderings of the exams causing a soft constraint
violation. The notation X tb Y means heuristic Y is used to break ties in heuristic X

hec92 I yor83 I sta83 I tre92
p-value 1.3E-05 5.27E-21 1.9E-18 1.33E-04
t Stat 5.96 74.66 50.35 4.73

Table 5 t-test on the results from ordering exams causing violations using SD and LP

hec92 I yor83 I sta83 I tre92
p-value 1.58E-07 5.3E-18 6.85E-16 5.56E-08
t Stat 8.67 47 33.89 9.41

Table 6 t-test on the results from ordering exams causing violations using SD and LWD

hec92 I yor83 I sta83 I tre92
p-value 0.18 7.51E-04 1.58E-11 3.36E-09
t Stat 0.93 3.87 17.04 11.62

Table 7 t-test on the results from ordering exams causing violations using LP and LWD

– Saturation Degree (SD) : The exams are ordered increasingly according to the number
of remaining timeslots available to assign them without causing conflicts. In the case
where ties occur, LWD is used as a tie breaker. From our previous work it was shown
that SD produces the best results when LWD is used to break ties in the ordering [10].

– Largest Penalty (LP) : The exams are ordered decreasingly according to the penalty they
incur in the current solution.

– Random Ordering (RO) : The exams are ordered randomly.

Table 4 presents the results of applying different orderings to the unscheduled exams,
then running a random heuristic sequence of KCM and ST to assign them in better timeslots.

As shown in Table 4, we found that using SD and breaking any ties in the ordering using
LWD produced the best results. This is because SD orders the unscheduled exams according
to the number of timeslots available to assign them without causing conflicts. Therefore, the
chances of moving exams at the top of the SD list and finding better timeslots for them
become higher. Ordering the exams according to the penalty they incur proved to be the
second best ordering followed by LWD. The effect of using LD and RO was the same as
randomly choosing an examination to reschedule.



10 Edmund K. Burke et al.

A t-test is also carried out to give an indication if the results using SD, LP and LWD
are significantly different. Tables 5, 6 and 7 summarise the p-values of the t-tests carried out
between the results of different orderings, which are significantly different in all the cases.

4 Adaptive Selection of Low-level Heuristics for Improving Exam Timetables

Algorithm 2 presents the initialisation stage of the adaptive approach. The exams causing
a penalty are first identified and are unscheduled. They are then put in a list and ordered
using SD. Random heuristic sequences are generated using KCM and ST to reschedule the
exams. The sequences are then applied to the ordered exams and the corresponding solutions
are saved. Note that, only 10 sequences are generated for each rate of hybridisation to be
able to adhere to the time limitation and compare our results with the best in the literature
for the ITC2007 dataset. Furthermore, limiting the number of sequences generated in this
stage makes it easier to analyse and observe any trends in the sequences generating the best
results.

Algorithm 2 The pseudo-code of the initialisation stage of the adaptive hyper-heuristic with
low-level improvement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot causing the least penalty
create a list of the exams contributing to the overall penalty incurred ordered by SD
for i = 1 → i = e × 10 //e: number of exams causing penalty do

for n = 1 → n = e do
initialise heuristic sequence h = {KCM KCM ... KCM KCM}
h = randomly change n heuristics in h to ST
construct a solution using h
if solution c is feasible then

save h and the penalty of its corresponding solution c
end if

end for
end for

The above observations indicate that the best solutions were obtained when ordering
the exams causing violations using SD, and rescheduling them using either a Kempe-chain
move or swapping timeslots. It was also observed that the heuristic sequences producing the
top 5% results used the same move for the majority of the exams (i.e. the same heuristic
appears in the same position in more than 75% of the sequences). Therefore, we developed
an intelligent approach that performs an analysis of the best 5% of the sequences produced
to generate a new set of sequences. The new set of sequences obtained better results for all
the problem instances. The adaptive approach was tested and showed to be effective and
comparable with the best approaches in the literature.

Algorithm 3 presents the pseudo-code of the approach which hybridises ST with KCM
in two stages. The process is presented as follows:

1. In the first stage, the best 5% of heuristic sequences are collected and analysed. If the
same heuristic is used in the same position for more than 75% of the heuristic sequences,
then it is stored. Otherwise the position is kept empty. Note that, we also tested collect-
ing more than 5% of the best sequences to analyse them. However, the behaviour was



Adaptive Selection of Heuristics for Improving Exam Timetables 11

random since no trends were seen. Therefore, to guarantee the effectiveness of the ap-
proach, the heuristic was chosen at a certain position if it appears in 75% of the best 5%
heuristic sequences collected.

2. In the second stage, the empty positions are randomly assigned as KCM or ST. n x
5 sequences for the large problems (uta92 I, uta92 II, car91 and car92) and n x 10
sequences for the small problems are generated, respectively. The generated sequences
are then applied to the problem.

Algorithm 3 Adaptive generation of heuristic sequences hybridising KCM and ST
construct initial heuristic sequences // see Algorithm 2
collect the best 5 % of the heuristic sequences
for i = 0 → i < number of exams causing penalty do

count = 0
for j = 1 → j < number of sequences do

if heuristicSequence[i][j] = KCM then
count ++

end if
end for
if count > 0.75 × number of sequences then

finalHeuristicSequence[i] = KCM
else if count < 0.25 × number of sequences then

finalHeuristicSequence[i] = ST
else

finalHeuristicSequence[i] = empty
end if

end for
n = number of empty positions × 5 for large problems or number of empty positions × 10 for small
problems
for i = 0 → i < n do

for j = 0 → j < number of sequences do
if finalHeuristicSequence[j] = empty then

finalHeuristicSequence[j] = KCM or ST
end if

end for
construct a solution using finalHeuristicSequence[j]
if a better solution is obtained then

save finalHeuristicSequence[j] and the penalty of its corresponding solution
end if

end for

4.1 The Toronto Benchmark Results

We tested this approach on the Toronto benchmark exam timetabling problems and present
the results in tables 8 and 9. The average computational time for each stage across the
instances is also presented for 30 runs on a Pentium IV machine with a 1 GB memory. In
addition, the number of exams causing a penalty is presented in the tables.

The best results stated in the literature are presented in Table 10. These include the of
hybridisation of an electromagnetic-like mechanism (EM) and the Great Deluge algorithm
employed by Abdullah et al. [1], the hill-climbing with a late acceptance strategy imple-
mented by Burke et al. [6], the variable neighbourhood search incorporating the use of ge-
netic algorithms used by Burke et al. [7] and the sequential construction method developed
by Caramia et al. [11]. These algorithms are described in section 2.4.



12 Edmund K. Burke et al.

hec92 I yor83 I ear83 I sta83 I car92 car91 uta92 I ute92 lse91 tre92 kfu93
AIH Average 12.69 41.74 38.98 159.21 4.49 5.39 3.56 27.97 11.45 8.90 15.54

AIH Best 11.19 39.47 35.79 157.18 4.31 5.19 3.44 26.70 10.92 8.49 14.51
Time spent in first stage(s) 254 1227 1139 576 10286 74973 35149 178 1189 2065 2153

Time spent in second stage(s) 143 456 553 183 41954 22988 26135 641 277 2228 592
Number of exams causing violations 18 22 26 22 42 49 40 27 39 29 34

Table 8 Results from the the adaptive improvement Hyper-heuristic (AIH) approach on the Toronto Bench-
mark dataset.

hec92 II yor83 II ear83 II sta83 II uta92 II
AIH Average 12.43 50.49 41.98 35.00 3.54

AIH Best 11.35 49.72 39.60 32.57 3.45
Time taken in first stage (s) 352 861 1517 1204 53966

Time taken in second stage (s) 146 513 1275 684 27350
Number of exams causing violations 23 19 30 17 53

Table 9 Contd. Results from the the adaptive improvement Hyper-heuristic (AIH) approach on the Toronto
Benchmark dataset.

Problems AIH Abdullah(2009) Burke(2008) Burke(2010) Caramia(2008)
Best Best Best Best Best

[1] [6] [7] [11]
hec92 I 11.19 9.73 10.06 10.00 9.20
sta83 I 157.18 156.94 157.03 156.90 158.20
yor83 I 39.47 34.95 34.78 34.90 36.20
ute92 26.70 24.90 24.79 24.80 24.40

ear83 I 35.79 36.00 32.65 32.80 29.30
tre92 8.49 8.5 7.72 7.90 9.40
lse91 10.92 10.03 9.86 10.00 9.60
kfu93 14.51 12.62 12.81 13.00 13.80
car92 4.31 3.76 3.81 3.90 6.00

uta92 I 3.44 2.99 3.16 3.20 3.50
car91 5.19 4.42 4.58 4.60 6.60

Table 10 Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to the best
approaches in the literature on the Toronto Benchmark

The results obtained indicate the generality of our approach to different constructed
timetables regardless of the size. We also make a comparison with other hyper-heuristics
which produced the best results in the literature in Table 11. In comparison with the graph-
based hyper-heuristic in [9], our approach performs better in all the cases reported. In addi-
tion, it performs better in 8 out of 11 cases in comparison with the hyper-heuristics inves-
tigated in [23] and [24]. Finally, it performs better in 10 out of 11 cases compared to the
tabu search hyper-heuristic investigated in [16]. Only the problems presented in Table 11
were compared to other results since the results for the other instances in Table 1 were not
reported in the literature.



Adaptive Selection of Heuristics for Improving Exam Timetables 13

Problems AIH Kendall(2004) Burke(2007) Pillay(2009) Qu(2009)
Best Best Best Best Best

[16] [9] [23] [24]
hec92 I 11.19 11.86 12.72 11.85 11.94
sta83 I 157.18 157.38 158.19 158.33 159.00
yor83 I 39.47 - 40.13 40.74 40.24
ute92 26.70 27.60 31.65 28.88 28.30

ear83 I 35.79 40.18 38.19 36.86 35.86
tre92 8.49 8.39 8.85 8.48 8.60
lse91 10.92 - 13.15 11.14 11.15
kfu93 14.51 15.84 15.76 14.62 14.79
car92 4.31 4.67 4.84 4.28 4.16

uta92 I 3.44 - 3.88 3.40 3.42
car91 5.19 5.37 5.41 4.97 5.16

Table 11 Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to other
hyper-heuristics approaches in the literature on the Toronto Benchmark

4.2 The International Timetabling Competition (ITC2007) Results

To test the generality of our approach, we applied it to the ITC2007 exam timetabling
dataset. The initial solution is constructed by ordering the exams according to their satu-
ration degree. The exams are assigned a random timeslot in the situation where more than
one timeslot is available. After a feasible solution is constructed the Adaptive Improvement
Hyper-heuristic was applied to the constructed solution. To allow a fair comparison with
the reported competition results, the approach was run for the same amount of time using
11 distinct seeds for each instance. Table 12 presents the results we obtained in comparison
with the best in the literature. The description of the approaches used for comparison is pre-
sented in section 2.3. We do emphasise that the objective here is not to beat the best reported
results but to demonstrate the generality of our approach to different problems with different
constraints. A dash in the table means that no feasible solution was obtained.

The Extended Great Deluge in [17] obtained the best results for 5 out of the 8 instances.
However, the approach was run for a longer time as it was developed after the competition.
In the competition, the best results for all the 8 instances were reported in [19] using a three
phased approach. The GRASP used in [15] produced the second best results.

In comparison with other hyper-heuristic techniques, our approach was able to produce
better results in only one instance when compared to the evolutionary algorithm based hyper-
heuristic presented in [21]. However, it was stated that they did not adhere to the time limi-
tation imposed by the competition.

In comparison to the Constraint Based Solver developed in [4], our approach performed
better in 3 out of the 8 instances. The approach using the Drools solver in [13] obtained
feasibility for only 5 instances. Our approach outperformed it as we were able to gain fea-
sibility for all the 8 instances. This demonstrates the generality of our approach to solving
exam timetabling problems. Finally, our approach performed better on 6 of the 8 instances
in comparison with the biologically inspired approach proposed in [20].



14 Edmund K. Burke et al.

Instances AIH McCollum(2009) Muller(2008) Gogos(2008) Atsuta(2008) De Smet(2008) Pillay(2008) Pillay(2010)
Best Best Best Best Best Best Best Best

[17] [19] [15] [4] [13] [20] [21]
Exam 1 6235 4633 4370 5905 8006 6670 12035 8559
Exam 2 2974 405 400 1008 3470 623 3074 830
Exam 3 15832 9064 10049 13862 18622 - 15917 11576
Exam 4 35106 15663 18141 18674 22559 - 23582 21901
Exam 5 4873 3042 2988 4139 4714 3847 6860 3969
Exam 6 31756 25880 26950 27640 29155 27815 32250 28340
Exam 7 11562 4037 4213 6683 10473 5420 17666 8167
Exam 8 20994 7461 7861 10521 14317 - 16184 12658

Table 12 Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to the best
approaches in the literature on the ITC2007 dataset

5 Conclusions

The study presented in this paper implements a hyper-heuristic approach which adaptively
adjusts heuristic combinations to achieve the best improvement on constructed timetables.
An investigation is made on the low-level heuristics used and the order in which exams
causing soft constraint violations are rescheduled. The analysis is performed on a set of
four benchmark instances of differing difficulty in an off-line learning process. It is shown
that, of the heuristics tried, the best to combine with Kempe chains is the timeslot swapping
heuristic. In addition, better solutions are produced when ordering the exams causing a soft
constraint violation using Saturation Degree and breaking any ties with Largest Weighted
Degree. Based on the output of the learning process, an adaptive approach which analyzes
and adjusts some randomly generated sequences is implemented and applied to the rest of
the instances. Furthermore, the hyper-heuristic approach is applied to a more constrained
dataset, and showed to produce very competitive results compared to other approaches in
the literature on both datasets.

Future research directions include performing improvements during the timetable con-
struction stage instead of performing the improvements at the end of the construction. Using
hybridisations of more than two low-level heuristics could also be investigated. Finally, the
approach investigated in this paper can be applied to course timetabling.

References

1. S. Abdullah, H. Turabieh, and B. McCollum. A hybridization of electromagnetic-like mechanism and
great deluge for examination timetabling problems. In Proceedings of the 6th International Workshop
on Hybrid Metaheuristics (HM2009), volume 5818 of Lecture Notes in Computer Science, pages 60–72.
Springer, 2009.

2. H. Asmuni, E.K. Burke, J. Garibaldi, and B. McCollum. Fuzzy multiple ordering criteria for examination
timetabling. In E.K. Burke and M. Trick, editors, Selected Papers from the 5th International Conference
on the Practice and Theory of Automated Timetabling, volume 3616 of Lecture Notes in Computer
Science, pages 334–353. Springer, 2004.

3. H. Asmuni, E.K. Burke, J. Garibaldi, B. McCollum, and A.J. Parkes. An investigation of fuzzy multiple
heuristic orderings in the construction of university examination timetables. Computers and Operations
Research, 36(4):981–1001, 2009.

4. M. Atsuta, K. Nonobe, and T. Ibaraki. Itc2007 track 1: An approach using general csp solver. In Practice
and Theory of Automated Timetabling (PATAT 2008), pages 19–22, August 2008.



Adaptive Selection of Heuristics for Improving Exam Timetables 15

5. B. Biligan, E. Ozcan, and Korkmaz E.E. An experimental study on hyper-heuristics and exam
timetabling. In E. Burke and H. Rudova, editors, Practice and Theory of Automated Timetabling VI:
Selected Papers from the 6th International Conference PATAT 2006, volume 3867 of Lecture Notes in
Computer Science, pages 394–412, 2007.

6. E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing for examination timetabling prob-
lems. In Proceedings of the conference on the Practice and Theory of Automated Timetabling(PATAT),
2008.

7. E.K. Burke, A. Eckersley, B. McCollum, S. Petrovic, and R. Qu. Hybrid variable neighbourhood ap-
proaches to university exam timetabling. European Journal of Operational Research (EJOR), 206:46–
53, 2010.

8. E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In F. Glover and G. Kochenberger, editors, Handbook of Meta-
Heuristics, pages 457–474. Kluwer, 2003.

9. E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic for edu-
cational timetabling problems. European Journal of Operational Research, 176:177–192, 2007.

10. E.K. Burke, R. Qu, and A. Soghier. Adaptive tie breaking and hybridisation in a graph-based hyper-
heuristic for exam timetabling problems. under review at European Journal of Operational Research,
2009.

11. M. Caramia, P. Dell Olmo, and G.F. Italiano. Novel local-search-based approaches to university exami-
nation timetabling. Informs Journal of Computing, 20(1):86–99, 2008.

12. M.W. Carter, G. Laporte, and S.Y. Lee. Examination timetabling: Algorithmic strategies and applica-
tions. Journal of Operational Research Society, 74:373–383, 1996.

13. G. De Smet. Itc2007 - examination track. In Practice and Theory of Automated Timetabling (PATAT
2008), pages 19–22, August 2008.

14. E. Ersoy, E. Ozcan, and Uyar S. Memetic algorithms and hill-climbers. In P. Baptiste, G. Kendall, A.M.
Kordon, and F. Sourd, editors, Proceedings of the 3rd Multidisciplinary International Conference on
Scheduling: Theory and Applications Conference(MISTA2007), pages 159–166, 2007.

15. C. Gogos, P. Alefragis, and E. Housos. A multi-staged algorithmic process for the solution of the ex-
amination timetabling problem. In Practice and Theory of Automated Timetabling (PATAT 2008), pages
19–22, 2008.

16. G. Kendall and N. Mohd Hussin. An investigation of a tabu search based hyper-heuristic for examination
timetabling. In G. Kendall, E. Burke, S. Petrovic, and M. Gendreau, editors, Selected Papers from MISTA
2005, pages 309–328. Springer, 2005.

17. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Abdullah. An extended great deluge
approach to the examination timetabling problem. In Proceedings of the 4th Multidisciplinary Interna-
tional Scheduling: Theory and Applications 2009 (MISTA 2009), pp. 424-434, 10-12 August , Dublin,
Ireland, 2009.

18. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, L. Di Gaspero, A. J. Parkes, R. Qu, and
E. K. Burke. Setting the research agenda in automated timetabling: The second international timetabling
competition. INFORMS Journal of Computing, doi: 10.1287/ijoc.1090.0320, 2008.

19. T. Muller. Itc 2007 solver description: A hybrid approach. In Practice and Theory of Automated
Timetabling (PATAT 2008), pages 19–22, August 2008.

20. N. Pillay. A developmental approach to the examination timetabling problem. In Practice and Theory
of Automated Timetabling (PATAT 2008), pages 19–22, August 2008.

21. N. Pillay. Evolving hyper-heuristics for a highly constrained examination timetabling problem. In
Proceedings of the 8th International Conference on the Practice and Theory of Automated Timetabling
(PATAT’10), pages 336–346, 2010.

22. N. Pillay and W. Banzhaf. A genetic programming approach to the generation of hyper-heuristic systems
for the uncapicitated examination timetabling problem. In Neves et al., editor, Progress in Artificial
Intelligence, volume 4874 of Lecture Notes in Artificial Intelligence, pages 223–234, 2007.

23. N. Pillay and W. Banzhaf. A study of heuristic combinations for hyper-heuristic systems for the uncapici-
tated examination timetabling problem. European Journal of Operational Research, 197:482–491, 2009.

24. R. Qu and E.K. Burke. Hybridisations within a graph-based hyper-heuristic framework for university
timetabling problems. Journal of Operational Research Society, 60:1273–1285, 2009.

25. R. Qu, E.K. Burke, and B. McCollum. Adaptive automated construction of hybrid heuristics for exam
timetabling and graph colouring problems. European Journal of Operational Research, 198(2):392–404,
2009.

26. R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A survey of search methodologies and
automated approaches for examination timetabling. Journal of Scheduling, 12(1):55–89, 2009.

27. J.M. Thompson and K.A. Dowsland. Variants of simulated annealing for the examination timetabling
problem. Annuals of Operations Research, 63:105–128, 1996.



16 Edmund K. Burke et al.

28. Y. Yang and S. Petrovic. A novel similarity measure for heuristic selection in examination timetabling. In
Practice and Theory of Automated Timetabling: Selected papers from the 5th International Conference
.Lecture Notes in Computer Science, volume 3616, pages 377–396, 2005.


