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Abstract Previously, a semi-manual method was used to identify six novel
and clinically useful classes in the Nottingham Tenovus Breast Cancer dataset.
663 out of 1076 patients were classified. The objectives of our work is three
folds. Firstly, our primary objective is to use one single automatic method to
reproduce the six classes for the 663 patients and to classify the remaining 413
patients. Secondly, we explore using semi-supervised fuzzy c-means with vari-
ous distance metrics and initialisation techniques to achieve this. Thirdly, the
clinical characteristics of the 413 patients are examined by comparing with
the 663 patients. Our experiments use various amount of labelled data and
10-fold cross validation to reproduce and evaluate the classification. ssFCM
with Euclidean distance and initialisation technique by Katsavounidis et al.
[9] produced the best results. It is then used to classify the 413 patients. Visual
evaluation of the 413 patients’ classifications revealed common characteristics
as those previously reported. Examination of clinical characteristics indicates
significant associations between classification and clinical parameters. More
importantly, association between classification and survival based on the sur-
vival curves is shown.
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1 Introduction

Cluster analysis of biomedical data is becoming popular and increasingly im-
portant in the prediction of illnesses or diseases that can support decision
making in diagnosis and treatment. Eisen and colleagues [5] demonstrated that
gene expression data can be organised into functional categories using hierar-
chical clustering and visual inspection of the dendrogram. This has motivated
the application of such techniques on breast cancer gene expression data [14],
where four breast cancer groups (ER+/luminal-like, basal-like, HER2+ and
normal breast) have been identified. In a following study [17], six groups were
identified where the ER+ /luminal-like group was divided into three subgroups:
luminal-A, B, and C. Luminal-C was later dropped [18]. Researchers moved
on to cluster immunohistochemical data using hierarchical clustering, where
three groups were identified in [12] and six groups in [1]. However, there has
been no further investigations to address the stability of the proposed groups,
that is, reproducibility of these groups, using different breast cancer datasets
[18] or learning algorithms.

The Nottingham Tenovus Breast Cancer (NTBC) dataset, consisting of
immunohistochemical data on 25 protein biomarkers for 1076 patients, have
been clustered using hierarchical clustering into five groups, with the sixth
group containing only four patients [1]. To address the stability of the proposed
groups in the NTBC dataset, Soria et al. [16] used a range of techniques
to reach consensus with solutions obtained from several different clustering
algorithms. Using a set of manually-generated rules and clinicians’ knowledge
and experience, the classes are derived from those clustering solutions. The
study has identified six novel and clinically useful classes of breast cancer
and determined the key biomarkers that characterise these classes. As the
methodology used in this study is semi-manual, it is evident that an automatic
technique for the classification of breast cancer types is needed, particularly for
future classification (prediction) of new patients. Out of the 1076 patients, only
663 patients were classified into the six classes. The remaining 413 patients
are not classified because they were found to belong to mixed clusters based
on the different clustering solutions. The classification for the remaining 413
patients will be useful as this could not only further verify the six classes and
their key biomarkers but provide new insights previously not identified.

We use semi-supervised fuzzy c-means as an automatic technique to classify
the NTBC dataset. Though a clustering technique, ssFCM has been demon-
strated to perform classification tasks successfully using class labels [13,19,
10] with the number of clusters equals the number of classes and this is a pri-
ori. We explore using different distance metrics and initialisation techniques to
achieve good classification results. We shall show our experimental results from
using ssFCM with three different distance metrics Euclidean, fuzzy-weighted
Mahalanobis and Mahalanobis - and with three different initialisation tech-
niques; Simple Cluster Seeking [21], Cluster estimation [3] and technique by
Katsavounidis et al. [9]. The approach which best reproduce the classification
by Soria et al. is then used to classify the remaining 413 patients. The clin-
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ical characteristics of the 413 patients based on their classifications are then
compared with the 663 patients for confirmation of common trends already
identified and for further insights.

In this work, our objectives are of three folds:

1. To reproduce the same six classes using data of the 663 classified patients
and classify the remaining 413 patients using one single method, the semi-
supervised fuzzy c-means (ssFCM).

2. To explore the application of semi-supervised Fuzzy c-means in a real world
problem with investigation in different initialisation techniques and dis-
tance metrics.

3. To examine the clinical characteristics of the 413 patients, comparing with
those of the 663.

The paper is outlined as follows: The NTBC dataset and the methods used
in this study is outline in Sect. 2. This is followed by experiments and their
set-ups in Sect. 3. In Sect. 4 and 5, we present our results and discussed them
respectively. We end our paper with a conclusion in Sect. 6.

2 Materials and Methods

2.1 The Nottingham Tenovus Breast Cancer Dataset

The NTBC dataset contains immunohistochemical data of 1076 patients with
primary operable (stages I, II and III) invasive breast cancer between 1986
and 1998. The data is in the form of modified histochemical score (H-score)
based on immunohistochemical reactivity of 25 proteins, determined using
microscopical analysis. The H-score is calculated based on a semiquantitative
assessment of both intensity of staining and percentage of positive cells at each
intensity. The intensity of staining is quantified as score 0 to 3 correspond to
negative, weak, moderate and strong positivity. The H-score ranges between
0 and 300, based on the formula below:

H-score = (1 x % of cells with intensity 1)
+ (2 x % of cells with intensity 2)
+ (3 x % of cells with intensity 3) (1)

The 25 protein biomarkers used in this study are the same ones listed in [1,
16] and are shown in Table 1. The dataset also contains tumour information
such as histologic grade, histologic tumour type, vascular invasion, tumour size
and lymph node stage and patient information such as age and menopausal
status. Survival in months from the date of primary treatment to the time of
death is also recorded where patients are followed up at 3-months intervals
initially, then every 6 months, then annually for a range of 1-192 months, with
a median period of 58 months. The Nottingham Prognostic Index (NPI) score
is also provided in the dataset and is calculated according to the formula:
NPI Score = (0.2 x size) + grade + stage.
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Table 1 Protein biomarkers and their dilutions.

Antibody, clone Short name Dilution
Luminal phenotype

CK 7/8 [clone CAM 5.2] CK7/8 12
CK 18 [clone DC 10] CK18 1:50
CK 19 [clone BCK 108] CK19 1:100
Basal phenotype

CK 5/6 [clone D5/16134] CK5/6  1:100
CK 14 [clone LL002] CK14 1:100
SMA [clone 1A4] Actin 1:2000
p63 ab-1 [clone4A4] p63 1:200
Hormone receptors

ER |[clone 1D5] ER 1:80
PgR [clone PgR 636] PgR 1:100
AR [clone F39.4.1] AR 1:30
EGFR family members

EGFR [clone EGFR.113] EGFR 1:10
c-erbB-2 HER?2 1:250
c-erbB-3 [clone RTJ1] HER3 1:20
c-erbB-4 [clone HFR1] HER4 6:4
Tumour suppressor genes

p53 [clone DO7] p53 1:50
nBRCA1 Ab-1 [clone MS110] nBRCA1 1:150
Anti-FHIT [clone ZR44] FHIT 1:600
Cell adhesion molecules

Anti E-cad [clone HECD-1] E-cad 1:10/20
Anti P-cad [clone 56] P-cad 1:200
Mucins

NCL-Muc-1 [clone Ma695] MUC1 1:300
NCL-Muc-1 core [clone Ma552] MUClco  1:250
NCL muc2 [clone Ccp58] MUC2 1:250
Apocrine differentiation

Anti-GCDFP-15 GCDFP  1:30
Neuroendocrine differentiation

Chromogranin A [clone DAK-A3] Chromo  1:100
Synaptophysin [clone SY38] Synapto 1:30

Table 2 Number of data patterns in each class and the number of not classified (n.c) and
classified (c) data patterns according to classification by Soria et al.

class 1 class 2 class 3 class 4 class 5 class 6 n.c ¢

202 153 80 82 69 7

413 663

According to classification by Soria et al. [16] (which we shall refer to Soria’s
classification in short), 663 data patterns are classified while 413 remains not

classified, as shown in Table 2.



©CoOo~NOoOOR~WNE

Title Suppressed Due to Excessive Length 5

2.2 Semi-supervised Fuzzy c-means

Fuzzy c-means is a clustering algorithm which allows a data pattern to belong
to more than one cluster, giving a more realistic representation of data than
a binary approach. This is particularly useful in clustering biomedical data as
there are often no clear boundaries separating the classes. Membership values
indicate the degree of belongingness a data pattern has to clusters and thus,
determine the cluster a data pattern is assigned to. For each data pattern,
membership values to each cluster range between 0 and 1 and the sum of
membership values for all clusters must equal to one. A high membership
value to a cluster means high possibility of belonging to this cluster.

Semi-supervised Fuzzy c-Means (ssFCM) use some labelled data patterns
in the dataset to guide the identification of similar data patterns. This can
be very valuable when some cases can be labelled. Labelled data patterns are
often sparse and they are time-consuming and labour-intensive to collect. Also,
human errors can be introduced when labels are given manually.

The ability of ssFCM to represent data in more than one clusters using
membership values and to learn from labelled data patterns, which we can
obtained from Soria’s classification deemed it a suitable technique to use for
this work. Also, ssFCM has been successfully applied in areas of biomedicine
such as in [20]. Another benefit of using ssFCM is that clustering is not a
statistical inference technique and is not affected by the assumptions of normal
distribution [7], which is suitable on the NTBC dataset with features that are
non-normally distributed. In this work, we adopt this practice with the number
of clusters ¢ equals to the six classes identified by Soria et al. [16].

2.2.1 Algorithm

Pedrycz and Waletzky [13] introduced the following ssFCM objective function
containing unsupervised learning in the first term and supervised learning in
the second term:

c N c N
J = Z Z ub, d3, + a Z Z(Uik — firbr)Pd3, (2)

i=1 k=1 i=1 k=1

where u;, is the membership value of data pattern k in cluster i, d;; the dis-
tance between data pattern k£ and cluster centre v;, fir the membership value
of labelled data pattern k in cluster 4, by indicates if data pattern k is labelled,
c is the number of clusters, N the number of data patterns in the dataset and
p is the fuzzifier parameter (which is commonly 2) and « is a scaling parame-
ter for maintaining balance between the supervised and unsupervised learning
components. The authors recommended « to be proportional to N/M where
M is the number of labelled data.

The algorithm iteratively calculates the cluster centres and the membership
matrix U containing u;; to minimise the objective function until a termination
criterion is satisfied. In this work, we use ssFCM by Pedrycz and Waletzky
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[13] because it has been shown to produce good classification results. The
algorithm is summarised as follows:

1. Initialise labelled data membership matrix F and initial membership ma-
trix U°
2. Calculate cluster centres V = [v;] with U using equation:
N
D1 Uik
= S
k=1 Uik

3. Update partition matrix, U using equation :

1 L+a(l=b>, fiy)

l1+a S (52)?

3)

Vi

U + afijb; (4)

4. If ||U" — U]|| < ¢, stop. Else, go to step 2 with U = U’

2.2.2 Distance Metrics

Distance metrics are important in Fuzzy c-means as they are used to measure
similarity. The degree of similarity enables us to determine how strongly a
data pattern belong to a certain group. The better a distance metric is in
representing the structure of the data, the more accurate is its measure of
similarity.

Mahalanobis The Mahalanobis distance is formally defined [11] as:
dar(2) = \[(x — )75 Lz — ) (5)

It is the distance between a vector x = (x1,Xz, ...Xn) T which belong to a group
of vectors with a mean p = (1, ft2,...in) T and S is the covariance matrix
of the group. The inverse covariance matrix, S~! normalises dimensions of
different scales, preventing dominance from dimensions with greater scales.
Thus, it is scale-invariant. It forms hyperellipsoidal clusters.

The Mahalanobis distance in ssfCM [13] is a fuzzy-weighted form of Ma-
halanobis distance (which we shall address as fuzzy Mahalanobis in short)
as it takes into account the membership in the calculation of the covariance
matrices. The introduction of fuzzy weights wu;; in the covariance matrix was
proposed by Gustafson and Kessel [6] to adapt the distance metric to the shape
of clusters. The fuzzy Mahalanobis distance is computed as follows:

dyr(is k) = (xac = vi) " M (i — i) (6)

where M; is a positive definite matrix, its inverse defined as:

1

and P; is the fuzzy covariance matrices defined as:
N2 T
_ D ohet Ui (X — Vi) (XK — Vi)

Pl N
§ U2
k= ik
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Euclidean The Euclidean distance metric forms spherical clusters and does
not reflect scale differences among dimensions in high-dimensional datasets. It
is computed as follows:

d (i, k) = [Jxx — vil

2.3 Initialisation Techniques

Initialisation techniques uses information from the data to give a more guided
initialisation than random initialisation. Also, memberships from available la-
belled data, particularly when availability is low, may not provide a good
initialisation. In [10], Li et al. applied Fuzzy c-means for initialisation before
performing classification with ssFCM. In this work, we use Simple Cluster
Seeking (SCS), initialisation technique by Katsavoundis et al. [9] (KKZ) and
Cluster Estimation (CE) prior to the classification task.

2.5.1 Simple cluster seeking initialisation (SCS)

The SCS technique [21] is summarised as follows (as described in [8]:

1. The first pattern is initialised as the first cluster centre, i.e vi = x3.

2. For k = 2,..., N, xj is the next cluster centre if ||xx — vj|| > p for all
existing cluster centres, where p is a threshold. When c cluster centres are
initialised, stop. Else, decrease the value of p and repeat the steps.

2.3.2 Katsavounidis et al. initialisation (KKZ)
The KKZ technique [9] takes on the following steps as described in [2]:

1. Initialise the first cluster centre with the data pattern that has the maxi-
mum norm, vi = argmaz||xx/|.

2. Initialise the second cluster centre with the data pattern furthest from vi.

3. Compute the minimum distances between the remaining points with all
initialised cluster centres. The data pattern with the largest value of these
minimum distances are chosen as the next cluster centre.

4. Repeat step 3 until all cluster centres are found.

2.3.8 Cluster estimation technique (CE)

The cluster estimation technique [3] estimates both the number and location
of cluster centres by specifying its neighbourhood size. Based on the number
of neighbouring patterns, a potential value is calculated as follows:

p=Y e el (9)
j=1
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Table 3 Classification results of ssFCM using Euclidean (E), Mahalanobis(M) and fuzzy
Mahalanobis (FM) distances.

Dist. 10% 20% 30% 40% 50% 60%

E 0.9651+0.013 0.97740.007 0.984£0.005 0.987£0.004 0.991+0.004 0.99240.003
M 0.775+0.025 0.85940.017 0.897£0.012 0.925£0.010 0.942+0.009 0.95740.007
FM  0.453+0.037 0.537+0.035 0.60640.033 0.69140.040 0.757+0.034 0.828+0.032

where o = %. The pattern with the highest potential value becomes the first

cluster centre. Eq. (9) is then revised to calculate the potential of patterns to
be centres of other clusters as shown below:

P, < P, — pre Bl (10)

where 8 = %, xj. is the latest obtained cluster centre and P} its potential.

The positive constants r, and 7, are radius defining their respective neigh-
bourhoods. The author recommended that r,=1.25r,.

3 Experiments and set-up
3.1 Classification using random stratified sampling of labelled data

We classify NTBC using ssFCM with Euclidean, Mahalanobis and fuzzy Ma-
halanobis distances, with the purpose to explore how well ssfFCM can find
the substructures as those with Soria’s [16]. Varying amounts of labelled data
are experimented with; 10%, 20%, 30%, 40%, 50% and 60% of the 663 clas-
sified data patterns. To select data patterns to be labelled, random stratified
sampling is applied across the six classes. We experiment with each varying
amount across 100 different sets of labelled data.

To determine the class of a data pattern xj, we choose the class with
the highest membership value. To evaluate the accuracy of the algorithm, the
classes assigned by ssFCM to the 663 data patterns are then compared with
Soria’s classification [16] and the matches counted and divided by 663. An
average is then taken across the 100 runs.

3.2 Classification using cross validation

We train and test the algorithm using 10-fold cross validation where 90% of the
663 data patterns are training data and the remaining 10% is testing data. The
algorithm is run 30 times on randomly selected labelled data, across varying
amount of labelled data; 10%, 20%, 30%, 40%, 50% and 60% of training data
using three distance metrics, Euclidean, Mahalanobis and fuzzy Mahalanobis.
The classification result obtained from the training process is then used to
initialise the algorithm for the testing process. For evaluation, only matches
of testing data are counted and divided by the number of testing data and an
average is taken across the 30 runs for all 10 folds. This average indicates the
agreement level of our solutions with Soria’s classification [16].
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The reason two evaluation settings have been used is because in many
ssFCM literatures, evaluation is performed as shown in Sect. 3.1 but this is
considered to produce optimistic results as it has not been tested on unseen
data. Hence, the need for using the cross validation technique. For complete-
ness, we demonstrate both evaluation settings.

3.2.1 Initialising membership

Soria’s classification [16] is used to generate membership values which are then
used to initialise the supervision matrix F which contains membership values
for labelled data. Instead of using random initialisation, we use the supervision
matrix F to initialise the membership matrix U?. This should give a better
start rather than a random one. Only data patterns classified by Soria et al.
[16] are used and the 413 data patterns not classified are disregarded as we do
not have labels for them. To initialise membership values in F, the selected
labelled data patterns belonging to their respective classes will be given a
membership of 0.9 and (1-0.9)/(6-1)=0.02 for classes they do not belong to.
The high 0.9 membership value is arbitrarily chosen to indicate a data pattern’s
high possibility of belonging to the class while a 0.02 value indicates otherwise.
Unlabelled data patterns have a membership value of 1/¢ a2 0.1667 to indicate
equal possibility of belonging to the classes.

3.2.2 Configuration of ssFCM

In the original ssFCM [13], all data patterns are assigned memberships based
on their given labels and stored in F. They are then selected to be labelled
or unlabelled for the algorithm using the boolean vector b in (2). In our
case, we have selected the labelled data for the algorithm and generated their
memberships prior to running the algorithm. We set our F = U?, where they
contain memberships of both labelled and unlabelled data and by is 1 for all
k (in (4)). The « value is set to be N/M where M is the number of labelled
data.

3.2.8 Using initialisation techniques

Initialisation techniques, SCS, KKZ and CE are used to initialise initial cluster
centres, VO, instead of using (3). Similar initialisation procedures as described
above are carried out to initialise memberships of supervision matrix, F.

3.3 Breast cancer type classification for the 413 patients

We train using the 663 labelled data patterns and ssFCM was able to retain
the whole labelled data completely, meaning 100% training accuracy. As all the
data patterns are labelled in this training process, it is actually a completely
supervised process. We classify the 413 unlabelled data patterns based on the
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model built from the training process. The class labels assigned to these data
patterns are based on the highest membership value it has to a class. These
assigned class labels are refer as the classification of the 413 data patterns. As
we do not have prior labels to evaluate the correctness of the classification, we
evaluate by visually comparing boxplots and biplots of biomarker distributions
across the 6 classes with those by Soria and colleagues [16] and perform clinical
evaluation by investigating in the correlation between the class distributions
and clinical parameters.

Table 4 Classification results of ssl'CM using Euclidean (L), Mahalanobis(M) and fuzzy
Mahalanobis (FM) distances based on cross validation.

Dist. 10% 20% 30% 40% 50% 60%

E 0.9614+0.020 0.96940.019 0.972+0.018 0.975£0.016 0.976+0.015 0.97840.015
M 0.7504+0.057 0.81440.056 0.846+0.051 0.860-£0.051 0.869+0.049 0.8764-0.049
FM 0.351£0.074 0.389+0.065 0.41940.053 0.43740.049 0.461+0.048 0.480+0.055

Table 5 Classification results of ssFCM using Euclidean (E)and Mahalanobis (M) distances
and initialisation techniques SCS, KKZ and CE.

Dist. 10% 20% 30% 40% 50% 60%

E-SCS  0.964£0.020 0.969+0.019 0.972+0.018 0.976+0.016 0.976£0.015 0.978+0.015
E-KKZ 0.965£0.019 0.971£0.019 0.974+0.017 0.976x0.016 0.977£0.015 0.979£0.015
E-CE 0.95940.020 0.967+0.019 0.970+£0.018 0.974+0.016 0.9754+0.016 0.97840.016

M-SCS  0.749+0.056 0.814-£0.055 0.846+0.050 0.8614+0.051 0.870+0.049 0.878+0.049
M-KKZ 0.751£0.055 0.814%+0.055 0.846+0.050 0.861%+0.050 0.870+0.048 0.878+0.049
M-CE  0.74940.056 0.813+0.054 0.846+0.050 0.860+0.051 0.870+£0.049 0.878+0.049

4 Results

4.1 Classification using random stratified sampling

Table 3 shows the classification results using ssFCM with Euclidean, Maha-
lanobis and fuzzy Mahalanobis distances based on the average rate of matching
class assignments with Soria’s classification followed by + standard deviation.
ssFCM with Euclidean distance gave the best result, achieving 0.97 agreement
with 10% labelled data. With 50% labelled data or more, almost complete
agreement was achieved. This is no surprise as the distance metric used in
the clustering techniques by Soria et al. [16] is Euclidean distance. Interest-
ingly, higher accuracy rates was found using Mahalanobis distance than fuzzy
Mahalanobis distance. To the best of our knowledge such trend with poorer ac-
curacy using fuzzy Mahalanobis than Mahalanobis distances have never been
reported, despite it being widely used in Fuzzy c-means. In [13], ssFCM with
fuzzy Mahalanobis distance has produced higher accuracy than with origi-
nal Mahalanobis distance for UCI Iris dataset and XOR dataset. However,
in a separate unpublished study with five UCI datasets (Ionosphere, Page
Blocks, Pima Indian Diabetes (PID), Wine and Wisconsin Original Breast
Cancer (WOBC)), we found that the fuzzy Mahalanobis distance perform less
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Table 6 Confusion matrix showing number of agreement and disagreement between ssFCM-
E-KKZ (row) and ssFCM-M-KKZ (column) and their class distributions.

classl class2 class3 class4 classb class6 total

classl 78 5 3 1 1 3 91
class2 21 70 8 4 5 5 113
class3 11 1 47 2 4 1 66
class4 0 0 2 10 0 3 15
classb 2 3 7 0 45 1 58
class6 12 4 2 5 3 44 70
total 124 83 69 22 58 57 413

favourably than Mahalanobis distance for PID, Wine and WOBC datasets,
suggesting that fuzzy Mahalanobis distance do not always produce better re-
sults than the original Mahalanobis distance for all datasets.

4.2 Classification using cross validation

The classification result of ssFCM using Euclidean, Mahalanobis and fuzzy
Mahalanobis distances in Table 4 shows high agreement with Soria’s classi-
fication using ssFCM with Euclidean distance when classifying breast cancer
types of the 413 patients. ssfFCM with Mahalanobis distance performed mod-
erately well but with fuzzy Mahalanobis distance, agreement level was less
than half even with 60% labelled data.

Table 5 shows the classification result of ssFCM using Euclidean and Ma-
halanobis distance metrics with initialisation techniques; SCS, KKZ and CE.
The results improved slightly using initialisation techniques (indicated in ital-
ics), particularly with KKZ for ssFCM with Euclidean distance. Slight im-
provement was also found in ssFCM with Mahalanobis distance with SCS and
KKZ. While the increase in agreement is small, they are crucial in achieving
more accurate classification to support medical decision making. The results
of ssFCM with fuzzy Mahalanobis are poor from Table 4, the results are not
displayed and its further investation is stopped. Instead, we shall focus on ss-
FCM with Euclidean distance and KKZ and with Mahalanobis distance and
KKZ, which we will refer as ssfFCM-E-KKZ and ssFCM-M-KKZ respectively.

Also, ssFCM with FEuclidean distance and ssfFCM-E-KKZ produced better
classification results of NTBC (with agreement of 0.978 and 0.979 respectively
using 60% labelled data) than using classifiers C4.5, Multilayer Perceptron
and Naive Bayes (with agreement of 0.878, 0.976 and 0.869 respectively [15]).
We continue using ssFCM-M-KKZ for further investigation to compare with
ssFCM-E-KKZ.

4.3 Classification for 413 patients.

A confusion matrix is drawn up to show the number of agreement and dis-
agreement between the classifications of the two ssFCMs in Table 6. The table
also shows the class distributions of the classifications. There appears to be
higher number of disagreement with class 1 of ssFCM-M-KKZ with class 2,
3 and 6 of ssFCM-E-KKZ. Using Cohen’s Kappa and weighted Kappa Index
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Fig. 2 Boxplots showing statistical summaries of all biomarkers for a) class 4 and b) class
6 obtained from ssFCM-M-KKZ.

4.8.1 Visual inspection

We use visual inspection of boxplots and biplots in Figures 1 and 3 to compare
how closely distribution of key biomarkers agree with Soria’s classification. The
boxplots of ssFCM-E-KKZ and ssFCM-M-KKZ are quite similar except for
boxplots of ER in classes 4 and 5 and of HER2 in class 6. According to Soria’s
classification, ER in classes 4 and 5 has low expression, which is reflected in
ssFCM-E-KKZ’s classification (see Figures 1(d) and 1(e))) but in ssFCM-M-
KKZ, classes 4 and 5 have a high upper quartile range of 150 even though their
medians are 25 and zero respectively (see boxplot for class 4 in Figure 2(a)).
Thus, boxplots of classes 4 and 5 from ssFCM-E-KKZ more closely reflect the
characteristics of triple negative breast cancer.

Comparing the boxplots of Soria’s classification with ssFCM-E-KKZ and
ssFCM-M-KKZ, the boxplots of the two ssFCMs show a similar general trend
to Soria’s classification. But, the degree of dispersion in the boxplots is found
higher with the ssFCMs’ classifications for some biomarkers such as PgR in
class 1 and 2. This explains the mixture of classes the 413 patients belong to,
as stated in [16] and hence, the difficulty in classifying these patients. There
is little number of patients with high CK14 H-score in the population of 413
patients to distinguish class 4 and 5 from the other classes. Instead, biomarkers
CK5/6 and p53 help contribute to make the distinction.

Figure 3 shows the biplots of Soria’s classification, ssFCM-E-KKZ and
ssFCM-M-KKZ which are constructed using the first two principal components
(PC1 and PC2 on the biplots) of Principal Component Analysis (PCA). Note
that no feature reduction was done using PCA but rather the first two com-
ponents are used solely for visualisation. The biplot of ssFCM-E-KKZ(Figure
3(b)) have more compact clusters that have clearer separation which more
closely resemble that of Soria’s classification (Figure 3(a)) than that of ssFCM-
M-KKZ (Figure 3(c)) where the clusters are more scattered and overlapped.
Figure 3(d) shows a biplot of combination of Soria’s classification and agreeing
solutions of ssFCM-E-KKZ and ssFCM-M-KKZ. The patients that belong to
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Fig. 3 Biplots showing the six classes of Soria’s classification (SC) [16] and not classified
(n.c) patients in (a) and the remaining 413 patients using ssFCM-E-KKZ in (b) and ssFCM-
M-KKZ in (c) and combined Soria’s classification with agreeing solutions of ssFCM-E-KKZ
and ssFCM-M-KKZ and mixed class (m.c) patients in (d).

mixed classes (denoted m.c in the figure) are shown as points at the edge/s of
two or more clusters.

4.8.2 Analysis of cluster centres

The key biomarkers that characterise the six classes can be identified from
analysis of the cluster centres generated by the two ssFCMs. The biomarkers
with standard deviation of the six cluster centres less than a value of 30 and
that do not contain very different values have been removed as they do not
help to discriminate between the classes. The values that are underlined in
Table 7 indicate high expression of the biomarker. We can observed very high
p53 and HER2 expressions which confirms Soria’s classification for classes 4
and 6 characteristics respectively. The high ER values in classes 1-3 separate
them from classes 4-6. We can also observe what differentiates classes 1-3.
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Table 7 Cluster centres for the six classes generated from the ssFCMs.

CK7/8 CK18 CK19 CK5/6 CK14 ER PgR AR HER2 HER3 HER4

p53 nBR1 MUC1 MUCl1c

ssFCM-E-KK7Z

1 286.8 252.1 224.8 1.0 0.8149.9170.0102.9 14.1 197.7 161.0 10.5 97.1 216.2 226.9
2 270.7 201.5 208.5 2.3 27135.0178.6101.4 145 734 342 8.1 166.2 215.1 227.2
3 267.9 212.6 190.9 4.2 191472 72.7 76.7 26.5 155.0 1354 18.5 844 81.5 84.5
4 123.0 398 769 376 302 69 36 7.2 7.7 157.2 112.5225.8 52.6 86.1 85.8
5 113.3 400 76.8 36.2 24.3 20.8 13.5 12.7 9.7 109.2 88.0 28.1 774 919 83.2
6 259.7 210.0 197.6 6.5 4.5 349 242 53.7 180.1 169.1 159.4 78.0 61.8 220.0 210.7
sd  79.62 94.15 67.40 17.38 12.99 68.23 78.99 42.18 67.94 44.74 48.50 84.50 40.58 71.62 75.34
ssFCM-M-KKZ

1 274.2 233.8 210.7 3.6 24135.1152.7 93.1 18.8 185.6 151.7 19.4 95.8 204.7 213.3
2 261.9 193.1 199.9 52 4.2120.8155.1 914 196 89.4 56.7 18.1 150.2 197.8 209.7
3 256.3 199.4 184.3 72 421325 7r.2 771 30.2 1489 123.7 27.5 924 113.0 116.2
4 181.0 109.1 125.2 23.6 18.8 53.6 45.5 37.6 19.0 153.1 115.8144.6 754 132.5 132.7
5 176.2 113.2 125.0 27.0 18.3 66.1 56.9 43.7 22.0 1284 989 31.4 91.0 139.7 133.0
6 249.5 194.5 187.7 83 5.6 59.9 54.0 60.6 136.1 156.3 137.5 67.9 79.0 203.4 200.6
sd 43.06 50.81 37.62 10.10 7.5238.61 50.39 23.77 46.80 32.29 33.40 49.11 27.12 41.29 44.70

Class 3 has much lower PgR and AR values than classes 1 and 2, and class 2
has much lower HER3 and HER4 values. These expressions coincide with Soria
et al’s proposed summary of classes with class interpretations (see Fig. 5 in
[16]). We observed that the cluster centres generated by ssFCM-E-KKZ have
higher discriminating power than those generated by ssFCM-M-KKZ as there
is greater difference between values that are underlined from those that are not
in ssFCM-E-KKZ than ssFCM-M-KKZ. This is also due to higher standard
deviation for each biomarker in ssFCM-E-KKZ than ssfFCM-M-KKZ.

4.8.8 Clinical evaluation

Clinical evaluation is conducted by investigating the association between the
classes with respect to clinical parameters such as age, tumour grade, etc. are
shown in Table 8. The ¢ coefficient values from the table shows significant
associations between classes. Classification from ssFCM-M-KKZ (in brackets)
has slightly higher ¢ coefficient values. The boxplots of class distribution with
respect to NPI values in Figure 4 show a clear distinction in NPI values be-
tween classes 1-2 and classes 4-6 but in class 3, there is a higher degree of
dispersion which overlaps between the two groups using ssFCM-E-KKZ. Us-
ing ssFCM-M-KKZ, there is a clear distinction between class 2 and classes 4-6
but, overlapping occurs in class 1 and 3.

In our survival analysis in Figure 5, we have removed surviving patients
with less than 60 months of survival to generate a more realistic survival
proportion as their outcomes after 60 months are currently unknown. Survival
curves of Soria’s classification show clear distinction between the three main
classes (Luminals, Basals and HER2) and their subclasses, showing strong
association between survival outcomes with the classes. This was previously
not reported in [16]. At the 5-Year survival time, we see the distinction in
the three main classes in ssFCM-E-KKZ but not in ssFCM-M-KKZ. HER2,
known to be associated with poor overall survival, is indicated in class 6 in all
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survival curves. Survival curve of triple-negative patients in classes 4 and 5,
which belongs to the basal group, showed poorer survival than classes 1-3 in
all survival curves. We feel that due to the very small number of patients being
classified as class 4 out of the 413 patients, a more optimistic class 4 survival
curve may have been drawn. Nevertheless, the distinction between the survival
curves of the three main classes, evident in results of Soria’s classification and
ssFCM-E-KKZ7 indicates associations between the classes and survival which
further supports Soria’s classification.

Table 8 Class distribution based on clinical parameters with ssFCM-E-KKZ and in brack-
ets, ssFCM-M-KKZ.

class 1 class 2 «class 3 class4 class 5 class 6 1)

Age 0.22 (0.23)
<35 1(5) 3 (1) 6 (4) 1(1) 3(3) 3(3)

35<Age<4b 56 (72) 62 (43) 33 (40) 6 (8) 20 (20) 32 (26)
45<Age<55 14 (15) 14 (13) 11 (11) 3 (4) 15 (18) 14 (10)

>55 20 (32) 34 (26) 16 (14) 5(9) 20 (17) 21(18)

Total 91 (124) 113 (83) 66 (69) 15 (22) 58 (58) 70 (57)

Grade 0.55 (0.54)
1 16 (22) 29 (23) 7(8) 0 (0) 1(1) 1(0)

2 48 (59) 53 (41) 16 (18) 1 (1) 4 (6) 13 (10)

3 27 (43) 31 (19) 43 (43) 14 (21) 53 (51) 56 (47)

Total 91 (124) 113 (83) 66 (69) 15 (22) 58 (58) 70 (57)

Size 0.26 (0.22)
<1.5cm 40 (45) 39(29) 14 (23) 5(7) 18 (16) 17 (13)
1.5cm<Size<2cm 7 (13) 13(9) 10(8) 0(1) 8 (8) 15 (14)
2cm<Size<2.5cm 21 (30) 30(24) 25(21) 3(5) 17 (19) 16 (13)

2.5cm< Size<3cm 11 (24) 19 (12) 11 (10) 3 (4) 11(11) 14 (8)

<3cm 12 (12) 12 (9) 6 (7) 4 (5) 4 (4) 8 (9)

Total 91 (124) 113 (83) 66 (69) 15 (22) 58 (58) 70 (57)

Lymph node stage 0.26 (0.19)
1 52 (71) 74 (55) 28 (35) 7 (13) 42 (38) 34 (25)

2 36 (45) 27 (20) 32(29) 5(5) 14 (15) 25 (25)

3 3 (8) 12 (8) 6 (5) 3 (4) 2 (5) 10 (6)

Total 91 (124) 113 (83) 66 (69) 15 (22) 58 (58) 69 (56)

Death 0.22 (0.18)
No 87 (116) 104 (79) 60 (60) 13 (17) 49 (50) 53 (44)

Yes 3 (6) 8 (4) 3 (6) 1(3) 6 (6) 15 (11)

Total 90 (122) 112 (83) 63 (66) 14 (20) 55 (56) 68 (55)

NPI 0.43 (0.44)
< 24 (EPG) 12 (17) 13 (9) 3 (4) 0 (0) 1(0) 2 (1)

24<NPI<3.4 (GPG) 25(29) 37 (34) 14 (15) 1(1) 3(3) 7(5)
3.4<NPI<4.4 (MPG1) 21 (28) 34 (21) 11 (16) 3 (5) 23 (23) 16 (15)
4.4<NPI<5.4 (MPG2) 25 (32) 16 (10) 18 (19) 6 (11) 22 (22) 22 (15)
<5.4(PPG) 8(18) 13(9) 20(15) 5(5) 9 (10) 23 (21)
Total 91 (124) 113(83) 66 (69) 15 (22) 58 (58) 70 (57)
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(a) ssFCM-E-KKZ (b) ssFCM-M-KKZ
Fig. 4 Boxplots showing NPI distribution of the six classes obtained from ssFCM.
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Fig. 5 Kaplan-Meier analysis of overall in different classes.

5 Discussion

We successfully reproduce Soria’s classification with high agreement levels us-
ing ssFCM as a single method. To classify the remaining 413 patients, we
use the techniques that reproduce Soria’s classification with high agreement
levels, that are ssFCM-E-KKZ and ssFCM-M-KKZ. Several different analy-
sis are conducted to assess the classification. The distribution of biomarkers
by class presented on the boxplots showed similar key characteristics of the
six classes by Soria et al. The biplots showed the clusters generated from the
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classified patients’ breast cancer type are located similarly to Soria’s classifi-
cation. Based on comparisons of boxplots of biomarkers and NPI values and
biplots, ssEFCM-E-KKZ produce classifications of patients (previously deemed
not classified) that closely resemble Soria’s classification. But, caution needs
to be exercised in trying not to ”force” the patients to belong to a class by
choosing solutions from one technique. Instead, by using the confusion matrix
and boxplot of NPI values from the two solutions, the patients belonging to
mixed groups can be identified for further deeper analysis. A notable obser-
vation from the confusion matrix and NPI boxplot is that less disagreements
are found in classes 4 and 5, allowing identification of possible triple negative
patients. From the boxplots, we found that some biomarkers do not appear
to contribute to class discrimination and may adversely affect classification
accuracy. A further study to investigate in using feature selection to improve
the classification results and identify important features is needed.

ssFCM-E-KKZ and ssFCM-M-KKZ were shown to produce high agree-
ment with Soria’s classification. We found that the fuzzy weights in the Maha-
lanobis distance did not produce a meaningful model for this dataset as much
improved classification results were found using the non-fuzzy (original) Ma-
halanobis distance. Duda et al. [4] warns of the dangers of imposing structure
instead of finding it when making a choice on distance metrics. Given a cer-
tain quantity of labelled data, ssfFCM using Mahalanobis distance can perform
competitively well as using Euclidean distance for this dataset. Previously in
[16], the six clusters were found using Euclidean distance, which explains that
ssFCM with Euclidean distance gave high classification accuracy. Had the
dataset contain hyperellipsoidal clusters, ssFCM with Mahalanobis and fuzzy-
Mahalanobis distances would most likely have performed better. We suspect
that fuzzy Mahalanobis distance does not as work well with data patterns
that form hyperspherical clusters as its very basis is to adapt to the shape and
volume of the clusters. The fuzzy weights may an inaccurate adaptation of the
shape and volume, particularly in a semi-supervised setting where the fuzzy
weights of unlabelled data are equal for all clusters initially. We also incorpo-
rated initialisation techniques to achieve small but important improvements
of classification results. Both ssFCM-E-KKZ and ssFCM-M-KKZ7 are capable
of automatically identify the same six classes of breast cancer types as Soria’s
classification, with high degree of agreement with above 0.8 accuracy at least
20% of labelled data, which confirms Soria et al’s six classes and addresses the
issue of stability of their classification.

While all the features in NTBC are highly non-normally distributed, ss-
FCM has been able to produce very good classification results. In clustering
techniques, Hair et al. stated that the requirement of normal distribution [7]
has little effect. But more importantly, ssFCM is able to detect relevant ar-
eas of high concentration (see biplots in Figure 3 (b) and (c)) that are of
importance using some labelled data, irrespective of the distribution.

Our examination of the classification of the remaining 413 patients inter-
estingly reveals similar distribution of NPI values by class as study in [16]
were found, which supports earlier claims of NPI providing discriminant infor-
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mation. Despite that these patients previously belonged to mixed classes [16],
these new classification of the 413 patients showed characteristics consistent
with those by Soria et al. Furthermore, the distinction between the three main
classes found in the survival analysis of the classified breast cancer types for
the 413 patients using ssFCM-E-KKZ, not only shows an association between
the survival and breast cancer types but also supports Soria’s classification.
In the analysis of the biomarkers, their distinct values (shown in the cluster
centres) and distributions (comparisons of boxplots with Soria’s classification)
verify their importance in characterising the classes and discriminating be-
tween them. The analysis with clinical information such as age, grade, NPI
and survival showed significant associations between the classes already iden-
tified with these clinical information, which can help support a more accurate
prognosis.

6 Conclusion

In this work, we have successfully identified the same breast cancer classes
as those previously found and with a high level of agreement. We also classi-
fied the remaining 413 patients, previously unclassified, and showed that they
exhibit similar characteristics as those in the already found six classes. Us-
ing both Euclidean distance and Mahalanobis distance, ssfFCM was able to
classify the 663 patients with high level of agreenent as Soria’s classification.
Small improvements can be further achieved using initialisation techniques.
Based on further analysis of the classification of the 413 patients and their
clinical parameters, the class characteristics found (based on clinical param-
eters) are consistent with those reported by Soria et al. [16]. In classifying
the breast cancer types of the remaining 413 patients, we hope that we have
provided a more accurate model for the prediction of breast cancer types for
new patients, using both classification from Soria et al. and classification of
the remaining 413 patients, which previously belonged to a mixture of classes,
that can help support decision making. In this respect, our contribution is
from a clinical point of view though application of computational techniques.
We shall further our studies in using feature selection techniques to identify
relevant (important) features that may improve classification results.
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