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Abstract

In this article we consider the application of goal–oriented mesh adaptation
to problems posed on complicated domains which may contain a huge num-
ber of local geometrical features, or micro-structures. Here, we exploit the
composite variant of the discontinuous Galerkin finite element method based
on exploiting finite element meshes consisting of arbitrarily shaped element
domains. Adaptive mesh refinement is based on constructing finite element
partitions of the domain consisting of agglomerated elements which belong
to di↵erent levels of an underlying hierarchical tree data structure. As an
example of the application of these techniques, we consider the numerical
approximation of the incompressible Navier–Stokes equations. Numerical
experiments highlighting the practical performance of the proposed refine-
ment strategy will be presented.

Keywords: Composite finite element methods, discontinuous Galerkin
methods, a posteriori error estimation, adaptivity, incompressible flows.
2000 MSC: 65N15, 65N30, 65N50

1. Introduction

In recent years extensive work has been undertaken on the construction of
finite element methods on general meshes consisting of polygonal and poly-
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hedral elements. In the context of conforming finite element element meth-
ods, notable examples include the composite finite element method (CFEM)
proposed in [20, 19], for example, the polygonal finite element method, cf.
[25, 26], and the extended finite element method [16]. Stimulated by work
on mimetic finite di↵erence methods, cf. [8, 28], for example, the virtual ele-
ment method has been proposed in [27]. Closely related techniques have been
developed in the context of fictitious domain methods, whereby overlapping
meshes are employed, see, for example, [9, 10, 11, 23].

Discontinuous Galerkin finite element methods (DGFEMs), cf. [14, 15,
21, 24, 3, 13], naturally admit the use of general finite element meshes, since
the underlying finite element space does not require the enforcement of any
inter-element continuity constraints. Moreover, DGFEMs may exploit local
polynomial spaces defined in the physical frame, without the need to employ
element mappings from a reference frame; thereby, the order of convergence
of the underlying method is independent of the element shape employed, cf.
[12, 15, 22, 29]. In particular, Bassi et al. [4, 5, 6] have considered the appli-
cation of DGFEMs on general meshes consisting of general agglomerated ele-
ments. In our own work, stimulated by the articles [20, 19], we have developed
the discontinuous Galerkin composite finite element method (DGCFEM) for
problems posed on complicated computational domains which may contain
local geometrical features, or micro-structures, see [1, 18]; for the application
of these ideas to the construction of domain decomposition preconditioners,
we refer to [17, 2]. The key feature of CFEMs/DGCFEMs is that they allow
for the construction of coarse finite element meshes, consisting of general
element shapes, which provide an accurate description of the computational
domain ⌦, even in the presence of micro-structures. In this manner, the
minimal dimension of the underlying composite finite element space is inde-
pendent of the number of geometric features present in ⌦. Thereby, compu-
tations may be undertaken on coarse finite element meshes in order to yield
numerical approximations which are su�ciently accurate in terms of attain-
ing engineering accuracy in an e�cient manner. More precisely, by admitting
such coarse initial meshes, adaptive refinement of the computational mesh
may be guided in order to resolve specific features of the computed numeri-
cal solution which must be accurately resolved to attain the desired level of
error control, with respect to a given quantity of interest. Indeed, this may,
of course, lead to refinement of elements near the boundary of the domain,
but the granularity of these elements will be determined on the basis of a
posteriori error indicators, rather than a priori considerations. The general
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idea of CFEMs is to construct the underlying finite element spaces based
on first generating a hierarchy of meshes, such that the finest mesh does
indeed provide an accurate representation of the underlying computational
domain, followed by the introduction of appropriate prolongation operators
which determine how the finite element basis functions on the coarse mesh
are defined in terms of those on the fine grid. In this way, CFEMs naturally
lend themselves for exploitation within adaptive mesh refinement strategies
in order that the discretization error is controlled in a reliable fashion. In-
deed, refinement of the grid within a CFEM can be easily undertaken by
simply constructing the underlying computational mesh by employing ele-
ments at di↵erent levels within the mesh tree hierarchy. These ideas have
been exploited in the context of hp–version energy norm error estimation for
DGCFEMs in our recent paper [18]. The purpose of the current article is to
consider the extension of this approach to goal–oriented error estimation for
DGCFEMs. For simplicity, we focus on the discretization of incompressible
fluid flow problems, though we stress that this general framework may be ap-
plied to a wide range of application areas where complicated computational
domains are employed.

The structure of this article is as follows. Section 2 introduces the com-
posite finite element spaces, based on the ideas developed in [1, 20, 19]. In
Section 3 we introduce the incompressible Navier–Stokes equations as a pro-
totype partial di↵erential equation and formulate the DGCFEM discretiza-
tion. Goal–oriented a posteriori error estimates are formulated in Section
4, together with the design of an appropriate adaptive refinement strategy.
The practical performance of the proposed error indicators for a range of
two–dimensional problems is studied in Section 5. Finally, in Section 6 we
summarize the work presented in this article and draw some conclusions.

2. Construction of the composite finite element spaces

Throughout this article, we write ⌦ ⇢ Rd, d > 1, to denote a bounded,
connected Lipschitz domain, with boundary @⌦. Moreover, it is implicitly
assumed that ⌦ may be a complicated domain, in the sense that it may
contain micro-structures. The purpose of this section is to briefly outline the
construction of the hierarchy of CFEM meshes needed for the discretization
of partial di↵erential equations posed over ⌦; for a more detailed discussion,
we refer to [1], cf. also [18, 20, 19].
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In order to construct the physical meshes, which will later be referred
to as the composite finite element meshes, we first construct a hierarchy of
(overlapping) reference meshes. To this end, we define M̂H ⌘ M̂h1 to be
an overlapping mesh in the sense that it does not necessarily conform to the
boundary of the underlying computational domain ⌦. Thereby, we have that
⌦ ⇢ ⌦H =

�

S

̂2 ˆMH
̂

��
and ̂

� \ ⌦ 6= ; for all ̂ 2 M̂H , where, for a closed
set D ⇢ Rd, D� denotes the interior of D. The hierarchy of reference meshes
M̂hi

, i = 2, 3, . . . , `, are now constructed based on adaptively refining M̂H ;
the sequence of refinement steps are stored in a tree structure, denoted by
T̂. In particular, the elements ̂ which belong to the initial coarse mesh M̂H

are stored as the roots of the tree T̂; we assign these elements with a level
number L = 1. Elements ̂ at the bottom of the tree, i.e., those which do
not possess any children, and which intersect the boundary of ⌦, i.e., so that
̂

� \ @⌦ 6= ;, are marked for refinement; the resulting child elements of ̂
which intersect ⌦ are then stored at level L = 2, and assigned ̂ as their
parent element. This process is continuously repeated until the elements
within the tree structure T̂ provide a su�ciently accurate description of the
boundary of the computational domain. This is understood in the following
sense: for each ̂ 2 T̂ satisfying

children(̂) = 0 ^ ̂

� \ @⌦ 6= ;,

we require that ĥ < TOL, where ĥ = diam(̂), children(̂) denotes the num-
ber of children that element ̂ possesses, and TOL is a user defined tolerance
which characterizes the required resolution of the boundary, cf. [19]. This
general strategy is summarized in Algorithm 2.1, cf. [1, 18]. For the purposes
of this article, we employ local isotropic refinement of the elements in the
computational mesh, though anisotropic refinement may also be admitted.

Writing ` = L

max

to denote the maximum level of refinement within the
hierarchical tree T̂, the reference meshes {M̂hi

}`i=1

, may be defined in the
following manner

M̂hi
=

n

̂ 2 T̂ : level(̂) = i _ (level(̂)  i ^ children(̂) = 0)
o

,

where level(̂) denotes the level of the element ̂ in T̂. We stress that Al-
gorithm 2.1 simply provides a generic refinement algorithm which may be
employed to generate the sequence of reference meshes {M̂hi

}`i=1

, though
alternative sequences of hierarchical meshes may be exploited within the
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Algorithm 2.1 Construction of the hierarchical refinement tree T̂

1: Store the elements ̂ 2 M̂H as the root nodes in the hierarchical tree T̂.
2: Set the level number L = 1
3: for all ̂ 2 T̂ such that children(̂) = 0 do

4: if ̂

� \ @⌦ 6= ; then

5: Refine ̂ =
Sn̂

i=1

̂i, n̂ � 1.
6: for i = 1, . . . , n̂ do

7: if ̂i \ ⌦ 6= ; then

8: Store ̂i in T̂ with parent ̂ and level number L+ 1.
9: end if

10: end for

11: end if

12: end for

13: Perform additional refinement of elements in T̂ to undertake appropriate
mesh smoothing, e.g., to limit the number of hanging nodes per element
face, etc.

14: if The elements ̂ 2 T, with children(̂) = 0, are su�ciently fine, in the
sense that they are ‘close’ to the boundary @⌦, cf. above. then

15: STOP.
16: else

17: Set L = L+ 1, and GOTO 3.
18: end if

CFEM framework. On the basis of the finest reference mesh M̂h`
, we may

define the corresponding finest physical mesh Mh`
in the following manner.

Given that the above stopping criterion is satisfied, vertex points which
are ‘close’ to the boundary @⌦, i.e., vertices x̂v which satisfy dist(x̂v, @⌦) ⌧
ĥ, x̂v 2 ̂, are moved onto the boundary of the computational domain.
During this procedure, any elements present in the tree T̂ which lie outside
of ⌦ after vertex node movement are removed from the tree; for distinction,
we refer to this ‘cropped’ tree by T, though we stress that in practice, it is
only necessary to store one such tree structure. On the basis of the tree data
structure T, the physical meshes are constructed based on agglomerating
elements which share a common parent within a given level of the mesh tree
hierarchy T. More precisely, we first introduce the following notation: for
C 2 T with level(C) = j, we write Fj

i (C), j � i, to denote the unique
element P 2 T with level(P) = i who is directly related to C in the sense
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that C ⇢ P ; i.e., C has resulted from subsequent refinement of P . In the
trivial case when j = i, Fj

i (C) = C. Thereby, the physical meshes {Mhi
}`i=1

may be constructed from T as follows:

Mhi
= { : ( 2 T ^ level()  i ^ children() = 0)

_( = [02T
0 : children(0) = 0 ^ Fj

i (
0) = P, j = level(0)

^P is identical for all members of this set)} .
We point out that the physical meshes {Mhi

}`i=1

may consist of general
polygonal/polyhedral element domains. We refer to the coarsest physical
mesh Mh1 as the CFE mesh, and accordingly write MCFE ⌘ Mh1 . As a sim-
ple example, we consider the simple case of a square (�1, 1)2, which has had
a diamond, with vertices (0,±3/5) and (±1/5, 0), removed. The correspond-
ing reference and physical meshes {M̂hi

}`i=1

and {Mhi
}`i=1

, respectively, are
depicted in Figure 1 for ` = 3.

On the basis of the (polygonal/polyhedral) mesh MCFE, given the polyno-
mial degree p � 1, we may define the corresponding composite finite element
space V (MCFE,T, p) by

V (MCFE,T, p) = {u 2 L

2

(⌦) : u| 2 Pp(),  2 MCFE},
where Pp() denotes the space of polynomials of total degree p over .

Remark 1. We note that the construction of the elemental polynomial spaces
present in the composite finite element space V (MCFE,T, p) may be con-
structed in a number of di↵erent ways. For example, in [1, 18] we first
define polynomial bases on the finest level physical mesh Mh`

, which consists
of standard element shapes, i.e., triangles/quadrilaterals in 2D, etc; then
polynomial bases may be defined on the coarse level polygonal/polyhedral el-
ements by employing an appropriate prolongation operator, cf. [20, 19]. Al-
ternatively, bases may be defined directly in the physical space, using either
the bounding box technique employed in [12], or the Gram-Schmidt orthogo-
nalization technique developed in [4, 5, 6], for example.

3. Model problem and DGCFEM discretization

Consider the flow of an incompressible fluid confined in a domain ⌦ 2 Rd,
d > 1, with boundary @⌦ = @⌦

D

[ @⌦
N

. Here, we impose a Dirichlet
boundary condition on @⌦

D

and a natural Neumann condition on @⌦
N

. By
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(a) M̂H = M̂h1 (b) M̂h2 (c) M̂h3

(d) MCFE = Mh1 (e) Mh2 (f) Mh3

Figure 1: Hierarchy of meshes (inner diamond is marked in bold): (a)–(c) Reference
meshes; (d)–(f) Corresponding physical meshes.

introducing the Reynolds number Re, we consider the non–dimensionalized
Navier–Stokes equations: find the velocity u and pressure p such that

� 1

Re

r2

u+r · (u⌦ u) +rp = 0, in ⌦, (1)

r · u = 0, in ⌦, (2)

with boundary conditions

u = g

D

on @⌦
D

,

1

Re

@u

@n

� pn = 0 on @⌦
N

, (3)

where n is the unit outward normal vector to the boundary @⌦.
In order to define the DGCFEM discretization of the incompressible

Navier–Stokes equations defined by (1)–(3), we first introduce some notation.
We denote by FI(MCFE) the set of all interior faces of the partition MCFE of
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⌦, and by FBD(MCFE) the set of (Dirichlet) boundary faces of MCFE which
lie on @⌦

D

. Furthermore, we define F(MCFE) = FI(MCFE) [ FBD(MCFE).
The boundary @ of an element  and the sets @ \ @⌦ and @ \ @⌦

D

will
be identified in a natural way with the corresponding subsets of F(MCFE).

Next, we define average and jump operators. To this end, let + and 

�

be two adjacent elements of MCFE, and x be an arbitrary point on the interior
face F = @

+\@� ⇢ FI(MCFE). Given scalar–, vector–, and matrix–valued
functions q, v, and ⌧ , respectively, that are smooth inside each element ±,
by (q±,v±

, ⌧

±) we denote the traces of (q,v, ⌧) on F taken from within the
interior of ±, respectively. Then, we introduce the averages at x 2 F :

{{q}} = (q+ + q

�)/2, {{v}} = (v+ + v

�)/2, {{⌧}} = (⌧+ + ⌧

�)/2.

Similarly, the jumps at x 2 F are given by

[[[[[[q]]]]]] = q

+

n+ + q

�
n�

, [[v]] = v

+ · n+ + v

� · n�
,

[[v]] = v

+ ⌦ n+ + v

� ⌦ n�
, [[[[[[⌧]]]]]] = ⌧

+

n+ + ⌧

�
n�

.

On boundary faces F ⇢ @⌦, we set {{q}} = q, {{v}} = v, {{⌧}} = ⌧ , [[[[[[q]]]]]] = qn,
[[v]] = v · n, [[v]] = v ⌦ n, and [[[[[[⌧]]]]]] = ⌧n.

Writing Vh = [V (MCFE,T, p)]d and Qh = V (MCFE,T, p � 1) we ap-
proximate the Navier–Stokes problem (1)–(3) by the mixed DGCFEM: find
(uh, ph) 2 Vh ⇥Qh such that

⇢

Ah(uh,vh) + Ch(uh,vh)+Bh(vh, ph) = Fh(vh),

�Bh(uh, qh) = Gh(qh)
(4)

for all (vh, qh) 2 Vh ⇥ Qh. The forms Ah, Bh, and Ch are discontinuous
Galerkin forms that discretize the Laplacian, the incompressibility constraint,
and the nonlinear convective terms, respectively, with corresponding right-
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hand sides Fh and Gh. These forms are given by

Ah(u,v) =
1

Re

0

@

X

2MCFE

Z



ru : rv dx+
X

F2F(MCFE)

Z

F

�[[u]] : [[v]] ds

�
X

F2F(MCFE)

Z

F

�{{rv}} : [[u]] + {{ru}} : [[v]]
�

ds

1

A

,

Bh(v, q) =�
X

2MCFE

Z



qr · v dx+
X

F2F(MCFE)

Z

F

{{q}}[[v]] ds,

Ch(u,v) =�
X

2MCFE

Z



F(u) : rv dx+
X

2MCFE

Z

@\@⌦
H(u+

,u

�
,n) · v+

ds

+

Z

@⌦

H(u+

,u

�

(u+),n) · v+

ds,

Fh(v) =

Z

⌦

f · v dx+
X

F2FBD
(MCFE)

Z

F

(�g
D

· v � (g
D

⌦ n) : rv)ds,

Gh(q) =�
X

F2FBD
(MCFE)

Z

F

q g

D

· n ds.

Here, the flux F is given by F(u) = u ⌦ u; moreover, H(·, ·, ·) denotes the
Lax-Friedrichs flux defined as

H(v,w,n) :=
1

2
(F(v) · n+ F(w) · n� ↵(w � v)) ,

where ↵ := 2max(|v · n|, |w · n|). The boundary function u

�

is given by
u

�

(u) = g

D

on @⌦
D

and u

�

(u) = u

+ on @⌦
N

. Finally, the interior penalty
parameter � is defined by �|F = �h

�1

F for F 2 F(MCFE), where � > 0 is a
su�ciently large constant, and hF is a representative length scale associated
to the face F ; see [1] and [12] for details.

Writing

N ((u, p), (v, q)) = Ah(u,v)+Ch(u,v)+Bh(v, p)�Bh(u, q)�Fh(v)�Gh(q),

the DGCFEM (4) may be written in the following compact manner: find
(uh, ph) 2 Vh ⇥Qh such that

N ((uh, ph), (vh, qh)) = 0 8(vh, qh) 2 Vh ⇥Qh.
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Remark 2. We point out that the elementwise integrals over a general polyg-
onal/polyhedral element  2 MCFE, arising in the definition of the DGCFEM
(4), are computed based on employing standard integration schemes over the
fine (regularly shaped) elements present at the foot of the refinement tree T,
which, when agglomerated, form , cf. [5, 12], for example.

4. A posteriori error estimation and mesh adaptation

For the purposes of this article we consider a goal-oriented a posteriori er-
ror indicator based on employing the general dual–weighted–residual (DWR)
framework introduced by R. Rannacher and his collaborators; see [7], for ex-
ample. To this end, given a (linear, for simplicity) target functional J , we
state the following a posteriori error estimate.

Proposition 1. Let (u, p) and (uh, ph) denote the solutions of (1)–(3) and
(4), respectively, then the following error representation formula holds:

J(u, p)� J(uh, ph) = �N ((uh, ph), (z� zh, r � rh)) ⌘
X

2MCFE

⌘

for all (zh, rh) 2 Vh ⇥ Qh. Here, (z, r) denotes the solution of the corre-
sponding dual/adjoint problem: find (z, r) such that

M((u, p), (uh, ph); (w, s), (z, r)) = J(w, s) 8(w, s),

where

M((u, p), (uh, ph); (u� uh, p� ph), (w, s))

=

Z

1

0

N 0[✓(u, p) + (1� ✓)(uh, ph)]((u� uh, p� ph), (w, s)) d✓,

for some (w, s). Here, N 0[(w, s)]((·, ·), (v, q)) denotes the Fréchet derivative
of (u, p) ! N ((u, p), (v, q)), for (v, q) fixed, at some (w, s).

We now briefly outline the construction of a sequence of adaptively re-
fined meshes {MCFE,l}l�0

, with MCFE,0 = MCFE. From an implementation
point of view, the error indicators ⌘,  2 MCFE,l, l � 0, are computed
based on approximating the dual solution (z, r) on the composite finite el-
ement mesh MCFE,l, l � 0, using polynomials one degree higher than those
employed for the computation of (uh, ph). On the basis of the size of the
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modulus of the local error indicators, i.e., |⌘|, the elements in the mesh
MCFE,l, l � 0, may be marked for refinement/derefinement using a stan-
dard marking strategy; here, for this purpose, we employ the fixed fraction
strategy with refinement and derefinement parameters set to 15% and 5%,
respectively. Refinement/derefinement of the polygonal/polyhedral elements
present in MCFE,l, l � 0, can be easily realized based on employing (agglom-
erated) elements at di↵erent levels within the mesh tree hierarchy T, cf. the
definition of the physical meshes Mhi

, i = 1, . . . , `. More precisely, suppose
that element  2 MCFE,l, l � 0, with level() = k, say, is marked for subdi-
vision, then assuming that children() = n 6= 0, writing Ci

, i = 1, . . . , n,
to denote the children of  stored in the tree T, we subdivide  = [n

i=1

Ci ,
where

Ci = [02T
0 : (children(0) = 0 ^ Fj

k+1

(0) = Ci
, level(0) = j),

i = 1, . . . , n. On the other hand if children() = 0, then, given that 

is a standard–shaped element, refinement of this element domain may be
undertaken in the usual manner, giving rise to elements at a potentially
deeper level than ` in the mesh tree T. In addition, mesh smoothing is
undertaken to ensure that the resulting mesh is 1-irregular, cf. [1].

5. Numerical Experiments

In this section we present a series of numerical examples to demonstrate
the practical performance of the proposed adaptive algorithm based on em-
ploying composite finite element spaces.

5.1. Example 1: Flow through a square with micro-structures

In this first example, we select ⌦ to be the square (0, 5)2 in two dimen-
sions, which has had a uniform set of 25 circular holes removed, cf. Fig-
ure 2(a), which depicts the initial mesh. Here, the flow enters the domain
from the left-hand side of the boundary, i.e., along x = 0, where we assume
Poiseuille flow enters ⌦. No slip Dirichlet boundary conditions are imposed
on the top and bottom parts of ⌦, i.e., along y = 5 and y = 0, respectively, as
well as on the circular holes. Finally, a Neumann condition is imposed along
x = 5. Setting Re = 100, we select the functional of interest to be equal to
the value of the pressure p at the point (2.0, 2.5), i.e., J(u, p) = p(2.0, 2.5);
on the basis of a fine grid computation, we find that J(u, p) ⇡ 6.02846E-3.
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(a) (b)

(c)

Figure 2: Example 1. (a) Initial composite mesh MCFE consisting of 50 polygonal elements;
(b) Composite mesh after 6 adaptive refinements with 1061 elements; (c) Composite mesh
after 9 adaptive refinements with 4386 elements.

We select the initial composite finite element mesh MCFE, based on em-
ploying Algorithm 2.1, to consist of 50 polygonal elements, cf. Figure 2(a).
In Table 1, we demonstrate the performance of the proposed adaptive strat-
egy with � = 10 and the polynomial degree p = 2; here, we show the number
of elements in composite mesh MCFE, the number of degrees of freedom in
underlying finite element space Vh ⇥ Qh, the true error in the functional
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No of Eles No of Dofs J(u, p)� J(uh, ph)
P

2MCFE
⌘ ✓

50 750 -2.205E-2 -1.197E-2 0.54
74 1110 -2.470E-2 -9.202E-3 0.37
125 1875 -1.875E-2 -7.074E-3 0.38
215 3225 -1.479E-2 -5.749E-3 0.39
347 5205 -8.501E-3 -5.742E-3 0.68
677 10155 -2.191E-3 -1.535E-3 0.70
1061 15915 -1.754E-3 -1.289E-3 0.73
1558 23370 -4.560E-4 -3.922E-4 0.86
2531 37965 -1.228E-4 -8.521E-5 0.69
4386 65790 -3.801E-5 -3.801E-5 1.00

Table 1: Example 1: Adaptive algorithm.

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

Degrees of Freedom

|J
(u

,p
)−

J(
u

h
,p

h
)|

 

 

Adaptive Refinement
Uniform Refinement

Figure 3: Example 1: Comparison between uniform and adaptive mesh refinement.

J(u, p) � J(uh, ph), the computed error representation formula
P

2MCFE
⌘,

and the e↵ectivity index ✓ =
P

2MCFE
⌘/(J(u, p) � J(uh, ph)). Here, we

see that, even on such coarse finite element meshes, the quality of the com-
puted error representation formula is relatively good, in the sense that the
e↵ectivity indices are not too far away from unity. We also notice that
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Figure 4: Example 1. Pressure component of the dual solution.

practical/engineering accuracy can be attained using a very small number
of degrees of freedom; indeed, fewer degrees of freedom are necessary than
what would be required to accurately mesh the domain ⌦ using standard
element shapes, i.e., triangles/quadrilaterals. The results presented in Ta-
ble 1 are plotted in Figure 3. In addition, here we compare the performance
of the proposed adaptive refinement strategy with uniform mesh refinement.
We observe that initially both strategies lead to a comparable error in the
computed target functional of interest J , for a given number of degrees of
freedom; however, as both refinement procedures continue, the adaptive al-
gorithm leads to around an order of magnitude improvement in the error in
J for a comparable number of degrees of freedom.

Figures 2(b) & 2(c) show the composite finite element meshes after 6 and
9 refinement steps, respectively. Here, we observe that initially refinement is
concentrated in the vicinity of the point of interest; see in particular, the pres-
sure component of the dual solution in Figure 4. However, as the refinement
strategy continues, we observe that although much of the refinement is still
concentrated in this same region, additional refinement is also undertaken in
the vicinity of all of the circular holes present in ⌦.
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(a)

(b)

(c)

Figure 5: Example 2. (a) Initial composite finite element mesh consisting of 96 polyg-
onal elements; (b) Composite mesh after 3 adaptive refinements with 408 elements; (c)
Composite mesh after 7 adaptive refinements with 3118 elements.
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No of Eles No of Dofs J(u, p)� J(uh, ph)
P

2MCFE
⌘ ✓

96 1440 -2.849E-2 -2.534E-2 0.89
159 2385 -1.702E-2 -1.430E-2 0.84
240 3600 -5.755E-3 -3.419E-3 0.59
408 6120 -2.974E-3 -1.554E-3 0.52
660 9900 -1.592E-3 -7.969E-4 0.50
1108 16620 -8.644E-4 -3.853E-4 0.45
1901 28515 -5.008E-4 -2.842E-4 0.57
3118 46770 -2.068E-4 -1.468E-4 0.71
5196 77940 -5.390E-5 -4.716E-5 0.87
8708 130620 -1.172E-5 -1.172E-5 1.00

Table 2: Example 2: Adaptive algorithm.

5.2. Example 2: Flow through a complicated T–pipe domain

In this second example we consider a variant of the previous numerical
experiment. To this end, the computational domain ⌦ is defined to be a T–
shaped pipe, which has had a series of randomly located holes removed from
the horizontal section; see Figure 5(a) which shows the initial composite mesh
consisting of 96 polygonal elements. Here, the inflow boundary is specified
at the bottom of the vertical section of the pipe, i.e., along y = �3, 4 
x  8, where Poiseuille flow enters ⌦; the left-hand and right-hand side
boundaries of the horizontal portion of the pipe, located at x = 0, 0 
y  3 and x = 12, 0  y  3, are identified as Neumann boundaries. No
slip boundary conditions are imposed on the remaining walls of the T–pipe
geometry, together with the boundaries of the circular holes. As before, we
set Re = 100 and select J(u, p) = p(11, 1.5) ⇡ 2.27564E-3.

In Table 2 we tabulate the results of the proposed adaptive refinement
strategy, based on employing an initial composite mesh consisting of 96 el-
ements with � = 10 and p = 2, as before. As in the previous numerical
experiment, we again notice that the e↵ectivity indices ✓ are relatively good,
given the coarse nature of the finite element meshes employed. Indeed, as the
mesh is refined, we observe that ✓ improves and approaches unity. Again,
here we observe that a su�ciently accurate (in terms of engineering accu-
racy) approximation to the target functional of interest may be computed
with very few degrees of freedom. The results of Table 2 are depicted in Fig-
ure 6. As in the previous example, we again compare the performance of the
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Figure 6: Example 2: Comparison between uniform and adaptive mesh refinement.

proposed adaptive refinement strategy with uniform mesh refinement. Here,
we observe that adaptive refinement is always superior to uniform refinement,
in the sense that the error in the computed target functional of interest J is
smaller when adaptive refinement is employed, for a given number of degrees
of freedom. Indeed, adaptive refinement leads to over an order of magnitude
improvement in the error in J for a comparable number of degrees of free-
dom than the corresponding quantity computed in the case when uniform
refinement is exploited.

In Figures 5(b) & 5(c) we show the composite finite element meshes after
3 and 7 adaptive refinement steps, respectively. In this setting, we now
observe that the grid is strongly refined in the vicinity of the holes located to
the right of the vertical inlet pipe where the point value of interest is located.
As the refinement proceeds, some refinement of the holes to the left of the
inlet pipe is observed, as well as near the reentrant corners where the vertical
and horizontal sections of the T–pipe meet. The pressure component of the
dual solution is depicted in Figure 7.
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Figure 7: Example 2. Pressure component of the dual solution.

6. Conclusion and outlook

In this article we have considered the application of goal–oriented adap-
tive mesh refinement to the composite variant of the standard DGFEM for
problems posed on complicated domains. As a prototype partial di↵eren-
tial equation, we have focused our attention on the numerical approximation
of the incompressible Navier–Stokes equations. The numerical experiments
presented in this article clearly highlight the practical performance of this
approach. Indeed, by admitting the use of general polygonal/polyhedral el-
ements, the dimension of the underlying (composite) finite element space is
independent of the features present in the computational domain. Thereby,
coarse numerical approximations can be computed in an e�cient manner to
yield solutions which are su�ciently accurate in terms of engineering accu-
racy. While we have only considered incompressible fluid flows, this approach
can be universally applied to a wide range of application areas, where the
geometry imposes strong limitations on the number of degrees of freedom
required to yield a su�ciently accurate mesh representation of the compu-
tational domain. Finally, we note that the extension of this work to include
hp–mesh refinement follows in a natural fashion; for related work undertaken
in the context of energy norm error estimation, we refer to our recent article
[18].
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