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Abstract 

The work carried out in this paper assessed how processing conditions and feedstock affect the 

quality of the coke produced during microwave coke making. The aim was to gather information that 

would support the development of an optimised microwave coke making oven. Experiments were 

carried out in a non-optimised 2450 MHz cylindrical cavity. The effect of treatment time (15 – 120 

min), power input (750 W – 4.5 kW) and overall power input (1,700 – 27,200 kWh/t) on a range of 

coals (semi-bituminous – anthracite) was investigated. Intrinsic reactivity, random reflectance, 

strength index and dielectric properties of the produced cokes were compared with those of two 

commercial cokes to assess the degree of coking produced in the microwave system.  

Overall energy input and coal rank were found to be the major factors determining the degree of 

coking following microwave treatment. The dependency on coal rank was attributed to the larger 

amount of volatiles that had to be removed from the lower ranked coals, and the increasing dielectric 

loss of the organic component of the coal with rank due to increased structural ordering. Longer 

treatment times at lower powers or shorter treatment times at higher powers are expected to 

produce the same degree of coking. 

It was concluded that microwave coke making represents a potential step-change in the coking 

industry by reducing treatment times by an order of magnitude, introducing flexibility and potentially 

decreasing the sensitivity to quality requirement in the feedstock. The main challenges to 

development are the energy requirements (which will need to be significantly reduced in an 

optimised process) and penetration depth (which will require an innovative reactor design to 
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maximise the advantage of using microwaves). Understanding and quantifying the rapidly changing 

dielectric properties of the coal and coke materials is vital in addressing both of these challenges. 
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1 Introduction 

Over the last 100 years or so, knowledge about coke making and the slot oven design has been 

gradually optimised. However the fundamental process surrounding the transformation of coal to 

coke remains essentially the same, with the use of conventional ovens heating coal feed stocks for at 

least 16 hours [1]. Whilst many aspects of production have been improved with changes in furnace 

design, long processing times have remained, mainly as a result of the poor thermal properties of the 

coal matrix [2]. Another limitation of the existing coke making process is the need to blend coals to 

within a fairly narrow volatile content range in order to control pressure in the oven: some pressure 

between the coal particles is desirable, as it improves coke strength, but excessive pressures cause 

damage to the oven walls [3]. 

World steel production has increased dramatically over the past few years. Between 1970 and 2006 

production almost doubled from less than 600 Mt to around 1.2 billion tonnes [4]. Almost 70 % of 

steel produced relies on metallurgical coal (coking coal) [4]. In addition, current coke making facilities 

are in need of refurbishment i.e. in 2004, 52 % of factories were over 20 years old and 26 % were over 

30 years old [5]. The increasing demand for coke, coupled with aging coking facilities, may open 

investment opportunities to new coke making methods. 

Microwave heating of coal has been identified as having the potential to offer a step change 

improvement in coke making. Microwaves heat volumetrically, meaning that non-metallic materials, 

like coal, can be heated effectively instantaneously, avoiding the heat transfer limitations of 

conventional heating and, therefore, drastically reducing treatment times. Microwaves heat 

selectively, the degree of heating of each individual component depending upon its dielectric 

properties. Although coal as a bulk material at room temperature has relatively low dielectric 

properties, coal constituents such as moisture, bound hydroxyl groups and pyrite have significantly 

higher dielectric loss than the organic component [6-8]. There are also small but detectable variations 

in electromagnetic properties of macerals [8-10]. Bound water in porous particles has the potential to 

superheat to temperatures well above 100°C [6, 11-14]. This superheated water is situated within the 

microwave transparent coal matrix, heating it up and thereby raising the bulk temperature, increasing 

the susceptibility of the coal itself to microwave absorption. The transformation from coal to coke 

produces an increase in the aromaticity of the carbon material [7] as a consequence of the loss of the 

volatile component during the carbonisation and an increase in the degree of graphitisation. 

Increasing aromaticity results in an increase in conductivity due to increasing electron mobility 

through the transfer of  bond electrons along the aromatic layers [2, 8-10, 15-19]. As temperatures 

continue to increase from 400 to 1000
o
C, electron mobility and level of free charge per unit volume 

will also continue to increase through graphitisation of the carbon, resulting in an increase in 

dielectric loss factor and thus increasing microwave heating, allowing the high temperatures 

(>1000
o
C) required for coking of coal to be achieved [1, 3, 6, 8].  
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Coke making by the microwave heating of coal is not a new idea, and several patents for methods 

with and without the use of microwave receptors have been filed, dating from the 1970’s to more 

recently [20-23]. Coetzer and Rossouw have used microwave treatment to produce high quality cokes 

from a Waterberg semi-soft coking coal in 2 – 3 hours using microwave receptors to heat the coal 

indirectly [24]. However, according to the theory presented above, some or even all coals could be 

heated to coking temperatures without the addition of microwave receptors. Since superheating of 

bound water is a major mechanism in the initial heating-up of the coal, it is vital to maximise the 

power density in the sample during cavity design. Lester et al. [6] have shown that it is possible to 

produce coke with similar properties to conventional cokes using a relatively low rank, high volatile 

bituminous coal without the use of receptors with only 70 min of heating in a multimode cavity. The 

cavity used was a non-optimised multimode cavity operating at 8 kW. 

Initial indications from previous work are therefore that microwave heating may represent a step 

change in coke making through drastic reductions in coking times, and the ability to start-up and shut 

down the process within a short time frame.  In other words, a complete redesign of coking plant 

equipment with a smaller footprint and the ability for flexible operation may be possible. 

Prior to the development of any larger scale process, a more fundamental understanding of the 

microwave induced coking process is required. The importance of high temperature properties of 

coke is well established in the steel industry [25]. Coking conditions (such as bulk density, coking time, 

preheating of the charge, and the incorporation of non-coal materials) and the properties of the input 

coal or coal blend are the factors that determine the coke properties in conventional coking [25]. The 

aim of the work presented in this paper is therefore to investigate the effect of coking conditions and 

input coal properties on the quality of coke produced using microwave heating.  The basic process 

variables in a microwave process are the power input and treatment time.  A certain amount of input 

power is absorbed by the sample, and if this is measured over the duration of the experiments, the 

energy input can be calculated.  As stated above, the input coal or blend is also a major determinant 

of coke quality.  The coal rank, rheology and composition all affect the final coke quality [25]. In 

microwave processes, the dielectric properties of the material are also key factors in determining how 

a material will heat, and these change with temperature, pressure and composition [26]. This feeds 

back into the degree and distribution of power absorption, which can be expressed by the power 

density in the sample, as shown in Equation 1. 

2

02 EfPd       (1) 

The power density, Pd, is the power dissipated within a given volume of material (W/m
3
), f is the 

frequency of the applied electromagnetic wave (Hz), o is the permittivity of free space (8.85×10
-12

 

F/m), ″ is the dielectric loss factor and E is the electric field strength (V/m). Pd varies spatially and 

according to the cavity and sample dimensions and absorbed power, and these variations are 
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accounted for in the E term. It is therefore clear that there is a complex interdependency of process 

variables and material properties, and that the heat transfer properties that determine heating rate in 

conventional coking are largely replaced with the dielectric properties in microwave heating. 

The dielectric properties also impact reactor sizing. As a wave progresses into a dielectric-heating 

workload, its amplitude diminishes owing to absorption of power as heat into the material. This 

attenuation is expressed quantitatively by the penetration depth, Dp, which is defined as the depth 

into the material at which the power flux has fallen to 1/e of its surface value [27]. When ɛ’’≤ ɛ’, Dp 

can be approximated according to Equation 2, where ɛ’ is the dielectric constant and λ0 is the 

microwave wavelength. 

𝐷𝑝 ≈
𝜆0√ɛ′

2𝜋ɛ′′
      (2) 

It is clear from Equation 2 that the penetration depth decreases as the dielectric loss of the material 

increases [27]. The practical implication of this is that microwaves cannot penetrate very far into 

materials that absorb microwaves strongly, and this limits the reactor dimensions. 

For the purposes of this work, the process inputs varied were power input, treatment time and coal 

type. The aim was to determine the effect of these variables on coke quality. In order to optimise the 

process in terms of energy requirements, the E term in Equation 1 would need to be manipulated, 

and this would be done by optimising the cavity design. The information presented here would be 

vital developing the process further. It is likely that the energy requirements would be dramatically 

reduced with the development of an optimised microwave cavity. Such a cavity would need to be 

designed specifically for coke manufacture, and this will only be possible once the key parameters 

that govern the coking process are fully understood. 
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2 Materials and Methods 

2.1 Coal Samples 

The microwave coking of four different coals was investigated: a high volatile English bituminous coal 

(Coal A), a low rank semi-bituminous coal from Kaltim Prima (Coal B), a medium rank bituminous coal 

from Wales, UK (Coal C) and a semi anthracite from Wales, UK (Coal D). The petrographic 

characteristics and proximate analysis of Coals A – D are given in Table 1. 

The coal samples were passed through a jaw crusher and sieved to a size fraction of 1 – 3.35 mm prior 

to microwave heating. 

2.2 Microwave Experiments 

The experimental setup is shown in Figure 1. All experiments used a variable power 6 kW microwave 

system (HF Dielectric Heater FDU 543VD-02) operating at a frequency of 2.45 GHz with a cylindrical 

cavity, waveguide and manual three stub tuner for impedance matching purposes. The reflected 

power was maintained below 10 % during the majority of the operating time. Each experiment used 

two hundred and twenty grams of coal held in a Pyrex beaker covered by glass wool. The glass wool 

acted as a dielectric barrier to protect the cavity from arcing and to contain the beaker in the event 

that it cracked during the experiment.  All flanges were tightly sealed and the cavity was flushed with 

15 L/min N2 for 15 minutes (i.e. approximately six reactor volumes) prior to the experiments.  The N2 

flow was reduced to 10 L/min during operation, and this maintained the inert environment as well as 

acting as a carrier gas to remove products that were evolved during processing. 

Coke samples were prepared from Coal A using a range of microwave powers (750 W - 4.5 kW) and 

treatment times (15 - 120 min), representing a range of total energy inputs of 1,700 – 27,200 kWh/t. 

Coals B – D were treated at an energy input of 6,800 kWh/t in order to investigate the effect of coal 

type. 

2.3 Product analysis 

The properties of the microwave cokes were compared with two commercial cokes (Commercial Coke 

1 and Commercial Coke 2). 

Thermogravimetric analysis was used to determine the intrinsic reactivity of the original coal and the 

coke products using a non-isothermal program
 
with a heating rate of 10

o
C/min in an air flow of 100 

cc/min up to a temperature of 900
o
C [6, 28]. The burnout profile (the burnout temperature (BT) and 

peak temperature (PT) in particular) was used to provide a relative indication of carbon reactivity. The 

BT is the temperature at which the burnout rate reaches 1%/min, and the PT is the temperature at 

the maximum burnout rate. An isothermal TGA test that modified the British Standard (BS 4262-1984) 
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for measuring coke ‘reactivity’ towards CO2 was also used [29]. The sample was heated in a N2 

atmosphere at 50
°
C/min up to 1000

°
C with a hold time of 10 min before switching to a CO2 gas flow 

for 2 hours. 

Oil Immersion Analysis was carried out using polished blocks of the samples, prepared with an epoxy 

liquid resin blend, examined under polarized-light microscope Leitz Ortholux Pol II BK with x32 

magnification oil-immersion objective and x10 magnification eyepiece. Random reflectance was 

measured on each sample with the system calibrated using a silicon carbide light standard (7.51 % 

reflectance in oil) [30]. Colour and black and white mosaic images (3090 x 3090 pixels from 15 x 15 

individual images) were captured using a Zeiss AxioCam attached to the microscope, connected to a 

computer using an optic fibre cable, and operated with KS400 V3.1 image analysis software. A 

minimum of 350 particles per sample were considered to identify and quantify porosity.  

Strength tests were carried out using BS 1016-108.2:1992 modified for a smaller amount of sample 

[31-33]. In each case, the whole sample was crushed by hand to avoid the production of fines and 

maximise the quantity of particles between 3.35 mm and 9.5 mm. The sample was then sieved into 

two size fractions, and a twenty gram sample with a known size distribution (65 % between 9.5 - 5 

mm size and 35 % between 3.35 – 5 mm size) was prepared. This sample was introduced into a small 

rotating drum consisting of three 30.2 mm steel balls bearings, each weighing 68.2 g, at a speed of 

approximately 30 rpm for a total of 200 revolutions. The coke was then sieved on a 2.36 mm screen to 

produce a >2.36 mm percent coke strength index, S. Each test was repeated twice. 

Dielectric property measurements of the polished block samples (prepared for the oil immersion tests) 

were performed with the use of an open ended coaxial line terminating to a probe with an annular 

aperture. The other end of the coaxial line was connected to an Agilent 8753ES Vector Network 

Analyzer (VNA) with a frequency range 30 kHz – 6 GHz. Before each measurement, the system was 

calibrated with three different calibration standards: an open line, a short-circuited line and a 

reference liquid [34] of known dielectric response (ethanol). During the short circuit measurements 

the metallic shortening block was replaced in each measurement; experience has shown that 

achieving a good short circuit during calibration is paramount, as it introduces the largest residual 

errors during the procedure. After the measurement of the three standards the calibration 

coefficients were calculated and downloaded to the VNA. Details of this method can be found 

elsewhere [35]. During the measurement a swept frequency signal was transmitted from the VNA into 

the liquid via the coaxial line, and the reflection coefficient was recorded. The amplitude and the 

phase of  were fed into a computer program, which utilised a modal analysis [25, 35-37] to calculate 

the real (dielectric constant, ɛ’) and imaginary parts (dielectric loss, ɛ’’) of the complex permittivity. 
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3 Results and Discussion 

3.1 Thermal Reactivity – Intrinsic Reactivity in air 

Figure 2 shows the differential weight loss with temperature for Coal A treated for 120 minutes at a 

range of powers from 0.75 kW to 3 kW. It shows that the PT and BT increase (and therefore reactivity 

decreases) with increasing input power.  Similar results were observed when the treatment time was 

increased but the input power was held constant.  Therefore if the energy input is increased, either by 

increasing the power or treatment time, the reactivity of the resultant coke decreases. 

Table 2 shows BT, PT and the proximate analysis of Coal A treated under the full range of conditions, 

untreated Coal A and the two commercial cokes. The data in Table 2 show that when the power input 

and treatment times are multiplied to give total energy input (kWh/t), BT and PT are independent of 

power input. 

Figure 3 shows BT and PT against total energy input for all powers and treatment times. There is more 

scatter in the peak temperature data than the burnout temperature data, but a clear correlation 

between total energy input and intrinsic reactivity is nevertheless observed. Based on the data in 

Table 2 and Figure 3, it is concluded that the reactivity of the microwave coke decreases with 

increasing energy input. Energy input can be increased by increasing the treatment time or power 

input, i.e. it appears to be possible to achieve a specific burnout reactivity using either a shorter 

residence time and a higher power input, or a longer residence time and a lower power input. 

Table 2 also shows that the volatile matter content decreases with increasing residence time and 

overall energy input. 

Based on the PT and BT values for the commercial coke samples, an energy input of approximately 

20,000 kWh/t would be needed to create similar material using this microwave cavity, which would 

equate to a power input of 1.5 kW for 180 min or 3 kW for 90 min. 

3.2 Thermal reactivity - Reactivity with CO2 

Similar to intrinsic reactivity, reactivity in CO2 is a relative test for comparing different coke products. 

Metallurgical cokes that oxidise too easily in CO2 will weaken and degrade into smaller particles, 

leading to permeability decreases, which can also lead to the blockage of the tuyères through the 

build-up of coke residues [25]. 

Figure 4 shows conversion in CO2 versus time for Coal A treated for 120 min at three different input 

powers (750 W, 1.5 kW and 3 kW) and both commercial cokes. The 750 W and 1.5 kW samples were 

notably more reactive than either of the commercial cokes, in agreement with the PT and BT data in 

Table 2. The 3 kW sample, however, remains unreactive in CO2 for longer than either commercial 
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coke, and the conversion followed the Commercial Coke 2 profile very closely from 50 min into the 

test.  Therefore it appears that with sufficient energy input, microwave coke can show a similar 

reactivity to CO2 as commercial coke. 

3.3 Random reflectance Rran 

It is possible to see from Table 3 that reflectance values increase both with treatment time and 

microwave power. As the degree of graphitisation in the carbon material increases, structural 

ordering also increases and the reflectance of the material (under oil immersion) becomes higher [38, 

39]. Figure 5 shows that the reflectance values, like the burnout temperatures, increase with overall 

energy input. In this case however, because of the rapid increase in reflectance from the original coal, 

the relationship appears to be non-linear. Even the lowest power input for a relatively short time 

produces a material with a reflectance of 4.0 % (from the initial coal at 0.8 %). The increase from 4.0 

% towards the commercial coke values of >6.0 % requires significantly more energy input, either with 

longer treatment times or higher power input. The highest reflectance value of 6.2 % was achieved at 

4.5 kW and 40 min treatment time (13,600 kWh/t); further increases in input energy did not increase 

the reflectance of the product. There is no evidence from these results that input power affects the 

reflectance of the product. 

3.4  Coke strength  

Coke strength is the key absolute property for coke whilst being a good relative measure for 

performance in the lower region in the furnace [1]. Table 4 gives the strength index of the cokes 

produced from Coal A by microwave energy at different operating conditions. 

Interestingly, low power tests carried out at the same energy input, 6,800 kWh/t for example, using 

750 W for 120 min and 1.5 kW for 60 min, produce strength index data that is very similar (53.2 and 

54.3 % respectively), although more data would be needed to confirm this. At higher power input 

levels but the same energy input (13,600 kWh/t), a significantly higher strength index was produced 

at 1.5 kW than 3 kW, 61.9 compared with 56.8. This discrepancy also agrees with observations made 

with intrinsic reactivity (Table 2) and reflectance data (Table 3). These differences may be due to the 

impact of an increased heating rate i.e. the increased power input from 1.5 to 3 kW produces four 

times the power density. 

It is evident from Table 4 that the commercial coke strength values of >65 were only achieved when 

the coal was treated with > 15,000 kWh/t. 

3.5 Coke Porosity 

The formation of pores is a critical feature of coke material not least because the porous structure is 

directly linked to coke strength [40] and, more importantly, the diffusion of reductive gases through 
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the coke bed in the blast furnace [41]. Figure 6 shows porous structures from Commercial Coke 1; it 

was found to have an average porosity of 48 %, which is similar to values previously reported for 

commercial coke materials[42].  Figure 7 shows the porosity of a single image of Coke A prepared at 

relatively low power input (3kW for 15 mins with a total input of 3,400kWh/t ). In this case the 

porosity was an ‘encouraging’ 39%. The porosity produced by taking the same energy input 

(3400kWh/t) at increasing powers (1.5kW, 3kW and 4.5kW) seemed to produce small increases 

overall at 26%, 28% and 32% respectively. Figure 8 shows a large mosaic image of particulate coke, 

where the individual grains have been magnified and analysed for porosity. All cokes prepared using 

microwaves exhibit a reasonable degree of pore formation, with the 4.5 kW at 40 mins (13,600kWh/t) 

producing the largest porosity at 43%.  

It is clear that porosity develops during microwave heating, which is encouraging. We are still 

developing a means of automated measurement of porosity with more samples, but it should be 

noted that these experiments were batch based, in a non-optimised cavity. Section 3.8 discusses 

further how a system might be able to produce coke more efficiently using microwaves. Porosity will 

be directly linked to the size of the sample (both weight and dimensions) as well as time temperature 

history [43, 44], so the final porosity from an optimised microwave based process is still unknown. 

3.6 Coal type and microwave coking potential 

Coals B, C and D (low rank semi-bituminous, medium rank bituminous and semi anthracite) were 

selected to investigate the effect of coal type on coking behaviour (Table 1). They were treated at 1.5 

kW for 60 min. These conditions correspond to the absolute minimum energy requirement for Coal A 

(a high volatile bituminous coal) to form a coke like product (Table 2) and were therefore chosen to 

maximise the probability of identifyingany differences in coking performance based on coal type. 

Table 5 gives the values of the peak and burnout temperatures of the original coals together with the 

values corresponding to the cokes, and Table 6 gives the random reflectance and dielectric 

properties. The reactivity of each coke product was significantly reduced compared with the parent 

coal, although it is clear that coal characteristics can play a very important role in the behaviour of the 

coals in the microwave coking process. The PT and BT values (intrinsic reactivity) increase as rank 

increases, but more importantly, the response of the coal to microwaves changes. As rank increases, 

so does the degree of aromaticity, producing a more stable structure with lower H/C and O/C ratios 

[45]. 

Coke D has the lowest intrinsic reactivity, highest dielectric properties and highest reflectance of the 

microwave-made cokes, indicating that it is the best candidate for microwave coke making. This is 

almost certainly as a result of the reduced devolatilisation time (with only 6.6 % volatiles in the initial 

coal), and its higher (initial) aromaticity, which is already structurally more like coke material. 

Therefore using higher ranked coals appears advantageous, and the reasons for this are twofold: 



 11 

firstly, they are already highly aromatic and so require less time to complete the coking/graphitisation 

process, and secondly, lower ranked coals inevitably have higher volatile contents, which will require 

longer pyrolysis times thus delaying the onset of the graphitisation process. Table 5 shows that Coal B 

(44.7 % volatiles) produced a coke with 11.4 % residual volatiles present and the lowest PT and BT 

values. There is still a marked increase in the BT and PT values between Coal B and Coke B, but the 

changes between Coal D and Coke D is far larger. This indicates that even though coal moisture in 

lower ranked coals can boost dielectric properties at low temperatures (since moisture and bound -

OH groups are highly receptive to microwaves and these are generally inversely proportional to rank), 

the graphitisation process still requires time and hence lower ranked coals will require a longer 

treatment time. In addition, the moisture and bound water are undoubtedly lost during the initial 

heating phase of the coal material and, once this has happened, the carbonaceous material in the 

cavity is at a high temperature and highly microwave absorbent, requiring time in which to carbonise. 

Figure 9 shows the reactivity of the coke products in CO2. Coal B produced a material that is clearly 

the most reactive and the least comparable to the commercial cokes. Coal D produced a material that 

(at a relatively low energy input of 6800 kWh/t) had a similar profile to Commercial Coke 2, the less 

reactive commercial coke. The profiles for Coke A and Coke C also approached Commercial Coke 1, 

the more reactive commercial coke. It therefore appears from these results that the volatile content 

is a major factor influencing coking time, but that all coals tested could produce coke given enough 

treatment time and overall energy input. 

3.7 Dielectric properties 

As explained in Section 1, the dielectric properties of a material describe how it will heat in a 

microwave field. Knowledge of the dielectric properties and how they can be expected to change over 

time is therefore important in microwave process design. 

The dielectric properties of treated and untreated Coal A at 2450 MHz, as well as those of the 

commercial coke, are shown in Table 3. As with the other characteristics, both the dielectric constant 

and loss factor increase with increasing energy input which, in turn, is effectively a measure of the 

level of graphitisation in the sample [6, 46]. When interpreting the results it is important to be aware 

of the potential errors in the measurement technique. Coaxial probe measurements are most 

accurate for high dielectric loss materials, where it is possible to obtain uncertainties of the order of 

±3 % or less [47]. The measurements here indicate that the tan δ (which is the ratio ɛ’’:ɛ’ and is used 

as an indicator of the how well a material absorbs microwaves [48]) is <0.1 for the untreated coals 

and within the range 1.0 – 0.5 for the cokes. This means that the coals were all classified as low 

microwave absorbers and the cokes were medium microwave absorbers, increasing in uncertainty 

beyond that for high loss materials [48]. In addition, hard specimens were used, and the potential for 

small air gaps in the surface of the samples also increases the uncertainty in the measurements [49]. 
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Despite the relatively high levels of uncertainty in the dielectric measurements, clear trends are seen 

within the results. 

Figure 10 shows the variation of the dielectric properties of the microwave cokes against overall 

energy input. As with intrinsic reactivity and reflectance, the total energy input appears to correlate 

well with changes in both the dielectric constant and loss. Based on the data in Table 3, a dielectric 

constant of around 30 and loss of around 10 are expected to be required for microwave coke to be 

comparable with commercial coke; referring to Figure 10, this equates to an energy requirement of 

around 15,000 kWh/t, which is close to with the previous figure of 20,000 kWh/t that was quoted 

based on the intrinsic reactivity data. Whilst the general trends seen in Figure 10 are clear, it would be 

useful to carry out more repeat experiments at lower energy input (<10,000 kWh/t) to clarify whether 

the relationship between dielectric loss and energy input is linear or logarithmic. 

In addition to informing microwave process design, the correlation observed here may have a 

potential application in monitoring the progress of (conventional or microwave) coking processes.  

The fact that dielectric properties increase with temperature means that a thermal runaway effect 

can be achieved at high temperatures.  This means that the maximum temperature of the coking 

process is not limited in the same way as in a conventional furnace, and therefore higher processing 

temperatures may be achieved.  This may lead to an improvement in coke quality over conventional 

coke. 

3.8 The relevance of the results to cavity design and scale-up 

The results reported here show that energy input correlates well with all measured characteristics, 

implying that high powers at shorter treatment times do not achieve better products than lower 

powers with longer treatment times. It follows that power input could be calculated if a residence 

time was chosen. However, emphasis must now be given to minimising energy requirements in the 

cavity design process. Knowledge of the dielectric properties and how they will change during 

processing will be vital to the design of the microwave cavity from the point of view of maximising the 

conversion of energy to heat, and also because the dielectric properties influence penetration depth. 

Table 7 shows the calculated penetration depth of the coke materials at a frequency of 2450 MHz. 

These figures show that if a microwave system was designed to work at a bed thickness that was 

similar to a conventional coke furnace, only a fraction of the total mass would be heated by 

microwaves, with the rest of the material being heated through conventional heat transfer. In 

addition, the penetration depth would decrease further when operating at typical coke bed 

temperatures (>1000
°
C), meaning that the penetration depth would decrease from tens of 

centimetres to a few millimetres. The coal samples in these experiments were prepared in the form of 

cylinders 8 cm diameter and 13 cm high, and the penetration depth reduced to less than the sample 

dimensions during treatment in all cases. The implication is that only the outer few millimetres of the 
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sample would have been absorbing microwaves by the end of the experiment, and therefore 

conventional heat transfer from the part of the sample that was still able to absorb microwaves was 

responsible for continuing to heat the inside of the sample. Therefore, if thinner samples had been 

used (in the order of millimetres), the coking process would have been quicker since volumetric 

heating by microwaves is effectively instantaneous, whereas conventional heat transfer is not. This 

reduction in treatment time may also have led to a reduction in heat losses, making the process more 

energy efficient. It should be noted that wavelength (or its reciprocal, frequency) influences 

penetration depth [26]. This means that operating at typical industrial frequencies such as 433 MHz or 

896 MHz rather than the 2450 MHz used here would increase the penetration depth. However, it is 

clear that the final stages of microwave coking will not be possible in a large coking furnace, and that 

a novel design will be required for this process to work.. Although this would be a major engineering 

challenge, it would provide the opportunity for the design of new coking plant equipment with a small 

footprint and the option for flexible operation. 

As initially stated, the success of conventional coking is largely dependent on careful control of the 

properties of the coal or coal blend used as the raw material. This is largely due to the presence of an 

optimum volatile range, below which the coke produced is not strong enough, and above which high 

pressures cause damage to the oven walls [3]. The coals treated in this work represent a wide range 

of volatile contents, and the initial indication is that, given enough energy input, a coke-like material 

could be produced from each coal. Further testing would be required to confirm this. However, the 

rapid temperature increase of liquid in pores caused by volumetric heating can lead to internal 

pressure build-up on a scale that is not possible in conventional heating processes [26]. It may 

therefore be that the internal pressures required to achieve the necessary coke strength [3] could be 

achieved in microwave processing without the presence of the same degree of volatile matter. Since 

volumetric heating was not achieved throughout the entire duration of the experiment (due to 

decreasing penetration depth), the heating rate, and therefore devolatilisation rate in the core of the 

sample, was not maximised, as conventional heat transfer for the outer layers was now the mode of 

heat transfer; poor heat transfer properties are known to be a limitation in conventional coking [2]. 

Further testing in an optimised cavity would be required to elucidate devolatilisation kinetics and 

confirm whether superheating in the sample can be used to enhance coke strength. The issue of 

excessive pressures damaging the oven walls is also something that would have to be assessed 

separately for microwave processing, given that the oven design would be completely different from 

the current slot oven design. Since the sample would have to be of the order of millimetres think, it is 

possible that the pressure build-up would be significantly less and therefore may not be an issue. Of 

course a lot more work is required before these questions can be fully answered, but it could be that 

microwave coke making could be used on feedstocks with a larger volatile content range than is 

currently the case. If this is true it would be a major driver for the development of this technology. 
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Another important point to note is that very high temperatures and rapidly changing dielectric 

properties can lead to thermal runaway, and so controlling the power into the material through 

careful electromagnetic and engineering design would be paramount to ensure a safe and sustainable 

process. 

4 Conclusions 

Work reported here and elsewhere [6] shows that microwave heating of coal without the addition of 

microwave receptors can produce coke in timescales that are much shorter than the conventional 

coking process. Each sample becomes more graphitised with increasing treatment time and/or power 

input, resulting in an increase in the level of free charges per unit volume that produces an increase in 

the dielectric constant and loss factor values. 

The first major finding of the work reported in this paper is that the overall energy input determines 

the degree of graphitisation of a given coal. A range of characterisation tests showed that at least 

13,600 kW/t was required in the non-optimised microwave cavity to produce a commercially 

comparable material using a high volatile coal as a feed material. This figure would have to be 

reduced by an order of magnitude to compare with conventional coking, which uses approximately 

1,000 kW/t [50]. The second major finding is that it is possible to produce coke from a range of coals, 

including those that are not suitable for conventional coking. Further work investigating the 

devolatilisation kinetics in an optimised cavity is required to elucidate the relationship between 

volatile content and coke strength during microwave treatment. Our results show an inverse 

relationship between coal rank and energy requirement. It is suggested that the energy required to 

devolatilise lower rank coals is the main cause of this effect. In addition, although the higher water 

content of lower rank coals facilitates microwave absorption in the first instance, once the water is 

removed, the less graphitised, more amorphous, lower rank coals absorb microwaves less effectively 

than their higher ranked counterparts. This leads to lower heating rates, which affects devolatilisation 

behaviour and coking time. Blending lower and higher ranked coals may be an excellent way of 

producing a high heating rate in the feedstock without creating subsequent problems with 

uncontrolled devolatilisation and flow type anisotropy in the product. 

Possibly the most significant conclusion from this work concerns the importance of penetration 

depth. Rapidly decreasing penetration depth will have a major influence on process design. Only the 

outer few millimetres of a coke sample in the late stages of treatment are heated with microwave 

energy at a frequency of 2.45 GHz, and although lower frequencies could be used to increase the 

penetration into the sample, practical sample dimensions would still remain significantly less than the 

dimensions of a conventional coking furnace. 

Bulk sample temperature was not measured for practical reasons since thermocouples that remain 

transparent to microwaves at high temperatures and operate at temperatures of 1000
°
C are not 



 15 

readily available. However, temperature data would help to clarify the reaction kinetics. Ash and 

sulphur analysis would also be of interest in future work, to help to understand devolatilisation 

behaviour and also to confirm whether ash and sulphur content of the feedstock need to be within 

strict limits, as is the case in conventional coke making [3]. Further investigations should take place in 

an optimised cavity, in order to determine scalable energy requirements, and also to simulate the 

coking conditions that would be experienced in an industrial microwave system. 

To summarise, microwave coke making represents a potential step-change in the coking industry by 

reducing treatment times by an order of magnitude, enabling flexible operation, reducing the 

equipment footprint, and potentially decreasing the sensitivity of the product quality to the 

feedstock. 

The main challenges to development are the energy requirements, which will need to be significantly 

reduced in an optimised process, and the penetration depth, which will require an innovative reactor 

design to maximise the advantage of using microwaves. Understanding and quantifying the rapidly 

changing dielectric properties of the coal and coke materials is vital in addressing both of these 

challenges. This work provides inputs that will be required in future research and development work, 

but the engineering challenges in developing a scaled microwave coking system will be significant. 
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Captions 

Figure 1. Schematic of the cavity for coke making process by microwave heating 

Figure 2. TGA profiles for Coal A and coke samples treated for 120 min at different powers 

Figure 3. The effect of energy input on burnout temperature (BT) and peak temperature (PT) 

Figure 4. CO2 reactivity tests - the impact of power input with a treatment time of 120 min 

Figure 5. Variation of the random reflectance values of the cokes made from Coal A as a function of 

the energy input applied at four different powers (0.75, 1.5, 3 and 4.5 kW) 

Figure 6. A binary thresholded mosaic of Commercial Coke 1 with internal porosity shown in black and 

coke walls in white. Image width is 1mm. 

Figure 7. An example of how the porosity is segregated in the Coal A at 3kW for 15 mins with a total 

input of 3,400kWh/t. The original image (left) captured using oil immersion lens (32x objective and 

10x internal lens). Image size is 270 microns wide. This image is showing 39% porosity, with pores 

shown in red (right). 

Figure 8. A larger mosaic image (15x15) showing particulate coke particles at 3kW for 30 mins 

equating to 6,800 kWh/t. This sample is showing 33% porosity. 

Figure 9. CO2 reactivity tests – the effect of coal type on coke reactivity the same total energy input 

(1.5kW for 60 minutes). 

Figure 10. Dielectric constant (ɛ’) and dielectric loss (ɛ’’) vs overall energy input. 

Table 1. Petrographic and proximate analysis of coal samples 

Table 2. Results of the TGA characterisation of Coal A and cokes samples (E = energy, BT = burnout 

temperature, PT = peak temperature, VM = volatile matter, db = dry basis) 

Table 3. Random reflectance measurement and dielectric properties for treated Coal A, untreated 

Coal A and commercial cokes 

Table 4. Coke strength index values for the cokes made from Coal A (average of 2 measurements) 

Table 5. Results of the TGA characterisation of the parent coals and cokes produced at a power of 1.5 

kW, treatment time of 60 min and energy input of 6,800 kWh/t 
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Table 6. Results of the random reflectance measurement and dielectric properties values for different 

parent coals and microwave cokes produced at a power of 1.5 kW, treatment time of 60 min and 

energy input of 6,800 kWh/t 

Table 7. The penetration depth of the coal and coke materials at 2450 MHz 

 

 


