
DOMAIN DECOMPOSITION PRECONDITIONERS FOR
DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC

PROBLEMS ON COMPLICATED DOMAINS

PAOLA F. ANTONIETTI ∗, STEFANO GIANI † , AND PAUL HOUSTON ‡

Abstract. In this article we consider the application of Schwarz-type domain decomposition pre-
conditioners for discontinuous Galerkin finite element approximations of elliptic partial differential
equations posed on complicated domains, which are characterized by small details in the compu-
tational domain or microstructures. In this setting, it is necessary to define a suitable coarse-level
solver, in order to guarantee the scalability of the preconditioner under mesh refinement. To this end,
we exploit recent ideas developed in the so-called composite finite element framework, which allows
for the definition of finite element methods on general meshes consisting of agglomerated elements.
Numerical experiments highlighting the practical performance of the proposed preconditioner are
presented.

Key words. Composite finite element methods, discontinuous Galerkin methods, domain de-
composition, Schwarz preconditioners

1. Introduction. In recent years, considerable attention has been devoted to the
development of efficient iterative solvers for the solution of the linear system of equa-
tions arising from the discontinuous Galerkin finite element (DGFEM) discretization
of a range of model problems. In the framework of two level preconditioners, scalable
non-overlapping Schwarz methods have been proposed and analyzed for the h–version
of the DGFEM in the articles [21, 18, 4, 5, 8, 15, 9]. More recently, in [6, 11], it has
been proved that the non-overlapping Schwarz preconditioners can also be success-
fully employed to reduce the condition number of the stiffness matrices arising from a
wide class of high–order DGFEM discretizations of elliptic problems; see, also, [7]. We
stress that Schwarz-type preconditioners are particularly suited to DGFEMs, in the
sense that uniform scalability of the underlying iterative method may be established
without the need to overlap the subdomain partition of the computational mesh.
This is a particularly attractive property, since the absence of overlapping subdo-
mains reduces communication between processors on parallel machines. By (uniform)
scalability, we mean that the number of iterations needed to compute the solution
of the underlying system of equations is uniform, as the mesh is refined, provided
that an appropriate coarse mesh solution is computed as part of the precondition-
ing strategy. Of course, for uniformity, the ratio of the granularity of the fine and
coarse meshes must remain fixed under mesh refinement. However, as for most other
multilevel strategies, the main difficulty regarding the implementation of this class of
preconditioners is the construction of a coarser mesh starting from a given fine one.
Indeed, naive strategies which are typically employed in practice often lead to the
generation of “holes” in the coarse mesh, and the poor approximation of fine scale
geometric features. Moreover, the application of these techniques is particularly prob-
lematic on unstructured meshes, or hybrid meshes consisting of mixed element types,
as well as non-conforming meshes containing hanging nodes. The construction of a
poor quality coarse mesh can lead to a significant degradation in the performance of

∗ MOX–Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy, email: paola.antonietti@polimi.it.
† School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1

3LE, UK, email: stefano.giani@durham.ac.uk.
‡ School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7

2RD, UK, email: Paul.Houston@nottingham.ac.uk.

1



2 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

iterative solvers, and in particular to a loss of uniform scalability. By this we mean
that the number of iterations needed to compute the numerical solution on the fine
mesh increases dramatically under mesh refinement.

A new class of finite elements, referred to as Composite Finite Elements (CFEs),
have been developed for the numerical solution of partial differential equations, which
are particularly suited to problems characterized by small details in the computational
domain or micro-structures; see, for example, [24, 23], for details. The key idea
of CFEs is to exploit general shaped element domains upon which elemental basis
functions may only be locally piecewise smooth. In particular, an element domain
within a CFE may consist of a collection of neighboring elements present within a
standard finite element method, with the basis function of the CFE being constructed
as a linear combination of those defined on the standard finite element subdomains.
In this way, CFEs offer an ideal mathematical and practical framework within which
finite element solutions on (coarse) agglomerated meshes may be defined. CFEs have
been developed in the context of h–version conforming finite element methods by
Sauter and co-workers in the series of articles [24, 23, 26]; the generalization to hp–
version discontinuous Galerkin composite finite element methods (DGCFEMs) has
been considered in our recent article [10]. For related work on the application of
DGFEMs on meshes consisting of agglomerated elements, we refer to the recent article
[16], cf. also [20]. We point out that the general philosophy of CFE methods is to
construct the underlying finite element spaces based on first generating a hierarchy
of meshes, such that the finest mesh does indeed provide an accurate representation
of the underlying computational domain, followed by the introduction of appropriate
prolongation operators which determine how the finite element basis functions on
the coarse mesh are defined in terms of those on the fine grid. We stress that CFE
methods provide a flexible mathematical and practical framework within which coarse
level approximations may be computed as part of a multilevel iterative solver strategy
on domain conforming partitions consisting of general polygonal/polyhedral elements.

In this article we consider the application of Schwarz-type domain decomposition
preconditioners for DGFEM approximations of elliptic partial differential equations
posed on complicated domains, which are characterized by small details in the compu-
tational domain or microstructures. In particular, we exploit the DGCFEM proposed
and analyzed in [10] to provide the necessary coarse mesh solver. The performance
of the proposed preconditioner will be investigated through a series of numerical ex-
periments. This article is organized as follows. In Section 2 we introduce the model
problem and its (standard) DGFEM approximation. Section 3 is devoted to defin-
ing the DGCFEM, which represents a natural extension of the standard DGFEM
on (coarse) agglomerated meshes. In Section 4 we construct the Schwarz precondi-
tioners, and recall the main theoretical results shown in [6]. Section 5 outlines the
implementation aspects of the proposed Schwarz preconditioners. In Section 6 we
present some numerical results obtained with the additive Schwarz preconditioner.
Finally, in Section 7 we summarize the work presented in this paper and draw some
conclusions.

2. Model problem and discretization. In this article we consider the follow-
ing model problem: given f ∈ L2(Ω), find u such that

−∆u = f in Ω, (2.1)

u = 0 on ∂Ω. (2.2)



Schwarz Preconditioners based on Composite DG Methods 3

Here, Ω is a bounded, connected Lipschitz domain in Rd, d > 1, with boundary ∂Ω;
in particular, it is assumed that Ω is a ‘complicated’ domain, in the sense that it
contains small details or micro-structures.

To discretize (2.1)–(2.2), we employ the hp–version of the symmetric interior
penalty DGFEM (IP DGFEM). We first introduce the necessary notation: we consider
shape-regular meshes Th that partition Ω ⊂ Rd into open disjoint elements κ, such
that Ω =

⋃
κ∈Th κ. By hκ we denote the element diameter of κ ∈ Th, h = maxκ∈Th hκ,

and nκ signifies the unit outward normal vector to κ. We allow the meshes Th to be
1-irregular, i.e., each face of any one element κ ∈ Th contains at most one hanging
node (which, for simplicity, we assume to be the midpoint of the corresponding face).
We assume that the family {Th}h>0 is of bounded local variation, i.e., there exists a
constant ρ1 ≥ 1, independent of the element sizes, such that

ρ−1
1 ≤ hκ/hκ′ ≤ ρ1, (2.3)

for any pair of elements κ, κ′ ∈ Th which share a common face F = ∂κ ∩ ∂κ′.
To each κ ∈ Th we assign a polynomial degree pκ ≥ 1 (local approximation order)

and define the degree vector p = {pκ : κ ∈ Th}. We suppose that p is also of bounded
local variation, i.e., there exists a constant ρ2 ≥ 1, independent of the element sizes
and p, such that, for any pair of neighbouring elements κ, κ′ ∈ Th,

ρ−1
2 ≤ pκ/pκ′ ≤ ρ2. (2.4)

With this notation, we introduce the finite element space

V (Th, p) := {v ∈ L2(Ω) : v|κ ∈ Spκ(κ) ∀κ ∈ Th} ,

where Sp(κ), p ≥ 1, is either the space Pp(κ) of polynomials of degree at most p if κ is
a simplex, or the space Qp(κ) of all tensor product polynomials of degree at most p in
each variable if κ is a hypercube. To avoid the proliferation of constants, throughout
this article the notation x . y means that there exists a constant C > 0, independent
of the mesh size and the polynomial approximation order, such that x ≤ Cy.

We shall now define some suitable face operators that are required for the defini-
tion of the IP DGFEM. Associated with the mesh Th, we denote by FI(Th) the set
of all interior faces of the partition Th of Ω, and by FB(Th) the set of all boundary
faces of Th. In addition, F (Th) = FB(Th) ∪FI(Th) denotes the set of all faces in the
mesh Th.

Let v and q be scalar- and vector-valued functions, respectively, which are smooth
inside each element κ ∈ Th. Given two adjacent elements, κ+, κ− ∈ Th which share a
common face F ∈ FI(Th), i.e., F = ∂κ+ ∩ ∂κ−, we write v± and q± to denote the
traces of the functions v and q, respectively, on the face F , taken from the interior of
κ±, respectively. With this notation, the averages of v and q at x ∈ F are given by

{{v}} :=
1

2
(v+ + v−), {{q}} :=

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ F are given by

[[v]] := v+nκ+ + v−nκ− , [[q]] := q+ · nκ+ + q− · nκ− ,

respectively, where nκ± denotes the unit outward normal vector on ∂κ±, respectively.
On a boundary face F ∈ FB(Th), we set {{v}} = v, {{q}} = q, [[v]] = vn and [[q]] = q ·n,
with n denoting the unit outward normal vector on the boundary ∂Ω.



4 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

For a face F ∈ F (Th), we define hF to be diameter of the face; moreover, the face
polynomial degree pF is defined by

pF :=

{
max(pκ, pκ′), if F = ∂κ ∩ ∂κ′ ∈ FI(Th),

pκ, if F = ∂κ ∩ ∂Ω ∈ FB(Th).
(2.5)

Note that, under the assumption that our decomposition is shape-regular and 1-
irregular (with the hanging node at the midpoint of the corresponding face), we
always have that, for any element κ in Th, and for any face F ∈ F (Th), F ⊂ ∂κ, the
following inequality holds hF . hκ.

With this notation, the IP DGFEM numerical approximation of the problem
(2.1)–(2.2) is defined as follows: find uh ∈ V (Th, p) such that

BDG(uh, vh) = Fh(vh) (2.6)

for all vh ∈ V (Th, p), where Fh(v) :=
∫

Ω
fv dx, and

BDG(u, v) :=
∑
κ∈Th

∫
κ

∇u · ∇v dx−
∑

F∈F (Th)

∫
F

(
{{∇hv}} · [[u]] + {{∇hu}} · [[v]]

)
ds

+
∑

F∈F (Th)

∫
F

σh [[u]] · [[v]] ds. (2.7)

Here, ∇h denotes the elementwise gradient operator. Furthermore, the function σh ∈
L∞(F (Th)) is the discontinuity stabilization function that is chosen as

σh := γ
p2
F

hF
, (2.8)

where γ > 0 is a (sufficiently large) constant. The bilinear form (2.7) is continuous
and coercive in V (Th, p) with respect to the energy norm

‖v‖DG :=

∑
κ∈Th

‖∇v‖2L2(κ) +
∑

F∈F (Th)

‖σ1/2
h [[v]]‖2L2(F )

1/2

, (2.9)

cf. [13, 14], for example.

We remark that the minimal dimension of the underlying finite element space
V (Th, p) constructed in this section is dependent on the number and size of any lo-
calized geometric features present in Ω. Indeed, complicated domains which contain,
for example, a large number of small holes will necessarily require a fine mesh Th
to accurately describe Ω, thereby, giving rise to a (potentially) very large number
of degrees of freedom in V (Th, p). It is therefore essential to develop suitable iter-
ative solution methods which can efficiently compute the finite element solution uh
defined by (2.6). In Section 4, we consider the construction of two-level Schwarz–type
preconditioners. First, however, in the following section, we introduce the so–called
composite DGFEM (DGCFEM), which is based on employing arbitrarily shaped (ag-
glomerated) elements; this scheme will then form the basis of the coarse grid solver
defined in Section 4.



Schwarz Preconditioners based on Composite DG Methods 5

3. Construction of composite DGFEMs. In this section we briefly introduce
the composite version of the IP DGFEM; for further details, we refer to our recent
article [10]. In order to develop the a priori error analysis outlined in [10], so-called
logical meshes were constructed, based on employing ‘standard’ element shapes, i.e.,
simplices and hexahedra, for example. For the purposes of defining a coarse level
solver for application within a Schwarz–type preconditioner, we consider a simpler
and more general construction following the ideas developed in the article [16].

Given the (fine) mesh Th, we consider a coarsened mesh TH which is constructed
based on agglomerating elements from Th. Thereby, TH represents a partition of Ω
into disjoint elements K, such that (i) Ω = ∪K∈THK; (ii) we may write

K = ∪κ∈RKκ, (3.1)

where RK denotes the set of elements from the fine mesh Th, which are employed to
construct K. For the purposes of this article, we assume for simplicity, that the ele-
ments K are connected and satisfy a star-like property; we remark that this restriction
may be relaxed, cf. [10]. As in the previous section, we denote by FI(TH) the set
of all interior faces of the partition TH of Ω, and by FB(TH) the set of all boundary
faces of TH ; furthermore, we set F (TH) = FI(TH) ∪ FB(TH).

With this notation, we make the following key assumption:
(A1) For all elements K ∈ TH , we define

CK = card {F ∈ F (TH) : F ⊂ ∂K} .

In the following we assume that there exists a positive constant CF such that

max
K∈TH

CK ≤ CF ,

uniformly with respect to the mesh size.
To each composite/agglomerated element K ∈ TH , we assign the polynomial

degree qK ≥ 1 as follows:

qK ≤ min
κ∈RK

pκ.

Furthermore, we define the polynomial degree vector q = {qK : K ∈ TH}.
The construction of the composite finite element space V (TH , q), cf. below, may

be undertaken based on employing a suitable prolongation operator R>0 , cf. [24,
10]. We point out that the choice of R>0 employed in [24] leads to finite element
basis functions, defined on each composite element domain K, which are piecewise
polynomials. In contrast, we follow the approach developed in [10], whereby the
restriction of a function from the underlying finite element space to an element K ∈ TH
is a polynomial of degree qK. Thereby, we write

V (TH , q) = {v ∈ L2(Ω) : v|K ∈ PqK(K) ∀K ∈ TH} ,

cf., also, [16]. Following [10], the classical prolongation (injection) operator from
V (TH , q) to V (Th, p) is denoted by R>0 : V (TH , q)→ V (Th, p). With this notation, we
may write V (TH , q) in the following alternative form

V (TH , q) = {v ∈ L2(Ω) : v = R0φ, φ ∈ V (Th, p)} ,

where the restriction operator R0 is defined as the transpose of R>0 with respect to
the L2(Ω) inner product.



6 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

The DGCFEM discretization of the problem (2.1)–(2.2) is defined as follows: find
uH ∈ V (TH , q) such that

BCDG(uH , vH) = FH(vH) (3.2)

for all vH ∈ V (TH , q), where BCDG(·, ·) and FH(·) are defined in an analogous manner
to BDG(·, ·) and Fh(·), respectively, relative to the discontinuity stabilization function
σH . We remark that σH is defined in a similar fashion to σh, subject to a change in the
definition of the representative face volume employed and of the, possibly different,
polynomial approximation degree employed on the coarse grid, cf. [10].

Remark 3.1. Given the choice of the prolongation operator R>0 , the implemen-
tation of the DGCFEM defined by (3.2) may be undertaken in a relatively straight-
forward manner following the ideas developed in the articles [16, 20]; we also refer
to [10] for the case when more general prolongation operators may be employed. In
the current article, the element polynomial bases on the (coarse) finite element space
V (TH , q) are constructed using the bounding box approach outlined in [20]; see [16]
for related work.

Remark 3.2. For the purposes of this article the fine and coarse meshes Th
and TH , respectively, are constructed based on employing the refinement algorithm
outlined in our recent article [10], cf. Algorithm 3.1. Here, the essential idea is
to first construct an overlapping coarse mesh, in the sense that it does not resolve
the boundary of the computational domain Ω. Subsequently, this mesh is adaptively
refined in such a manner that the resulting final (fine) mesh provides an accurate
description of Ω; we point out that as this iteration strategy proceeds, sub-elements
generated during the refinement process which lie outside of the computational domain
are simply deleted. In this manner, after possible movement of the nodes close to the
boundary ∂Ω, we may construct Th. The coarse mesh is then defined in a natural
manner, as the agglomeration of elements at a given refinement level, which all share
the same parent element from the original overlapping mesh. Full details of this
algorithm are given in [10].

4. Non-overlapping Schwarz preconditioners. In this section we introduce
two level non-overlapping Schwarz preconditioners in order to compute the numerical
solution uh defined on the fine space V (Th, p) given by (2.6), cf. [4, 5, 6]. We denote
by TS = {Ωi}Ni=1 a family of partitions of Ω into N non-overlapping domains, such
that Ω = ∪Ni=1Ωi. With this (user–defined) partition, we consider two families of fine
and coarse meshes Th and TH , respectively, constructed as in the previous sections,
respectively. In particular, we assume that Th, TH and TS are nested, TS ⊆ TH ⊆ Th,
i.e., the subdomain partition does not cut any element of TH and thereby of Th.

With this notation, we now introduce the local and coarse level solvers.
Local solvers. For i = 1, . . . , N , the local DGFEM finite element spaces are de-

fined on Ωi, respectively, in the following manner:

V (Thi , p) = {v ∈ L2(Ωi) : v|κ ∈ Spκ(κ) ∀κ ∈ Thi} ,

where Thi = {κ ∈ Th : κ ⊂ Ωi}. The classical prolongation (injection) operator
from V (Thi , p) to V (Th, p) is denoted by R>i : V (Thi , p) → V (Th, p). The restriction
operator Ri is defined as the transpose of R>i . The local solvers BDGi(·, ·) : V (Thi , p)×
V (Thi , p)→ R are defined as follows:

BDGi(ui, vi) := BDG(R
>
i ui, R

>
i vi) ∀ui, vi ∈ V (Thi , p), i = 1, . . . , N. (4.1)



Schwarz Preconditioners based on Composite DG Methods 7

Coarse solver. Employing the composite discontinuous Galerkin finite element
space V (TH , q) ⊂ V (Th, p), the coarse solver BDG0(·, ·) : V (TH , q) × V (TH , q) → R is
defined by

BDG0(u0, v0) := BCDG(u0, v0) ∀u0, v0 ∈ V (TH , q). (4.2)

Local projection operators. For i = 1, . . . , N , the local projection operators P̃i :
V (Th, p)→ V (Thi , p) are defined by:

BDGi(P̃iu, vi) := BDG(u,R
>
i vi) ∀vi ∈ V (Thi , p).

Analogously, on the coarse space V (TH , q), we let P̃0 : V (Th, p)→ V (TH , q) be given
by

BDG0(P̃0u, v0) := BDG(u,R
>
0 v0) ∀v0 ∈ V (TH , q).

With this notation, we define the projection operators

Pi := R>i P̃i : V (Th, p)→ V (Th, p),

for i = 0, 1, . . . , N .
Thereby, the additive and multiplicative Schwarz operators are defined, respec-

tively, by

Pad :=

N∑
i=0

Pi, Pmu := I − (I − PN )(I − PN−1) · · · (I − P0). (4.3)

As in [6], a symmetrized variant of the multiplicative Schwarz operator may also de-
fined.

To analyse the Schwarz operators (4.3) we follow the abstract framework of
Schwarz methods [27]; see also [19] for a new additive convergence analysis of the
multiplicative Schwarz operator Pmu. Let κ(Pad) denote the condition number of the
additive Schwarz operator Pad, i.e.,

κ(Pad) :=
λmax(Pad)

λmin(Pad)
,

where λmax(Pad) and λmin(Pad) are the extremal eigenvalues of the operator Pad, and
let Emu be the error propagation operator of the multiplicative Schwarz operator, i.e.,

Emu := (I − PN )(I − PN−1) · · · (I − P0). (4.4)

We first recall the following preliminary result that will be needed in the forth-
coming analysis; we refer to [6] for the proof.

Lemma 4.1. For any v ∈ V (Th, p), let vi ∈ V (Thi , p) be the restriction of v to
Ωi, i.e.,

vi := Riv, i = 1, . . . , N.

Then, we have∣∣∣∣∣∣∣∣
N∑

i,j=1
i 6=j

BDG(R
>
i vi, R

>
j vj)

∣∣∣∣∣∣∣∣ . BDG(v, v) +

N∑
i,j=1
i 6=j

∑
F∈Γij

‖σ1/2
h vi‖2L2(F ) + ‖σ1/2

h vj‖2L2(F ),



8 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

where Γij is the set of all faces F ∈ F (Th) such that F ⊂ ∂Ωi ∩ ∂Ωj, i, j = 1, . . . , N .
A key point for the analysis of the Schwarz preconditioners is the existence of the
following stable splitting.

Lemma 4.2. Let C\ be defined as

C\ := γ max
K∈TH

HK
maxκ∈RK p

2
κ

minκ∈RK hκ
,

where RK denotes the set of elements from the fine mesh Th, which are employed to
construct K ∈ TH and HK denotes the diameter of the element K ∈ TH . Then, for
any v ∈ V (Th, p) there exist v0 ∈ V (TH , q) and vi ∈ V (Thi , p), i = 1, . . . , N , such that

v = R>0 v0 +

N∑
i=1

R>i vi,

and

N∑
i=0

BDGi(vi, vi) . C\BDG(v, v).

Proof. Given v ∈ V (Th, p), let Π0(v) be defined as the projection of v onto the
space of piecewise constant functions defined on TH , i.e., Π0(v) ∈ V (TH , 0), and∫

K
Π0(v)w dx :=

∫
K
v w dx ∀w ∈ V (TH , 0) ∀K ∈ TH .

Next, we define

v0 := Π0(v), vi := Ri(v −Π0(v)), i = 1, . . . , N,

and observe that, since V (TH , 0) ⊂ V (Th, 0) ⊂ V (Th, p), R>0 Π0(v) ≡ R>0 v0 ∈ V (Th, p).
Next, we decompose (uniquely) v−R>0 Π0(v) ≡ v−R>0 v0 as v−R>0 v0 =

∑N
i=1R

>
i vi.

Using the above decomposition and the definition of the local solvers (4.1), we obtain

BDG(v −R>0 v0, v −R>0 v0) = BDG(

N∑
i=1

R>i vi,

N∑
j=1

R>j vj)

=

N∑
i=1

BDG(R
>
i vi, R

>
i vi) +

N∑
i,j=1
i 6=j

BDG(R
>
i vi, R

>
j vj)

=

N∑
i=1

BDGi(vi, vi) +

N∑
i,j=1
i6=j

BDG(R
>
i vi, R

>
j vj).

Rearranging the terms, we get

N∑
i=1

BDGi(vi, vi) = BDG(v −R>0 v0, v −R>0 v0)−
N∑

i,j=1
i 6=j

BDG(R
>
i vi, R

>
j vj),



Schwarz Preconditioners based on Composite DG Methods 9

and then

N∑
i=1

BDGi(vi, vi) ≤
∣∣BDG(v −R>0 v0, v −R>0 v0)

∣∣+

∣∣∣∣∣∣∣∣
N∑

i,j=1
i 6=j

BDG(R
>
i vi, R

>
j vj)

∣∣∣∣∣∣∣∣ . (4.5)

Next we estimate each of the two terms on the right hand side of (4.5). Before we
proceed, we point out that, recalling that the coarse and fine partitions are nested,
since R>0 v0 is piecewise constant on each coarse element K ∈ TH , it is also piecewise
constant on each fine element κ ∈ Th. For the first term, we use the continuity of the
bilinear form in the energy norm (2.9), exploit that R>0 v0 is piecewise constant on
each coarse element K ∈ TH , and employ coercivity. Thereby, we get∣∣BDG(v −R>0 v0, v −R>0 v0)

∣∣ . ∑
κ∈Th

‖∇(v −R>0 v0)‖2L2(κ) +
∑

F∈F (Th)

‖σ1/2
h [[v −R>0 v0]]‖2L2(F )

=
∑
κ∈Th

‖∇v‖2L2(κ) +
∑

F∈F (Th)

‖σ1/2
h [[v −R>0 v0]]‖2L2(F )

. BDG(v, v) +
∑

F∈F (Th)

‖σ1/2
h [[v −R>0 v0]]‖2L2(F ).

Observing again that R>0 v0 is continuous within each coarse element K ∈ TH , the last
term on the right hand side can be bounded as

∑
F∈F (Th)

‖σ1/2
h [[v −R>0 v0]]‖2L2(F ) ≤

∑
K∈TH

 ∑
F∈F (Th):F⊂K

‖σ1/2
h [[v]]‖2L2(F )

+
∑

F∈F (Th):F⊂∂K

‖σ1/2
h [[v −R>0 v0]]‖2L2(F )

 .

Thereby,∑
F∈F (Th)

‖σ1/2
h [[v −R>0 v0]]‖2L2(F ) ≤ BDG(v, v) +

∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K),

where we have also used the definition (2.8) of the discontinuity stabilization function
σh. Hence, we obtain∣∣BDG(v −R>0 v0, v −R>0 v0)

∣∣ . BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K).

(4.6)

For the second term on the right hand side of (4.5), Lemma 4.1 immediately gives∣∣∣∣∣∣∣∣
N∑

i,j=1
i6=j

BDG(R
>
i vi, R

>
j vj)

∣∣∣∣∣∣∣∣ . BDG(v, v) +

N∑
i,j=1
i 6=j

∑
F∈Γij

‖σ1/2
h vi‖2L2(F ) + ‖σ1/2

h vj‖2L2(F )

. BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K),



10 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

where the last step follows by observing that the partitions are nested. Collecting the
previous estimates we obtain

N∑
i=1

BDGi(vi, vi) . BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K).

Next, we add BDG0(v0, v0) to both sides, i.e., we have

N∑
i=0

BDGi(vi, vi) . BDG(v, v) +BDG0(v0, v0) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K).

Using the definition of the coarse solver (4.2), recalling that v0 is piecewise constant
on the coarse mesh TH (and therefore R>0 v0 is piecewise constant on the fine mesh
Th), and adding and subtracting v, we obtain

BDG0(v0, v0) =
∑

F∈F (TH)

‖σ1/2
H [[v0]]‖2L2(F )

≤
∑

F∈F (Th)

‖σ1/2
H [[v]]‖2L2(F ) +

∑
F∈F (Th)

‖σ1/2
H [[R>0 v0 − v]]‖2L2(F )

≤
∑

F∈F (Th)

σH
σh
‖σ1/2

h [[v]]‖2L2(F ) +
∑

F∈F (Th)

σH
σh
‖σ1/2

h [[R>0 v0 − v]]‖2L2(F ),

where we have also used that any face F ∈ F (TH) is the union of a number of faces
of the fine mesh Th. Using the definition of the discontinuity stabilization function
(2.8) and observing that σH/σh < 1, we finally obtain

BDG0(v0, v0) ≤ ‖v‖2DG +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K)

. BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K).

Collecting all the previous estimates gives

N∑
i=0

BDGi(vi, vi) . BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
‖v −R>0 v0‖2L2(∂K). (4.7)

To estimate the last term on the right hand side of (4.7) we make use of the following
trace inequality given in [21]:

‖v −R>0 v0‖2L2(∂K) . H−1
K ‖v −R

>
0 v0‖2L2(K)

+HK

 ∑
κ∈Th:κ⊂K

‖∇h(v −R>0 v0)‖2L2(κ) +
∑

F∈F (Th):F⊂K

‖σ1/2
h [[v −R>0 v0]]‖2L2(F )

 .

Recalling that R>0 v0 is continuous and constant on each element K ∈ TH and summing
over the coarse elements we obtain∑

K∈TH

‖v −R>0 v0‖2L2(∂K) .
∑
K∈TH

H−1
K ‖v −R

>
0 v0‖2L2(K) +HK‖v‖2DG,



Schwarz Preconditioners based on Composite DG Methods 11

which inserted in (4.7) leads to

N∑
i=0

BDGi(vi, vi) . (1 +HK)BDG(v, v) +
∑
K∈TH

γ
maxκ∈RK p

2
κ

minκ∈RK hκ
H−1
K ‖v −R

>
0 v0‖2L2(K).

(4.8)
To estimate the term ‖v −Π0(v)‖2L2(K) on the right hand side, we recall the broken
Sobolev–Poincaré inequality

‖v −Π0(v)‖2L2(K) . H2
K

 ∑
κ∈RK

‖∇v‖2L2(κ) +
∑

F∈F (Th):F⊂K

‖σ1/2
h [[v]]‖2L2(F )

 ,

cf. [17]. The lemma now follows by employing the above inequality in (4.8).
Using the stable splitting given in Lemma 4.2 and the abstract framework for the

analysis of Schwarz methods [27], we are now able to state the main result of this
section.

Theorem 4.3. Let C\ be defined as in Lemma 4.2, i.e.,

C\ := γ max
K∈TH

HK
maxκ∈RK p

2
κ

minκ∈RK hκ
,

where RK denotes the set of elements from the fine mesh Th, which are employed to
construct K ∈ TH . Then, there exist constants C1, C2 ≥ 1, independent of the local
meshsize and the local polynomial degrees, such that

κ(Pad) ≤ C1C\.

Moreover, the error propagation operator (4.4) of the multiplicative Schwarz operator
satisfies

‖Emu‖DG ≤ 1− 1

1 + C2C\
,

and therefore a simple Richardson iteration applied to the preconditioned system Pmuu =
gmu, with gmu a suitable right hand side, converges.

Thereby, for quasi-uniform meshes Th and TH of granularity h and H, respectively,
and uniform polynomial orders, i.e., pκ ≡ p for all κ ∈ Th, we deduce that

κ(Pad) ≤ C1γp
2H

h
, Emu ≤ 1− h

1− C2γp2H
.

Remark 4.4. As shown in Theorem 4.3, the condition number of the precondi-
tioned systems still depend on the penalty parameter γ appearing in the definition of
the penalization function (2.8). To obtain preconditioners that are scalable also with
respect to the penalty parameter we refer to [9].

5. Implementation. In this section we briefly outline the implementation of the
above two-level preconditioners; for further details concerning the implementation of
the coarse grid (composite) DGCFEM, we refer to [10]. We first rewrite (2.6) in the
following (equivalent) matrix form: find U ∈ Rn such that

AU = F,

where A ∈ Rn×n is the matrix representation of the bilinear form BDG(·, ·), F ∈ Rn
is the vector representation of the linear functional Fh(·), and n := dim(V (Th, p)). In
order to construct the Schwarz preconditioners outlined in the previous section, we
now proceed in the following steps:



12 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

Aggregation. The construction of the coarse finite element space V (TH , q) from
the fine finite element space V (Th, p) is undertaken, based on employing the aggre-
gation algorithm outlined in [10]. In particular, the idea is to construct the shape
functions defined on the coarse space V (TH , q) as a linear combination of the basis
functions from V (Th, p); i.e., setting n0 := dim(V (TH , q)), we write a coarse level
basis function φH,i, i = 1, . . . , n0, in the following manner

φH,i :=
∑

j=1,...,n

Λi,jφh,j ,

where {φh,j}nj=1 denotes the set of basis functions which span V (Th, p) and

Λ = [Λi,j ]i=1,...,n0;j=1,...,n

defines the matrix representation used to determine how a function defined within the
DGCFEM space V (TH , q) may be represented in the richer space V (Th, p). As noted
in [10], the general approach employed for the computation of the coefficients Λi,j is
based on solving a series of small linear systems; here, we employ an LU factorization
with column pivoting.

Projection (fine to coarse). Exploiting the aggregation matrix Λ introduced above,

the matrix representation of the projection operator P̃0 : V (Th, p) → V (TH , q) is de-
fined in the following manner:

P̃0 := Λ
n0

n
.

We remark that the scaling factor n0/n employed within the definition of P̃0 is typi-
cally used in practice, since it is observed that this scaling leads to a slight reduction
in the number of iterations required to attain convergence of the underlying conjugate
gradient solver, for example. Finally, we note that the matrix Λ is in general quite
sparse, since the basis functions of both the coarse and fine level spaces have small
support; see [10] for details.

Prolongation (coarse to fine). The matrix representation of the prolongation op-
erator R>0 : V (TH , q)→ V (Th, p) is given by

R>0 := Λ> .

Projection onto local spaces. Since the global space V (Th, p) naturally contains the
basis functions which form each of the local finite element spaces V (Thi , p), 1 ≤ i ≤ N ,
the prolongation operators R>i : V (Thi , p) → V (Th, p) and the corresponding local
projection operators P̃i : V (Th, p) → V (Thi , p) are very simple to construct. Indeed,

writing R>i , i = 1, . . . , N , and P̃i, i = 1, . . . , N , to denote the respective matrix
representations of the prolongation and projection operators, respectively, we note
that for a given i, i = 1, . . . , N , R>i is a rectangular matrix of size n × ni, where
ni := dim(V (Thi , p)). Moreover, we note that [R>i ]k,j = 1, only when the indices
j and k correspond to the same basis function which belongs to both V (Thi , p) and
V (Th, p), subject to the given ordering of the basis functions within each of these finite
element spaces; otherwise [R>i ]k,j = 0. With this construction, it is straightforward

to see that P̃i = (R>i )>, i = 1, . . . , N .



Schwarz Preconditioners based on Composite DG Methods 13

Construction of the preconditioner. Firstly, we write A0 ∈ Rn0×n0 to denote the
matrix representation of the bilinear form BDG0(·, ·) arising in the coarse DGCFEM
solver defined in (4.2). Similarly, for i = 1, . . . , N , we also write Ai ∈ Rni×ni to
be the matrix representation of the local bilinear forms BDGi(·, ·) defined in (4.1),
respectively. With this notation, the matrix representation of the projection operators
Pi : V (Th, p)→ V (Th, p), i = 0, 1, . . . , N , is given by

Pi = R>i A−1
i RiA ∈ Rn×n,

where R0 := P̃0. Thereby, the matrix representations Pad and Pmu of the additive
and multiplicative Schwarz operators Pad and Pmu, respectively, are given by

Pad =

N∑
i=0

Pi =

N∑
i=0

R>i A−1
i RiA ≡MadA

and

Pmu = I− (I−PN )(I−PN−1) · · · (I−P0) ≡MmuA,

where I denotes the n× n identity matrix. Here, Mad and Mmu are referred to as the
additive and multiplicative Schwarz preconditioners, respectively.

From an implementation point of view, we simply need to compute the action of
Mad or Mmu on a generic vector when employing an iterative solver to evaluate the
solution of the underlying set of linear equations. Algorithm 1 outlines the action of
the additive Schwarz preconditioner; the multiplicative variant of the preconditioner
may be constructed in an analogous fashion. We point out that the resulting system
of linear equations stemming from the coarse grid solver BDG0(·, ·) and the systems of
linear equations arising from the local solvers BDGi(·, ·), i = 1, . . . , N , are solved based
on employing the Multifrontal Massively Parallel Solver (MUMPS), see [1, 2, 3]. In
order to take full advantage of MUMPS, the factorizations of all problems BDG0(·, ·)
and BDGi(·, ·) are computed only once and used in all calls to the preconditioner.
However, we point out that these may themselves be replaced by iterative solution
methods.

Algorithm 1 Action of the additive Schwarz preconditioner Mad on a generic vector
x ∈ Rn: function z = Madx.

Initialize the resulting vector to zero, i.e., set z = 0.
for i = 1→ N do . Loop over local problems

Restrict the vector x to the local space, i.e., set xi := Rix.
Compute the solution Ui of the local problem AiUi = xi.
Prolongate the vector Ui onto the global space, i.e., set zi := R>i Ui.
Set z = z + zi.

end for

Restrict the vector x onto coarse space, i.e., set x0 := P̃0x. . Coarse solver
Compute the solution U0 of the coarse level problem A0U0 = x0.
Prolongate the vector U0 onto the global space, i.e., set z0 := R>0 U0.
Set z = z + z0.



14 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

(a) (b)

Fig. 6.1. Example 1: (a) Computational domain with 4 holes; (b) Computational domain with
256 holes.

aaaaaa
h−1

H−1
2 4 8 16 32 64

4 19 (17.2) - - - - -

8 32 (42.7) 27 (17.9) - - - -

16 58 (94.8) 47 (43.4) 29 (17.7) - - -

32 93 (199.1) 74 (97.7) 48 (44.5) 31 (17.9) - -

64 134 (403.5) 121 (203.2) 80 (97.5) 50 (44.2) 31 (18.0) -

128 192 (809.5) 185 (410.8) 137 (195.6) 80 (95.5) 50 (44.3) 31 (18.0)
Table 6.1

Example 1: Iteration counts and condition numbers for the preconditioner when Ω = (0, 1)2,
i.e., when Ω does not contain any holes, with p = q = 1.

6. Numerical experiments. In this section we present a series of computa-
tional examples to highlight the practical performance of the non-overlapping Schwarz
preconditioners proposed in this article for problems where the underlying computa-
tional domain contains micro-structures. For simplicity, we restrict ourselves to the
additive Schwarz operator Pad. Throughout this section we select the constant γ ap-
pearing in the discontinuity stabilization function σh equal to 10. All the numerical
examples presented in this section have been computed using the AptoFEM package
(www.aptofem.com).

6.1. Example 1: Two–dimensional domain with micro-structures. In
this first example, we consider a computational domain Ω which contains (potentially)
a large number of holes. Here, we let Ω be the unit square (0, 1)2 in two-dimensions,
which has had a series of uniformly spaced square holes removed; here, we consider
cases where up to 256 small square holes are removed. The size and the number
of holes are chosen in each case in such a way that the area of the domain remains
constant. In this way we can compare results from simulations with different numbers
of holes. As an illustration, in Figure 6.1, we show the two cases where 4 and 256
holes have been introduced. Here, we select the right-hand side forcing function f and
appropriate inhomogeneous boundary condition u = g on ∂Ω, so that the analytical
solution to (2.1)–(2.2) is given by u = exp(x y).



Schwarz Preconditioners based on Composite DG Methods 15

aaaaaa
h−1

H−1
2 4 8 16 32 64

8 32 (42.1) 27 (14.5) - - - -

16 58 (96.8) 47 (40.1) 29 (17.5) - - -

32 93 (203.2) 74 (89.8) 48 (44.1) 31 (17.8) - -

64 134 (411.2) 121 (188.3) 80 (95.4) 50 (44.2) 31 (17.9) -

128 192 (821.9) 185 (369.8) 137 (194.3) 80 (95.2) 50 (44.2) 31 (17.9)
Table 6.2

Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 4
holes, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

16 49 (69.6) 47 (40.6) 29 (14.9) - - -

32 70 (152.2) 69 (93.6) 51 (37.3) 31 (17.7) - -

64 103 (314.6) 99 (196.9) 86 (86.1) 50 (43.8) 31 (17.8) -

128 143 (636.3) 141 (399.7) 134 (180.9) 80 (94.5) 50 (44.0) 31 (17.9)
Table 6.3

Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 16
holes, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

32 52 (81.4) 52 (69.3) 49 (40.5) 30 (14.8) - -

64 75 (174.6) 75 (151.5) 74 (93.3) 51 (38.6) 31 (17.7) -

128 106 (359.0) 106 (313.2) 106 (195.8) 87 (85.5) 50 (43.8) 31 (17.8)
Table 6.4

Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 64
holes, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

64 55 (83.8) 55 (81.3) 54 (69.2) 50 (40.4) 31 (14.7) -

128 79 (178.6) 79 (174.5) 79 (151.4) 76 (93.2) 52 (38.2) 31 (17.6)
Table 6.5

Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains
256 holes, with p = q = 1.

In all the simulations presented below, we employ a fine level mesh Th which is fine
enough to precisely describe the computational domain Ω using ‘standard’ element
shapes. On the other hand, employing a coarse level solver based on exploiting the
DGCFEM outlined in Section 3, we are able to use very coarse meshes TH . In partic-
ular, in the following tables, cases highlighted in bold indicate when TH is too coarse
to precisely describe Ω using standard element shapes; instead general polygonal ele-
ment domains, consisting of agglomerated elements are employed. Furthermore, the
simulations have been performed, based on partitioning the fine level mesh Th into 4
subdomains, i.e., N = 4. We employ coarse and fine finite element spaces V (TH , q)
and V (Th, p), respectively, based on exploiting quasi-uniform coarse and fine meshes



16 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

aaaaaa
h−1

H−1
2 4 8 16 32 64

4 29 (36.9) - - - - -
8 51 (95.6) 40 (39.5) - - - -
16 85 (201.0) 63 (99.8) 41 (39.8) - - -
32 128 (395.5) 92 (198.6) 65 (100.0) 43 (39.9) - -
64 215 (763.0) 140 (382.5) 95 (205.6) 65 (100.0) 43 (39.8) -
128 328 (996.5) 245 (704.0) 144 (414.6) 95 (188.5) 65 (100.1) 43 (32.7)

Table 6.6
Example 1: Iteration counts and condition numbers for the preconditioner when Ω = (0, 1)2,

i.e., when Ω does not contain any holes, with p = q = 2.

TH and Th, respectively, of granularity H and h, respectively, with corresponding
uniform polynomial degrees q and p, respectively. For reference, we first present in
Table 6.1 the number of iterations needed for convergence (and in brackets the con-
dition number of the preconditioned system) when Ω does not contain any holes, i.e.,
Ω = (0, 1)2, cf. [6], and p = q = 1. Here, and throughout this article, we employ the
conjugate gradient iterative solver, with an absolute tolerance of 10−6, as the termi-
nation condition. As reported in [6], for example, the number of iterations required
to achieve convergence remains roughly constant when the ratio of the coarse and fine
mesh sizes is kept fixed. The condition number of the preconditioned system has been
numerically evaluated exploiting the connections between the conjugate gradient and
Lanczos algorithms. Indeed, at each PCG iteration we can build a tridiagonal matrix
with the property that its extremal eigenvalues are good estimates of the extremal
eigenvalues of Pad. Notice that no additional work is involved, since all the entries
of the tridiagonal matrix are readily available during the PCG iteration, cf. [22, Sec.
10.2.5] for more details. Let us now consider the case when Ω contains a number
of square holes. To this end, in Tables 6.2–6.5 we show the number of iterations
required for convergence (and the condition number of the preconditioned system)
when p = q = 1. As in the case when no holes are present in Ω we observe that the
proposed preconditioner is robust as the number of holes increases, in the sense that
the number of iterations required to achieve convergence remains roughly constant
when the ratio of the coarse and fine mesh sizes is kept fixed. As an observational
comment, we note that, as the number of holes increases, the number of iterations
required to achieve convergence for a given coarse and fine mesh granularity H and
h, respectively, decreases. For example, in the case when h = 1/128, H = 1/2, 192
iterations are required to achieve convergence when Ω = (0, 1)2, while only 192, 143,
106, and 79 iterations are required when there are 4, 16, 64, and 256 holes present,
respectively.

The analogous results are presented in Tables 6.6–6.10 for the case when p =
q = 2; Table 6.6 shows the case when Ω = (0, 1)2 (no holes), while Tables 6.7 –6.10
present the number of iterations required to achieve convergence in the case when Ω
contains 4, 16, 64, and 256 holes, respectively. As for the case when discontinuous
piecewise linear polynomials are employed, we again observe similar behaviour of the
iteration counts: namely, that they remain roughly constant when the ratio H/h is
kept fixed, while they decrease as the number of holes increases. We point out that
while we have fixed q = p, setting 0 ≤ q < p leads to the same behaviour in terms
of the iteration counts; however, as noted in [6], cf. below also, a richer coarse space



Schwarz Preconditioners based on Composite DG Methods 17

aaaaaa
h−1

H−1
2 4 8 16 32 64

8 60 (53.0) 41 (36.7) - - - -
16 98 (79.9) 64 (92.6) 43 (38.9) - - -
32 156 (151.8) 92 (158.9) 65 (98.5) 43 (36.1) - -
64 227 (283.7) 145 (304.9) 95 (189.4) 65 (89.3) 43 (33.0) -
128 317 (530.6) 246 (533.3) 140 (382.9) 95 (188.3) 65 (89.3) 43 (32.8)

Table 6.7
Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 4

holes, with p = q = 2.

aaaaaa
h−1

H−1
2 4 8 16 32 64

16 87 (100.0) 65 (63.6) 42 (35.0) - - -
32 125 (196.0) 115 (88.3) 66 (89.2) 43 (34.8) - -
64 179 (366.4) 180 (147.7) 95 (139.4) 65 (89.1) 43 (32.9) -
128 253 (681.4) 261 (243.6) 147 (263.9) 95 (163.6) 65 (89.2) 43 (32.7)

Table 6.8
Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 16

holes, with p = q = 2.

aaaaaa
h−1

H−1
2 4 8 16 32 64

32 99 (149.4) 97 (91.2) 69 (55.0) 44 (34.8) - -
64 137 (292.5) 137 (178.2) 117 (78.9) 66 (59.8) 43 (31.1) -
128 193 (562.6) 193 (347.0) 183 (113.6) 96 (106.5) 65 (64.8) 43 (31.0)

Table 6.9
Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains 64

holes, with p = q = 2.

aaaaaa
h−1

H−1
2 4 8 16 32 64

64 102 (181.0) 100 (148.4) 97 (89.4) 69 (37.0) 44 (29.1) -
128 140 (359.0) 140 (290.5) 141 (176.7) 117 (66.9) 66 (33.3) 43 (30.7)

Table 6.10
Example 1: Iteration counts and condition numbers for the preconditioner when Ω contains

256 holes, with p = q = 2.

V (TH , q) typically leads to a reduced number of iterations. Finally, we point out
that analogous behaviour of the preconditioner is also observed in the representative
case when homogeneous Dirichlet boundary conditions are imposed on the boundary
of Ω, with f = 1. Indeed, in this case we observe that the number of CG steps
required to attain convergence for a given set of mesh parameters is roughly half of
the corresponding iterations reported here; for brevity, these results are omitted.

6.2. Example 2: Two–dimensional domain with micro-structures II. In
this second example, we consider the case when the computational domain Ω contains
a large number of uniformly spaced circular holes; here, we consider the case where 256



18 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

(a) (b)

Fig. 6.2. Example 2: (a) Initial composite finite element mesh. The colour blue denotes
elements present in the fine level mesh (which consists of 85500 triangular elements); elements
plotted in black form the coarse level mesh (containing 8 elements); finally, the domain Ω is shown
in yellow. (b) Analytical solution.

H−1 p = 1, q = 1 p = 2, q = 2 p = 2, q = 1

2 115 (264.5) 198 (34.5) 198 (587.3)
4 115 (245.7) 201 (22.8) 201 (647.3)
8 115 (203.7) 199 (17.5) 201 (231.1)
16 111 (109.7) 164 (376.9) 195 (79.9)
32 75 (55.6) 77 (93.1) 120 (62.8)

Table 6.11
Example 2: Iteration counts and condition numbers for the preconditioner when Ω contains

256 circular holes.

p = 1 p = 2

Iterations 931 (11793) 2283 (65799)
Table 6.12

Example 2: Iteration counts and condition numbers for (unpreconditioned) conjugate gradient
with 256 circular holes.

small circular holes are removed from (0, 1)2, see Figure 6.2(a). In this example, we
select the right-hand side forcing function f and appropriate inhomogeneous boundary
condition u = g on ∂Ω, so that the analytical solution is given by u = sin(πx) cos(πy),
cf. Figure 6.2(b).

In this section, we fix the fine level mesh Th; here, Th consists of 85500 triangular
elements (blue elements depicted in Figure 6.2(a)). The mesh Th has been selected
to give a very accurate representation of the computational domain Ω. As in the
previous example, we select the number of subpartition domains equal to N = 4,
and the conjugate gradient iterative solver (absolute) tolerance equal to 10−6. To
demonstrate the flexibility of employing the DGCFEM as the coarse level solver, we
consider extremely coarse meshes TH , whose meshsize is far too large to accurately
describe Ω using standard element shapes. Indeed, in Table 6.11 we present the
iteration counts and condition numbers when H = 1/2, 1/4, 1/8, 1/16 and 1/32. To



Schwarz Preconditioners based on Composite DG Methods 19

Fig. 6.3. Example 3: Computational domain Ω.

give an indication of the shape of the composite elements employed, in Figure 6.2(a)
we plot (depicted in black) the coarsest mesh TH when H = 1/2; here, a coarse
element is formed by removing a series of holes from a coarse triangle. From Table
6.11, we observe that, initially, as the coarse mesh is refined, the number of iterations
required to achieve convergence remains roughly constant. Indeed, the number of
iterations only starts to decrease once the coarse finite element space V (TH , q) is
able to represent, at least on a coarse level, the geometric details present in Ω. This
behaviour is observed for the three cases when p = q = 1, p = q = 2, and p = 2, q = 1;
as indicated in the previous example, the latter case leads to an increase in the number
of iterations when compared to the middle one. That said, even the finest coarse mesh
TH , when H = 1/32 is still relatively coarse, when compared to the granularity of the
fine mesh Th. For reference, in Table 6.12, we show the number of iterations required
for convergence of the conjugate gradient solver when no preconditioning is employed,
together with the condition number of the underlying matrix. When comparing these
iteration counts with those presented in Table 6.11, we clearly observe that, even using
a very inexpensive coarse solver, leads to a significant improvement when employing
the proposed preconditioner.

6.3. Example 3: Three–dimensional domain with micro-structures. In
this example, we consider a three–dimensional problem which (possibly) contains a
number of holes. More precisely, we let Ω be the unit cube (0, 1)3 which has had a
series of rectangular sections removed. As an illustration, in Figure 6.3 we show the
case when 16 rectangular holes have been introduced; cf. [10]. We point out that the
holes only go to the depth of half of the domain width. We select the right-hand side
forcing function f and appropriate inhomogeneous boundary condition u = g on ∂Ω,
so that the analytical solution to (2.1)–(2.2) is given by u = sin(πx) cos(πy) sin(πz).

As in the previous examples, the fine mesh Th is always selected in such a manner
that the underlying computational domain is precisely described using tetrahedral
elements. Given the simple nature of the geometry, we first construct a uniform
hexahedral mesh and subdivide each element into 6 tetrahedra. We select the number
of subdomain partitions equal to N = 8, and the absolute tolerance for the conjugate
gradient solver equal to 10−6. In Tables 6.13, 6.14, & 6.15, we first consider the
case when Ω = (0, 1)3 (no holes) with p = q = 1, p = q = 2, and p = 2, q = 1,



20 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

aaaaaa
h−1

H−1
2 4 8 16

4 38 (32.1) - - -
8 71 (87.1) 44 (35.6) - -
16 97 (203.0) 79 (91.4) 46 (35.1) -
32 143 (429.7) 137 (207.4) 85 (91.4) 45 (35.2)

Table 6.13
Example 3: Iteration counts and condition numbers for the preconditioner when Ω = (0, 1)3,

i.e., when Ω does not contain any holes no holes in 3D, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16

4 67 - - -
8 110 67 - -
16 186 115 68 -
32 275 189 114 67

Table 6.14
Example 3: Iteration counts for the preconditioner when Ω = (0, 1)3, i.e., when Ω does not

contain any holes no holes in 3D, with p = q = 2.

aaaaaa
h−1

H−1
2 4 8 16

4 95 - - -
8 139 104 - -
16 202 162 106 -
32 260 267 161 102

Table 6.15
Example 3: Iteration counts for the preconditioner when Ω = (0, 1)3, i.e., when Ω does not

contain any holes no holes in 3D, with p = 2, q = 1.

aaaaaa
h−1

H−1
2 4 8 16

8 73 (76.8) 45 (30.7) - -
16 101 (183.9) 87 (81.6) 47 (34.2) -
32 133 (417.2) 147 (195.5) 87 (89.6) 46 (35.1)

Table 6.16
Example 3: Iteration counts and condition numbers for the preconditioner when Ω contains 4

holes, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16

8 135 69 - -
16 210 118 68 -
32 300 216 116 68

Table 6.17
Example 3: Iteration counts for the preconditioner when Ω contains 4 holes, with p = q = 2.



Schwarz Preconditioners based on Composite DG Methods 21

aaaaaa
h−1

H−1
2 4 8 16

8 149 100 - -
16 206 173 107 -
32 245 265 166 106

Table 6.18
Example 3: Iteration counts for the preconditioner when Ω contains 4 holes, with p = 2, q = 1.

aaaaaa
h−1

H−1
2 4 8 16

16 87 (175.7) 79 (69.0) 45 (29.8) -
32 117 (393.8) 138 (168.1) 92 (80.2) 46 (34.5)

Table 6.19
Example 3: Iteration counts and condition numbers for the preconditioner when Ω contains 16

holes, with p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16

16 185 135 70 -
32 276 226 118 68

Table 6.20
Example 3: Iteration counts for the preconditioner when Ω contains 16 holes, with p = q = 2.

aaaaaa
h−1

H−1
2 4 8 16

16 179 172 101 -
32 232 264 173 106

Table 6.21
Example 3: Iteration counts for the preconditioner when Ω contains 16 holes, with p = 2, q = 1.

respectively. As noted in Example 1 above, the proposed preconditioner is robust,
in the sense that the number of iterations required to achieve convergence remains
roughly constant when the ratio of the coarse and fine mesh sizes is kept fixed. For the
case when p = 2, we again observe that a richer coarse finite element space typically
leads to an improvement in the number of iterations required to attain convergence.

We now consider the two cases when 4 and 16 holes have been introduced into
the unit cube. Iteration counts for the same three cases considered above, namely
p = q = 1, p = q = 2, and p = 2, q = 1 and condition numbers for the case p = q = 1,
are presented in Tables 6.16–6.21. As before, cases highlighted in bold indicate when
TH is too coarse to precisely describe Ω using standard element shapes. As in the case
when no holes are present in Ω we observe that the proposed preconditioner is robust
as the number of holes increases, in the sense that the number of iterations required
to achieve convergence remains roughly constant when the ratio of the coarse and fine
mesh sizes is kept fixed. Moreover, we observe that, as the number of holes increases,
the number of iterations required to achieve converge for a given coarse and fine mesh
granularity H and h, respectively, decreases.



22 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

aaaaaa
h−1

H−1
2 4 8 16 32 64

4 17 - - - - -
8 20 20 - - - -
16 22 23 20 - - -
32 25 26 24 19 - -
64 28 29 29 24 18 -
128 31 30 32 29 23 18

Table 6.22
Example 4: GMRES iteration counts for the preconditioner when Ω = (0, 1)2 (no holes) with

p = q = 1.

6.4. Example 4: Convection-diffusion problem with micro-structures.
In this final example, we consider the convection–diffusion problem

−ε∆u+ a(x) · ∇u = f(x) in Ω,

u = g on ∂Ω.
(6.1)

Here, Ω is chosen in an analogous manner to the computational domains considered
in Section 6.1. For the purposes of this section, we set a = (1, 1)> and select f and g
such that the analytical solution to (6.1) is given by

u(x, y) = x+ y − xy +
1

1− exp−1/ε

[
exp−1/ε− exp−(1−x)(1−y)/ε

]
,

cf. [12]. We note that for 0 < ε � 1, the solution exhibits boundary layers along
x = 1 and y = 1. For brevity, we set ε = 10−2; we shall comment on the effect of
reducing the diffusion coefficient ε at the end of this section.

The discretization of (6.1) is based on employing the standard upwind DGFEM
for the treatment of the advection operator, cf. [25], for example, together with the
(symmetric) version of the IP DGFEM for numerical approximation of the diffusion
terms, cf. Section 2. Clearly, the resulting matrix system is non-symmetric; thereby,
we employ the GMRES method with an absolute termination tolerance of 10−6 with
the additive Schwarz preconditioner. Results based on employing N = 4 subdomain
partitions are presented in Tables 6.22, 6.23, 6.24, 6.25, & 6.26 for the cases when
Ω = (0, 1)2 (no holes), and when Ω contains 4, 16, 64, and 256 holes, respectively, for
p = q = 1. Again, as in the previous examples, the number of iterations required to
attain convergence remain roughly constant for a fixed value of the ratio of the coarse
and fine mesh sizes H and h, respectively. Numerical experiments for p = 2 again
indicate analogous behaviour; for brevity, these have been omitted.

7. Concluding remarks. In this article we have considered the application of
Schwarz-type domain decomposition preconditioners for discontinuous Galerkin finite
element approximations of elliptic partial differential equations posed on complicated
domains, which are characterized by small details in the computational domain or mi-
crostructures. In particular, the coarse level solver employed within the proposed pre-
conditioning strategy has been based on exploiting composite discontinuous Galerkin
methods, which can easily handle general polygonal element domains consisting of ag-
glomerated ‘standard’ elements. In this way, extremely coarse meshes may be defined,
even for computational domains which contain small geometric details. The applica-
tion of the preconditioner to a simple elliptic PDE, as well as a convection–dominated



Schwarz Preconditioners based on Composite DG Methods 23

aaaaaa
h−1

H−1
2 4 8 16 32 64

8 20 20 - - - -
16 22 23 20 - - -
32 25 26 24 19 - -
64 28 29 29 24 18 -
128 31 30 32 29 23 18

Table 6.23
Example 4: GMRES iteration counts for the preconditioner when Ω contains 4 holes and with

p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

16 33 31 25 - - -
32 34 34 30 22 - -
64 42 42 39 29 19 -
128 52 52 49 40 26 19

Table 6.24
Example 4: GMRES iteration counts for the preconditioner when Ω contains 16 holes, with

p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

32 37 37 34 24 - -
64 42 42 41 33 20 -
128 51 51 51 43 28 19

Table 6.25
Example 4: GMRES iteration counts for the preconditioner when Ω contains 64 holes, with

p = q = 1.

aaaaaa
h−1

H−1
2 4 8 16 32 64

64 35 35 35 32 21 -
128 44 44 44 43 31 20

Table 6.26
Example 4: GMRES iteration counts for the preconditioner when Ω contains 256 holes, with

p = q = 1.

diffusion problem clearly indicate the efficiency and robustness of the proposed solu-
tion strategy. Future work will consider the application of these techniques to more
complicated problems; in particular, a key application area of interest is compressible
fluid flows.

Acknowledgements. SG and PH acknowledge the financial support of the EP-
SRC under the grant EP/H005498. PH also acknowledges the support of the Lever-
hulme Trust.

REFERENCES



24 P.F. ANTONIETTI, S. GIANI, P. HOUSTON

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41,
2001.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetricand
unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501–520, 2000.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[4] P. F. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners for discontin-
uous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math.
Model. Numer. Anal., 41(1):21–54, 2007.

[5] P. F. Antonietti and B. Ayuso. Multiplicative Schwarz methods for discontinuous Galerkin
approximations of elliptic problems. M2AN Math. Model. Numer. Anal., 42(3):443–469,
2008.

[6] P. F. Antonietti and P. Houston. A class of domain decomposition preconditioners for hp-
discontinuous Galerkin finite element methods. J. Sci. Comp., 46(1):124–149, 2011.

[7] P. F. Antonietti and P. Houston. Preconditioning high-order discontinuous Galerkin discretiza-
tions of elliptic problems. In R. Bank, M. Holst, O. Widlund, and J. Xu, editors, Domain
Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational
Science and Engineering, Vol. 91, pages 231–238. Springer–Verlag, 2013.

[8] P.F. Antonietti and B. Ayuso. Two-level schwarz preconditioners for super penalty discontin-
uous Galerkin methods. Commun. Comput. Phys., 5(2-4):398–412, 2009.

[9] P.F. Antonietti, B. Ayuso De Dios, S.C. Brenner, and L.-Y. Sung. Schwarz methods for a pre-
conditioned WOPSIP method for elliptic problems. Comp. Meth. Appl. Math., 12(3):241–
272, 2012.

[10] P.F. Antonietti, S. Giani, and P. Houston. hp–Version composite discontinuous Galerkin meth-
ods for elliptic problems on complicated domains. SIAM J. Sci. Comput., 35(3):A1417–
A1439, 2013.

[11] P.F. Antonietti and P. Houston. Preconditioning high-order discontinuous galerkin discretiza-
tions of elliptic problems. Lecture Notes in Computational Science and Engineering,
91:231–238, 2013.

[12] P.F. Antonietti and E. Süli. Domain decomposition preconditioning for discontinuous Galerkin
approximation of convection-diffusion problems. In M. Bercovier, M.J. Gander, R. Kornhu-
ber, and O. Widlund, editors, Proceedings of the 18th Domain Decomposition Conference.
Lecture Notes in Computational Science and Engineering, pages 259–266. Springer–Verlag,
2009.

[13] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM
J. Numer. Anal., 19(4):742–760, 1982.

[14] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779, 2001.

[15] A. T. Barker, S. C. Brenner, E.-H. Park, and Li-Y. Sung. Two-level additive Schwarz precon-
ditioners for a weakly over-penalized symmetric interior penalty method. J. Sci. Comp.,
47:27–49, 2011.

[16] F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, and P. Tesini. On the flexibility of agglomeration
based physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45–
65, 2012.

[17] S. C. Brenner. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer.
Anal., 41(1):306–324, 2003.

[18] S. C. Brenner and K. Wang. Two-level additive Schwarz preconditioners for C0 interior penalty
methods. Numer. Math., 102(2):231–255, 2005.

[19] S.C. Brenner. An additive analysis of multiplicative Schwarz methods. Numer. Math., 123(1):1–
19, 2013.

[20] A. Cangiani, E.H. Georgoulis, and P. Houston. hp-Version discontinuous Galerkin methods on
polygonal and polyhedral meshes. Submitted for publication, 2013.

[21] X. Feng and O. A. Karakashian. Two-level additive Schwarz methods for a discontinu-
ous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal.,
39(4):1343–1365 (electronic), 2001.

[22] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[23] W. Hackbusch and S.A. Sauter. Composite finite elements for problems containing small geo-
metric details. Part II: Implementation and numerical results. Comput. Visual Sci., 1:15–
25, 1997.



Schwarz Preconditioners based on Composite DG Methods 25

[24] W. Hackbusch and S.A. Sauter. Composite finite elements for the approximation of PDEs on
domains with complicated micro-structures. Numer. Math., 75:447–472, 1997.

[25] P. Houston, C. Schwab, and E. Süli. Discontinuous hp-finite element methods for advection–
diffusion–reactio n problems. SIAM J. Numer. Anal., 39:2133–2163, 2002.

[26] M. Rech, S. Sauter, and A. Smolianski. Two-scale composite finite element method for the
dirichlet problem on complicated domains. Numer. Math., 102(4):681–708, 2006.

[27] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.


