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Maintaining good positioning performance has always been a challenge task for Global Navigation 

Satellite Systems (GNSS) applications in partially obstructed environments. A method that can 

optimize positioning performance in the harsh environments is proposed. Using carrier 

double-difference (DD) model, the influence of the satellite-pair geometry on the correlation among 

different equations is researched. This addresses the critical relationship between DD equations and its 

ill-posedness. From analyzing the collected multi-constellation observations, a strong correlation 

between the condition number and the positioning standard deviation is detected as the correlation 

coefficient is larger than 0.92. Based on this finding, a new method for determining the reference 

satellites by using the minimum condition number rather than the maximum elevation is proposed. This 

reduces the ill-posedness of the co-factor matrix, which improves the single-epoch positioning solution 

with a fixed DD ambiguity. Finally, evaluation trials are carried out by masking some satellites to 

simulate common satellite obstruction scenarios including azimuth shielding, elevation shielding and 

strip shielding. Results indicate the proposed approach improves the positioning stability with 

multi-constellation satellites notably in the harsh environments.  
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1. INTRODUCTION.  Global Navigation Satellite Systems (GNSS) are able to 

provide highly accurate real-time three-dimensional positioning in all weather 

conditions (Theiss et al., 2005; DeLoach, 1989). Therefore it has wide engineering 

and environmental applications and many more new applications are emerging. 
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Real-time Kinematic (RTK) GNSS positioning demonstrates its advantages 

furthermore by providing automatic all-weather monitoring of structural health 

conditions (Takasu and Yasuda, 2008), particularly in the situations where continuous, 

real-time and highly accurate positioning or monitoring is required, e.g. the vibration 

monitoring of tall or long span engineering structures under the loading conditions of 

strong wind, changeable temperature, eventual traffic and earthquakes, and ground 

surface settlement monitoring during construction. Moreover, without the need of line 

of sight (LOS) among stations, the placement of positioning or monitoring stations is 

granted with more freedom in the complicated environments. However, in the harsh 

environments, such as urban canyons or deep valleys, such monitoring applications 

based on Global Positioning System (GPS) only system have apparent drawbacks, 

such as the low system robustness, inadequate accuracy, and so on (Meng, 2013). This 

is due to pervasive GNSS signal blockage, signal reflection and refraction caused by 

the buildings in the surrounding environment. The number of observable satellites and 

the signal quality in such cases are significantly degraded, resulting in poor 

positioning performance (accuracy, robustness, continuity, etc.). Following the 

emergence and rapid development of other GNSS, i.e. GLObal NAvigation Satellite 

System (GLONASS), Galileo and BeiDou Navigation Satellite System (BDS), GNSS 

step into a new era (Yang et al., 2011). With at least 70 to 80 visible GNSS satellites 

in the sky today, signals from at least 10 to 30 satellites could be received anywhere 

(excluding North and South Poles) in the world. This enables precise GNSS 

positioning even in the partially obstructed areas possible. 

A common positioning problem in the urban environments is that the visible 

satellites are unevenly distributed, i.e. the signals from a certain azimuth or elevation 

range cannot be used to resolve for GNSS positioning due to signal obstruction and 

corruption, which causes a strong correlation between the observation equations. In 

other words, the solution system is strongly ill-conditioned (Li et al., 2010). Under 

such circumstances, even with a sufficient number of satellites and high quality 

observations, the solution system would still result in poor accuracy and low stability 

due to observation noise. Current studies on positioning accuracy and stability mainly 

focus on the treatment of observation noise with least squares adjustment or robust 

filtering (Huang et al., 2012; Li and Kuhlmann, 2012;Yuan et al., 2010; Yang et al., 

2001; Yetkin and Berber, 2012). These methods could avoid or reduce the influence 

of gross error in observations on positioning results effectively. However, the 

estimated unknown parameters are not only influenced by observation values but by 

the observation structure as well, i.e. the coefficient matrix of the error equation 

(Meng et al., 2004). The observation structure directly affects the solution of 

parameters and also determines the level of the impact. Even with observations of the 

same accuracy level, different observation structures will output different positioning 

results. Therefore, the optimization of the observation structure plays a vital role in 

precise GNSS positioning, especially for the applications under the harsh observation 

environments such as deformation monitoring.  

The observation structure is directly governed by the distribution of the satellites in 

GNSS positioning. A common measure of the satellite distribution is the Positional 
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Dilution of Position (PDOP), which reflects the relative orientation of the satellites 

relating to the observation stations, i.e. the more evenly spaced out the satellites, the 

smaller the PDOP value, and the better the observation conditions (Meng et al., 2004; 

Wing et al., 2005). However when applying the carrier phase double difference (DD) 

method, the observation structure actually reflects the structure of each pair of 

reference and non-reference satellites. Therefore the relative distribution among 

satellite pairs should be considered as well as the overall satellite distribution. PDOP 

fails to reflect the full picture between satellite distribution and observation structure 

in this sense. Thus a better criterion for evaluating the observation structure and 

positioning stability of carrier phase DD in the harsh environments should be sought. 

The selection of reference satellites is a critical factor when resolving for carrier phase 

DD solutions, especially when only a few satellites are observed. Selection of 

different reference satellites may see a huge difference in the distribution of the 

satellite pairs, which is reflected on the correlation between the observation equations, 

and affect the positioning accuracy and stability.  

Based on the characteristics of GNSS applications in urban canyons or deep valleys, 

this article proposes a new method of improving GNSS positioning stability and 

accuracy through optimizing the observation structure that differs from the 

conventional approach in GNSS data processing. This paper analyses the relationship 

between the distribution of (reference and non-reference) satellite pairs and the 

performance of combined GPS/BDS/GLONASS DD observation structure based on 

the ill-condition theory. The minimum condition number is then used as an evaluation 

criterion for observation structure stability and positioning accuracy instead of a 

PDOP value. Real GPS/BDS/GLONASS data are used to verify the correlation 

between the condition number and the positioning accuracy variation. Furthermore, 

the optimal condition number is used for the determination of reference satellites 

rather than the maximum elevation angle. The satellite distribution geometry is 

improved by selecting reference satellites more rationally under same observation 

conditions, which achieves the optimization of GNSS positioning observation 

structure. Finally, relevant evaluation trials are carried out by masking observable 

satellites to simulate common elevation shielding, azimuth shielding and strip 

shielding at different geo-locations (medium and high latitudes). The studies in this 

paper enhance the multi-constellation observation structure stability and positioning 

accuracy in the harsh environments which sees a major improvement in GNSS 

positioning results. In this paper, Section 2 introduces the basic positioning model 

with multi-constellation .Section 3 includes the evaluation method of the observation 

structure. The method using minimum condition number to determine the optimal 

observation structure is presented in Section 4.In Section 5 some simulative-shielding 

trials are carried out to verify the applications effect of the proposed method in 

partially obstructed environments. 

 

2. POSITIONING MODEL WITH MULTI-CONSTELLATION GNSS SATELLITES.  

The influence of receiver noise, clock error, tidal and relativity error are significantly 

reduced through observation DD processing. For positioning systems that employ 
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Code Division Multiple Access (CDMA) coding techniques, such as GPS, Galileo and 

BDS, the same frequencies are used by all satellites from the same system. When only 

considering tropospheric and ionosphere delays, the DD carrier phase observation 

equations are as below: 

1 1 1 1 1I T N           (1) 

2 2 2 2 2I T N           (2) 

For Frequency Division Multiple Access (FDMA) coding systems such as 

GLONASS, the observations coming from different satellites employ different 

frequencies (Glonass, I. C. D, 2002; Wanninger, 2012; Pratt et al., 1998), thus the 

carrier phase DD observation equations can be presented as below: 

1 1 1 1 1 1 1 1( )p p p r rI T N N                (3) 

2 2 2 2 2 2 2 2( )p p p r rI T N N                (4) 

In Equation (1) to Equation (4) ( )  is the double difference operator between 

satellites and receivers. 1  and 2 are the wavelength for signal carrier 1L and 2L , 

1 and 2 are the carrier measurements on 1L  and 2L .  is the geometrical distance 

between the satellite and the receiver. 1I  and 2I is the ionosphere delay on 1L  and 

2L . T is the tropospheric delay, 1N and 2N are the unknown integer ambiguities of 

both carriers. In Equation (3) and Equation (4), p and r  are the index number of the 

reference and non-reference satellites in the GLONASS system respectively. r

iN is 

the receiver single difference integer ambiguity for frequency i  of the reference 

satellite. Methods proposed by Wang and Walsh (Wang, 2000; Walsh and Daly, 1996) 

may be used to resolve for the single difference ambiguity of the GLONASS system. 

Having fixed the single difference ambiguities, we may assume that GPS, Galileo, 

BDS and GLONASS systems employ the same DD integer ambiguity resolution 

model. Equations (1)-(2) or Equations (3)-(4) may be combined to form the 

ionosphere-free observation equation to eliminate the ionosphere effect when 

neglecting the second order terms of the ionosphere bias (Ge et al., 2008; Loyer et al., 

2012; Hoque and Jakowski, 2007), as shown below: 
2 2

1 1
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1 2 1 2
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1 1
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f f
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     
 

 (5) 

1f  and 2f  are frequencies of 1L  and 2L  respectively. The DD ambiguities

1N  and 2N  are both included in Equation (5). In practice, the wide-lane DD 

ambiguity wN ( wN = 1 2N N  ) of the longer wavelength is usually 

worked out first. Thus Equation (5) will be left with the basic DD ambiguity ( 1N or

2N ) only. They are then treated as unknown parameters together with baseline 

coordinates to be solved through multi-epoch observation equations. 

The number of available satellites from a single satellite system is significantly 

reduced in dense urban areas due to complicated surrounding environments, which 
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leads to poor positioning accuracy or even position fixing failure. In such cases, a 

combination of multi-constellation GNSS satellites that shares the same baseline 

vector with unknown parameters helps to solve for a better position fix. Each system 

determines the reference satellites independently to overcome the problem of different 

frequencies used by different systems. Therefore at least two satellites from the same 

system must be observed in order to solve for a position fix. Once an ambiguity 

resolution is achieved, the position for a single epoch may be attained using Equation 

6. 
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   

(6) 

Whereas V  is the residual vector, B  is the design matrix, X  is the unknown 

baseline-vector parameters to be estimated, L is the observation vector. a b c、 、  are 

the coefficients of the unknown parameters δ δ δx y z、 、  of each error equation 

respectively, G R Ck k k、 、  is the satellite index number of GPS, GLONASS and BDS 

respectively. m  and n are the beginning index of GLONASS and BDS satellites. 

Supposed that i indicate the index of non-reference, we have the following 

correspondence: 

1 ,

,

,

i m GPS

m i n GLONASS

i n BDS

 


 
   

0 is the approximate range between the satellite and the receiver. 
,G IF ,

,

m

R IF ,

,C IF are the ionosphere-free wavelength combinations of GPS, GLONASS(the 

m-index satellite) and BDS. IF IF IFN 、 、 are the ionosphere-free carrier phase 

observations, residuals and ambiguities, of which IF for GLONASS includes the 

equivalent range term of the single difference ambiguity for the reference satellites.  

Equation (6) could be used to solve for single epoch positioning after fixing the 

carrier phase DD ambiguities. With only three unknown coordinates, a minimum of 

three observation equations is needed, thus at least three satellite pairs are required. 

Any further equations would be regarded as redundant observations, which may 

increase positioning accuracy on one hand, but on the other hand might increase the 

correlation between equations and reduce positioning stability. 

 

3. EVALUATION OF THE OBSERVATION STRUCTURE OF 

MULTI-CONSTELLATION-BASED POSITIONING.  In dense urban environments, 

observable satellites from the ground GNSS stations are generally unevenly 

distributed due to signal obstruction. This results in positioning instability in the 

blocked area. For example, if the satellites to the north of the station were blocked, the 

positioning result in the north and south direction would be unstable; if only high 

elevation satellites could be observable from the station, then the height accuracy 
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would fluctuate. Currently, PDOP values are generally used to describe the quality of 

satellite distributions. For the n th observable satellite at a station, its coordinates are 

denoted as ( , ,n n nX Y Z ), station coordinates are ( , ,i i iX Y Z ), the design matrix can be 

expressed as Equation 7 (Borre and Strang, 1997). 
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1 1 1

2 2 2

2 2 2

1

1

1

1

i i i

i i i

i i i
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 
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   

  
 
 
   
   
 

 (7) 

Then the co-factor matrix would be 1( )TQ A A   and 

(1,1) (2,2) (3,3)PDOP Q Q Q   . PDOP is a straightforward reflection of the 

distribution evenness and discreteness of the visible satellites and proves to be a good 

accuracy evaluation criterion in non-differencing positioning. However in DD 

positioning, the relative distributions among the reference and non-reference satellites 

should be considered together with the independent distribution described by PDOP.  

Each pair of satellites refers to a carrier phase DD observation equation. Hence the 

correlations between the observation equations reflect the geometric distribution of 

the satellite pairs. The more scattered the satellite pairs, the smaller the correlation 

between the observation equations. If there a strong correlation was detected between 

the observation equations, it would be assumed that there is a lack of sufficient 

observations, which can be seemed as an ill-conditioned problem (Chang et al., 2009; 

Farooq and Salhi, 2011; Wang et al., 2006). A condition number provides an effective 

evaluation method to a system of its ill-conditioned level when resolving for 

ill-conditioned system parameters. The condition number is described as below: 

For an observation equationV BX L  , its least squares solution can be expressed 

as Equation 8 (Mikhail and Ackermann, 1976; Ge et al., 2005). 

ˆ T -1 TX =(B PB) B PL  (8) 

Of which V  is the residual vector, B  is the design matrix, P  is the weight 

matrix, L  is the observation vector, and X  is the unknown-parameter vector, 

whereas in this paper is the unknown baseline-vector parameters, X̂ is the least 

squares solution of X . 

If 
TN = B PB is denoted as the coefficient matrix of the normal equation, Equation 

8 may be rewritten as 

ˆ -1X = N W  (9) 

 

Where
TW = B PL . 

As mentioned by Farooq and Wang (Farooq and Salhi, 2011; Wang et al., 2006), the 

unknown parameter vector X will bring in an error term δX when the normal matrix
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N and constant matrixW  each contain an error term N andδW . The corresponding 

relationship is as below: 

||δ || cond( ) ||δ || ||δ ||
( )

||δ |||| || || || || ||1 cond( )
|| ||

 



X N W N

NX W N
N

N

 
(10) 

Of which 1cond( ) || || || ||N N N   is the condition number of matrix N ; || ||  is the 

spectrum norm operator. We could see from Equation (10) that the condition number 

reflects the impact of the relative disturbance of the normal matrix N and constant 

W on parameter estimations. When the condition number of the normal equation N is 

large (i.e. serious ill-conditioned normal equation), the parameter solution would still 

contain a large error even if disturbance were small in N and W . Therefore, the 

condition number is commonly used as an evaluation factor for the ill-condition of a 

parameter estimation model (Cline et al., 1979; Hansen et al., 1992), and we can 

further use it to evaluate the observation structure in the carrier phase DD GNSS 

positioning. 

 
Figure 1. Sky plot of the whole observation period. 

 

A set of combined GPS/BDS/GLONASS short baseline observation data (data rate 

of 1s for a continuous 1000 epochs) is collected at Southeast University, China on 

17th March 2013 to assess and validate the effectiveness of PDOP and condition 

number on evaluating the stability of positioning solutions. During this period, a total 

number of 8 GPS satellites, 7 BDS satellites and 7 GLONASS satellites could be 

observed. The sky plot of these GNSS satellites can be seen in Figure 1. The reason 

using short baseline is that we can avoid the impact of other errors, so that we can 

analyze purely the impact of the observation structure. In the data processing the 

reference satellites are chosen independently for three GNSS constellations, thus 5 

satellites are randomly selected for the trial forming 56, 21 and 21 combinations 

respectively for each GNSS system. The statistical analysis of the PDOP values, 

condition numbers and positioning stability for every combination are shown in 

Figure 2 and Table 1. The PDOP values and the condition numbers are the means of 

the values from all epochs. The standard deviation (STD) indicates the positioning 

stability of the positioning result during the trial period. 
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(a) GPS 

 
(b) BDS 

 
(c) GLONASS 

Figure 2. STD of GPS/BDS/GLONASS positioning, PDOP values and condition numbers. 

 

The correlation (i.e. the correlation coefficient, which is used to measuring the 

degree of correlation between two variables. The closer the correlation coefficient is 

to 1 or –1 the greater the correlation.) between PDOP, condition number and standard 

deviation of each system is estimated and listed in Table 1. 

Table 1. Correlation coefficients of PDOP, condition number and standard deviation for 

GPS/BDS/GLONASS. 

 GPS (56) BDS (21) GLONASS (21) 

Corr. (COND-STD) 0.920 0.986 0.963 

Corr. (PDOP-STD) 0.293 0.925 -0.037 

From Figure 2 and Table 1, it could be concluded that whether it is the 56 different 

combinations of GPS or 21 combinations of BDS or GLONASS, the condition 
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number proves to be a better indicator of the positioning stability. The correlation 

coefficient of the condition number and positioning standard deviation reach 0.920, 

0.986 and 0.963 respectively for each system. Therefore the correlation statistics 

shown in Table 1 indicate that the condition number is a more reliable indicator of the 

positioning stability than the PDOP when the same numbers of satellites are observed.  

A more detailed analysis to the effectiveness of the condition number with the 

positioning stability is shown in Figure 3, where the worst set of the mean condition 

number from the combinations mentioned above is picked and analyzed.   

 
(a) GPS 

 
(b) BDS 

 
(c) GLONASS 

Figure 3. GPS/BDS/GLONASS positioning result with maximum mean condition number. 

Figure 3 indicates that large condition number results in poor positioning stability. 

In this case all the observation structures from the three systems become worse. That 

is to say the condition number is increasing. The positioning error and fluctuation also 

increase, reaching decimeter level, which further demonstrates that the condition 

number is a valid indicator of positioning stability.  
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4. USING MINIMUM CONDITION NUMBER TO DETERMINE THE OPTIMAL 

OBSERVATION STRUCTURE.  It is apparent that reducing the ill-conditioned level 

of the observation equation plays a vital role in improving positioning accuracy and 

stability. Many publications have discussed this matter from a mathematical point of 

view, such as ridge estimation and singular value decomposition method (Li et al., 

2010; Wen et al., 2012; Shen and Li, 2007). Its principles lie in decreasing the 

ill-posed characteristics of the covariance matrix by modifying the normal equation. 

Yet most of these methods focus on transforming the existing covariance matrix rather 

than its fundamental source, i.e., the structure of the observation equation. 

The determination of the reference satellites is an essential part of solving for the 

carrier phase double difference positioning solution. A common procedure would be 

selecting reference satellites with the maximum elevation, due to concerns of reduced 

observation precision caused by atmospheric delay between stations of long baselines. 

Yet short or even very short baselines are still very common in daily applications. In 

these cases, the station-difference observations at different elevations show no 

obvious difference. Hence no noticeable impact on the observation equation could be 

recognized from the different elevation reference satellites. Nonetheless, a relatively 

fewer number of satellites could be observed in the harsh observation environments. 

The different selection of reference satellites would therefore result in significant 

changes to satellite pair distribution. We could see from Equation (8) that the 

positioning accuracy is not only relevant to the accuracy of observations L , but also 

affected by the design matrix B . Variance matrix D is commonly used for the 

evaluation of positioning accuracy, as shown below: 

1

0 0 ( )TD Q B PB       (11) 

Of which 0 is the posterior mean square error of unit weight, whose value is 

decided by the observation accuracy. From Equation (11), we could see that the 

positioning accuracy might change by altering the design matrix from selecting 

different reference satellites, while Equation (10) indicates that the condition number 

of the co-factor matrix Q  reflects the system resistance to error. Thus the condition 

number proves to be a valid criterion for selecting reference satellites. Or it can be 

interpreted that in the harsh environments, observation structure is more important 

compared with the difference of observations due to the different choice of the 

reference satellites. 

In GNSS carrier phase DD positioning, an accurate ambiguity fix could be solved 

for after a long observation period. It would then be fed back into the observation 

equation to produce a single epoch positioning solution. For a DD ambiguity that has 

already been fixed, the DD ambiguity of each satellite pair could be attained after 

transforming the corresponding matrix. For example, the equation for transforming 

the DD ambiguity for reference satellite No.2 into the DD ambiguity for reference 

satellite No.3 is as below: 
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 (12) 

The effect of the condition number based method can be simplified as in Figure 4 

and Figure 5, where the green circle and the red circle stand for the reference and 

non-reference satellites respectively. Figure 4 represents the conventional maximum 

elevation method (MAEA method for short in this paper), whilst Figure 5 represents 

the minimum condition number method (MICN method for short in this paper) 

proposed in this paper. As we can see, the MICN method dedicated to make the best 

distribution of satellite pairs, so that the calculating system has much improved 

structure in the DD positioning. 

                  

Figure 4. Outline effect of the MAEA method (left). 

Figure 5. Outline effect of the MICN method (right). 

In the practical application of the condition number for the reference satellite 

selection, the length of the baseline is needed to be taken into account. That is to say 

we need set a certain cut-off elevation angle for the reference satellites. This is due to 

the atmospheric delay, satellite ephemeris and other residual errors, for different 

baseline length, the accuracy of station-difference observations from the 

same-elevation satellites are also different. The longer the baseline is, the lower the 

accuracy of the observations. If a satellite with low-accuracy observation is treated as 

the reference satellite, the large errors will be introduced into the positioning results 

(Wang et al., 1998; Gendt et al., 2003; Ge et al., 2008). We can use some experiential 

index about this. When the baseline is longer than 50km, an angle between 35and 40 

degrees can be used as the cut-off elevation angle for the selection of the reference 

satellite. When the baseline is between 20km than 50km, an angle between 25and 35 

degrees can be used. If a baseline is less than 20km, we can set the cut-off angle 

between 15 and 25 degrees. Of course, this is just a suggestive indicator. In practice, it 

can be adjusted according to actual situation. 

As the satellites are in constant motion, so the satellite observation structure is 

changing all the time. Therefore, in the process of positioning, the choice of reference 

satellite is also need to be updated. We can make an iterative assessment every 5-10 

min, so that we can always find the qualified reference satellite, which makes the 
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minimum condition number of the calculation system. It needs to note that the three 

reference satellites are integrally solved so as to find the optimal combination. The 

calculation loop is specifically defined by the following steps: 

(1) According to the baseline length, set a cut-off elevation angle for the selection 

of reference satellites; 

(2) Calculate the condition number of norm matrix when each qualified satellite is 

treated as a reference satellite in order. Then we can select the satellite with the 

minimum condition number as the reference satellite; 

(3) Judge whether the reference satellite determined in Step (2) is the same as the 

prior reference satellite. If they are different, we need transfer the DD ambiguities 

according to Equation (11); 

(4) Repeat Step (2) and Step (3) by a time interval (such as 5 to 10 minutes); 

(5) If the time duration has not yet approached the time interval set in Step (4) and 

the reference satellite does not meet the condition of cut-off elevation angle, repeat all 

the above steps. 

The above procedure is further illustrated in Figure 6. 

 

 

Figure 6. Flowchart of the observation structure optimization based on the MICN method. 

In Figure 6, i  is the satellite index; cE  is the cut-off elevation angle of reference 

satellites; iE  is the elevation angle of satellite i ; n  is the number satellite number; 

minCond  is the minimum condition number; iCond  is the condition number when 

satellite i  is treated as the reference， RefPRN and iPRN  are the PRN numbers of 

the reference satellite and the i th satellite respectively. 

The new method proposed in this paper of course maybe to take a little more time 

than the MAEA method due to the circular computations. When the numbers of 

candidate reference satellites from each GNSS are all six, each search of reference 
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satellites will take our normal PC (CPU: 3.3GHz, RAM: 3.19G) 0.04 s on average for 

the new method. As we know, such a little computational burden has little negative 

effect on practical application. 

 

5. METHODOLOGY VALIDATION IN THE HARSH ENVIRONMENTS.  The 

number of observable satellites increases significantly when a combination of 

multi-constellations is used for positioning (Figure 7 shows the global distribution of 

GPS/BDS/GLONASS at a certain epoch), thus signal blockage caused by the 

surrounding environment would not lead to insufficient observable satellite number. 

However, it will change the satellite spatial distribution and affect GNSS positioning 

accuracy and stability. Besides, in different geo-locations, the situations will be 

different. Especially in high-latitude area, such as in UK, Norway, Finland and so on, 

the satellite observation environment is more complex because just few satellites pass 

through the very high-latitude area. This leads to the situation that there is always a 

big vacancy on the visible satellites sky plot in the high-latitude area (Meng et al., 

2004). This paper simulates azimuth shielding, elevation shielding and strip shielding 

of satellites commonly seen in GNSS application. This mainly includes 270 degree 

internal building shielding, strip shielding in strip foundation work or in urban 

canyons, and construction foundation or building patio environment with a large 

cut-off elevation shielding. Each kind of blockage will be tried in a medium-latitude 

area and a high-latitude area, and in this paper Nanjing (about northern latitude of 32 

degrees) in China and Nottingham (about northern latitude of 53 degrees) in the UK 

are selected to represent the two different latitudes. The experimental data acquired in 

Nanjing is the same as the data used in Section 3, and the GPS/BDS/GLONASS data 

(1s interval) in Nottingham was collected in the University of Nottingham on 26 

October 2013. The lengths of the used short baselines are all about 3 km. 

For each trial, the positioning results obtained by applying the conventional MAEA 

method and the proposed MICN method for observation structure determination are 

compared. The positioning results, condition number and PDOP values are 

statistically calculated for each case. 

 

Figure 7. Distribution of GPS/BDS/GLONASS. 

Trial 1: Figure 8 is one of the worst cases for GNSS applications. A typical scenario 

is 270 degree azimuth shielding, and in such circumstances we can only observe about 

a quarter of satellites. The sky plots in the two places are shown in Figure 8. The 
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shielding effects of each situation with two methods (MAEA and MICN) are 

illustrated in Figure 9. The visible satellite number, mean PDOP value and condition 

number are listed in Table 2. 

         

(a)Satellite sky plot in Nanjing, China (b) Satellite sky plot in Nottingham, UK 

Figure 8. Sky plots indicating 270-degree blockage. 

 

(a)Error distribution in Nanjing, China         (b) Error distribution in Nottingham, UK 

Figure 9. Positioning error distribution for 270 degree blockage. 

Table 2. Satellite number, condition number, positioning result and PDOP value for 270 degree. 

 Nanjing Nottingham 

SV no 
G C R G C R 

4 0 3 4 0 3 

PDOP 3.7 11.6 

Method MAEA MICN MAEA MICN 

Ref-Sat G30-R06 G16-R09 G27-R19 G19-R10 

COND 182.7 131.0 74.4 21.4 

STD[mm] 
Dir 

N E U N E U N E U N E U 

7.3 26.3 24.7 6.8 22.0 18.2 11.7 16.2 18.7 11.6 10.3 13.9 

Pos 36.8 29.4 27.4 20.8 

*: G is short for GPS, C for COMPASS (BDS), R for GLONASS, Dir for Direction, 
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Pos for Position same below. 

In the Nanjing experiment, satellites G30 and R06 were selected for the MAEA 

method as shown in Figure 8, and the satellites selected for the new method were G16 

and R09. The mean condition number for each method is 182.7 and 131.0 respectively. 

The observation structure was significantly improved by the new method and 

positioning accuracy was improved by 20.2%. In the Nottingham experiment, G27 

and R19 were selected for the MAEA method; whilst G19 and R10 were selected for 

the MICN method. The overall positioning accuracy was improved by 24.1%. From 

Figure 8(b), we can see that the non-reference satellites were separated evenly around 

the reference satellites in east-west direction, so the positioning accuracy in east-west 

direction was especially improved by 36.4%.What is more, the larger-elevation and 

the smaller-elevation satellites were also separated more evenly around the reference 

satellites, so the up-direction positioning accuracy was also improved significantly 

around 25%. As shown above, by implementing the condition number based method 

for determining the reference satellites in the obstructed and unevenly distributed 

environments, with increased satellite utilization as well as a result of using optimal 

observation equation, more accurate positioning result and better stability could be 

achieved.  

Trial 2: This is to simulate the application scenarios such as positioning in a deep 

valley where satellites below certain elevation angles could not be observed. Figure 

10 shows the sky plots in two different locations with a cut-off elevation angle of 50 

degrees. Their directional accuracy statistics are shown in Figure 11 (a) and 

(b).Satellite numbers, condition number, positioning accuracy and mean PDOP are list 

in Table 3. 

     

(a)Satellite sky plot in Nanjing, China     (b) Satellite sky plot in Nottingham, UK 

Figure 10. Sky plots for a cut-off elevation angle of 50 degrees. 
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(a)Error distribution in Nanjing, China         (b) Error distribution in Nottingham, UK 

Figure 11. Positioning error distribution for 50 degrees elevation cut-off angle. 

 

Table 3. Satellite number, condition number, positioning result and PDOP value for 50 

degrees elevation cut-off angle. 

 Nanjing Nottingham 

SV no 
G C R G C R 

3 4 0 5 0 2 

PDOP 4.2 11.4 

Method MAEA MICN MAEA MICN 

Ref-Sat G30-C07 G30-C10 G19-R19 G27-R19 

COND 35.5 32.0 217.3 40.8 

STD[mm] 
Dir 

N E U N E U N E U N E U 

5.8 5.6 19.3 3.7 5.1 19.4 9.7 9.8 40.2 9.4 10.3 31.2 

Pos 20.9 20.4 42.5 34.3 

 

From results shown in Figure 11 (a) and Table 3, we could see that the new method 

shows no significant improvement on observation structure and positioning accuracy 

in the Nanjing experiment. This is mainly due to that the satellites are better evenly 

distributed in elevation shielding scenarios. Therefore the MICN method and the 

MAEA method of optimizing observation structure are fundamentally the same in 

such cases. In the Nottingham experiment, there were few satellites in the north of the 

visible satellites sky plot and the distribution of satellites was uneven extremely. The 

mean PDOP reached 11.4. Form Figure 11 (b) and Table 3 we can see that the MICN 

method improved the positioning accuracy especially in the up direction by 22%. 

Trial 3: Visual strips and strip shielding scenarios are a combination of directional 

and elevation blockage. Visual bands usually occur in strip foundation work or in 

urban canyons. The chosen sky plots for this scenario in the two places are shown in 

Figure 12(a) and Figure 12(b). The directional accuracies are as Figure 13. Positional 
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accuracy, satellite number, condition number and mean PDOP values are listed Table 

4. 

     

 (a)Satellite sky plot in Nanjing, China       (b) Satellite sky plot in Nottingham, UK 

Figure 12. Sky plots of East-West blockage. 

 

(a)Error distribution in Nanjing, China         (b) Error distribution in Nottingham, UK 

Figure 13. Positioning error distribution for East-West blockage. 

 

Table 4. Satellite number, condition number, positioning result and PDOP of East-West blockage. 

 Nanjing Nottingham 

SV no 
G C R G C R 

3 5 1 4 0 4 

PDOP 2.7 3.1 

Method MAEA MICN MAEA MICN 

Ref-Sat G30-C07 G30-C10 G01-R21 G11-R06 

COND 48.4 31.2 50.6 17.8 

STD[mm] 
Dir 

N E U N E U N E U N E U 

4.2 5.1 14.0 2.6 4.5 9.6 5.6 6.9 17.5 4.8 6.0 9.9 

Pos 15.5 10.9 19.6 12.6 
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The visualization band in the blockage scenario shown in Figure 13(a) and Figure 

13(b) is very narrow. In the Nanjing experiment, the reference satellites selected with 

the MAEA method were G30 and C07, while satellite C10 was selected as the BDS 

reference satellite for the MICN method. The positional accuracy and stability have 

been improved significantly in both north and up directions. The positional accuracy 

has been improved by 29.7% compared to the conventional method. A similar 

improvement has been achieved in the Nottingham experiment, in which the 

positional accuracy improved by 35.7%. 

From the above experiments in the two places, we can conclude that the MICN 

method demonstrates much better improvement for the observation structure when 

positioning in the harsh observation environments, especially for the up direction. 

Actually, in the harsh observation environments, the satellites with maximum 

elevation angles are generally not the most central satellites. With the MICN method, 

reference satellites are chosen to make the whole satellite pairs in an optimal 

distribution.  

 

6. CONCLUSIONS.  This paper studies the evaluation criterion and improvement 

method for GPS/BDS/GLONASS positioning accuracy and stability in the harsh 

environments based on GNSS observation structure. Main conclusions are as follows: 

 In GNSS carrier phase DD positioning model, the correlation problem between 

DD equations caused by the satellite spatial distribution is equivalent to an 

ill-conditioned problem. In such cases, the condition number is a better evaluation 

index for observation structure and positioning accuracy than the PDOP values. 

The smaller the condition number, the more stable the observation structure, and 

vice versa; 

 The minimum condition number is mathematically a better criterion than the 

elevation angle for determining reference satellites, as it optimizes the 

observation structure in a way that fits the DD model better. The selected 

observation equations hence have better error-resistance capacity, resulting in 

higher positioning accuracy and more stable outputs.   

 In scenarios where visible satellites are seriously reduced and unevenly 

distributed, use of the condition number method to determine the reference 

satellites can significantly improve GNSS observation stability, positional and 

directional accuracy.  
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