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Abstract

We develop a test for the presence of nonlinear deterministic components in a univariate time

series, approximated using a Fourier series expansion, designed to be asymptotically robust to the

order of integration of the process and to any weak dependence present. Our approach is motivated

by the Wald-based testing procedure of Harvey, Leybourne and Xiao (2010) [Journal of Time Series

Analysis, vol. 31, p.379-391], but uses a function of an auxiliary unit root statistic to select between

the asymptotic I(0) and I(1) critical values, rather than modifying the Wald test statistic as in

Harvey et al.. We show that our proposed test has uniformly greater local asymptotic power than

the test of Harvey et al. when the shocks are I(1), identical local asymptotic power when the shocks

are I(0), and also improved finite sample properties. We also consider the issue of determining the

number of Fourier frequencies used to specify any nonlinear deterministic components, evaluating

the performance of algorithmic- and information criterion-based model selection procedures.
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1 Introduction

The ability to detect the presence and magnitude of deterministic components in a financial or eco-

nomic time series is of key importance when conducting empirical analysis, particularly for the purposes

of forecasting and testing for a unit root. For example, in the latter case, failure to correctly specify a

relevant deterministic component present in the data is known to result in non-similar and (usually)

inconsistent tests. Moreover, the power of unit root tests to reject the null under the I(0) alternative

when deterministic components are unnecessarily included in a model specification is also reduced.

Traditionally, attention in the literature has focused on a linear deterministic component, most

often the case of a constant and/or linear trend. The possibility of breaks in such linear deterministics
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has also received considerable attention, due in particular to the effect these breaks have on standard

unit root and stationarity tests; see, inter alia, Perron (1998). However, as noted by Harvey, Leybourne

and Xiao (2010) [HLX hereafter], these may not necessarily take the form of an instantaneous break

in the trend function. They note that changes in economic aggregates are affected by the response of a

large number of potentially heterogeneous individuals who are unlikely to respond instantaneously to

shocks. As a consequence, they suggest that a smoothly evolving nonlinear deterministic component

might provide a better approximation to the underlying deterministic component of these aggregates.

One possible method to capture such nonlinear behaviour is to approximate the deterministic

component using a Fourier series expansion. This approach is explored by Becker et al. (2004) and

is found to provide a good approximation for a variety of functions. Enders and Lee (2012) show

that modelling the deterministic components of an economic time series via a Fourier function can

approximate changes of various forms, such as a number of sharp breaks or deterministic smooth

transitions, e.g. exponential or logistic smooth transtions (ESTR or LSTR). Becker et al. (2004)

derive a test for the presence of nonlinear deterministic components using a Fourier expansion under

the assumption that the shocks are I(0). Enders and Lee (2012) propose a corresponding test under the

assumption that the data are I(1). The practical implementation of these tests is clearly problematic

since both assume the order of integration of the data to be known. This results in a circular testing

problem as we would need to know the order of integration of our data before performing the tests of

either Becker et al. (2004) and Enders and Lee (2012); however, in order to perform a unit root or

stationarity test we would need to specify the form of the deterministic component.

Motivated by this problem, and drawing on the robust linear trend tests of Vogelsang (1998),

HLX suggest a test that is robust to the order of integration of the data, thereby eliminating this

circular testing problem. This is achieved by using a composite statistic based around a Wald statistic

(that has a well defined limit distribution for both I(0) and I(1) shocks) multiplied by a function of

an auxiliary unit root test statistic. This function is specified such that when the shocks are I(0) it

converges in probability to one, leaving the asymptotic distribution of the Wald statistic unaffected,

but when the shocks are I(1), it converges to a well-defined limit distribution. Judicious choice of the

precise function to be used then allows the asymptotic critical values of the composite test statistic to

be lined up in the I(0) and I(1) environments, for a given significance level. This approach therefore

yields tests that display correct asymptotic size for both I(0) and I(1) shocks.

Here we propose an alternative to the methodology of HLX. In our approach a function of an

auxiliary unit root test statistic is used to select between the asymptotic I(0) and I(1) critical values

for the Wald test, rather than creating a composite test via multiplication with the Wald statistic as

in HLX. The motivation underlying this is that the presence of the multiplicative function of a unit

root test statistic in the HLX procedure impacts negatively on the local asymptotic power when the

shocks are I(1), relative to a test that compares the unmodified Wald statistic with its asymptotic I(1)

critical value directly. In contrast, the approach considered in this paper always uses the Wald statistic

without modification, and ensures that the correct asymptotic critical value is used, appropriate to

the order of integration. We show that this new procedure achieves the same local asymptotic power
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as the HLX test in the I(0) setting, while delivering (often substantial) local asymptotic power gains

for I(1) shocks. The new approach also provides improved finite sample behaviour.

The paper is organized as follows. Section 2 outlines the model and the hypotheses of interest,

with the HLX procedure reviewed in section 3. Section 4 presents our new approach, with the limiting

null distribution and local asymptotic power of the tests detailed in section 5. Section 6 addresses

issues related to the practical implementation of the new procedure, and section 7 reports results of

Monte Carlo simulations to assess the finite sample properties of the proposed tests for a given number

of frequencies in the Fourier expansion. In section 8 we examine the issue of selecting the number of

frequencies to include in the Fourier expansion, and compare the performance of a selection algorithm

based on the proposed tests with one based on the tests of HLX and also an information criterion

approach. Section 9 reports results from an empirical study where the procedures considered in this

paper are applied to a number of financial volatility indices, while section 10 concludes.

2 The Model and Testing Hypotheses

Following HLX, we consider a sample of T observations generated according to the following data

generating process (DGP)

yt = dt +
n∑
f=1

γ1f,T sin

(
2πft

T

)
+

n∑
f=1

γ2f,T cos

(
2πft

T

)
+ ut, t = 1, ..., T. (1)

The nonlinear deterministic component of yt is specified using a Fourier series expansion with the

maximum number of frequencies contained in the expansion denoted by n, and f ∈ Z+ denoting a
particular frequency. A linear deterministic component is contained in dt, the two leading cases of

which are dt = α (a constant) and dt = α+ βt (a constant and a linear trend).

We allow the stochastic component, ut, to be either I(0) or I(1), satisfying either Assumption I(0)

or Assumption I(1), respectively, below.

Assumption I(0) The stochastic process ut is such that ut = vt, where the process {vt} satisfies
vt = C(L)εt, C(L) :=

∑∞
i=0CiL

i, C(1)2 > 0 with
∑∞

i=0 i|Ci| < ∞, and where εt is a mean zero
i.i.d. sequence with E(ε2t ) = σ2ε and finite fourth moment. The long run variance of vt is defined as

ω2v := limT→∞ T
−1E(

∑T
t=1 vt)

2 = σ2εC(1)2.

Assumption I(0) ensures that we can apply a Functional Central Limit Theorem (FCLT) to the partial

sums of {vt}; i.e., T−1/2
∑brT c

t=1 vt
d→ ωvW (r) where b.c denotes the integer part of its argument, d→

denotes weak convergence and W (r) is a standard Wiener process.1 When the process is I(0) we

make the following assumption on the Fourier coeffi cients, γ1f,T := γ1fωvT
−1/2, γ2f,T := γ2fωvT

−1/2,

f = 1, ..., n. The T−1/2-scalings on the Fourier coeffi cients are analytical devices that provide the

appropriate Pitman drifts for the local asymptotic power analysis that follows. The scaling by ωv is a

1We maintain the assumption that εt is i.i.d. for consistency with the assumptions in HLX, however, the asymptotic

results that follow would continue to hold if we relax this assumption to allow εt to be a martingale difference sequence.
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convenience device that allows the long run variance to be factored out of the limit distributions that

arise for the test statistics outlined in this paper.

Assumption I(1) The stochastic process ut is such that ∆ut = vt, where the process {vt} is as
defined in Assumption I(0).

When the process is I(1) we assume that the Fourier coeffi cients satisfy, γ1f,T := γ1fωvT
1/2, γ2f,T :=

γ2fωvT
1/2, f = 1, ..., n, with the T 1/2-scalings now representing the appropriate Pitman drifts.

In the context of (1), when testing for the presence of nonlinear deterministic components our null

and alternative hypotheses are given by

H0 : γ1f,T = γ2f,T = 0, f = 1, ..., n

H1 : at least one of γ1f,T , γ2f,T 6= 0, f = 1, ..., n.

Under H0 the deterministic component in (1) reduces to dt, while H1 specifies that some form of

nonlinear deterministic component is present in the data. The formulation of H1 allows for the case

where γ1f,T = γ2f,T = 0 for some but not all frequencies f = 1, ..., n.

3 The HLX Test

In order to construct tests that are robust to whether the shocks are I(0) or I(1), HLX first consider

the partially summed counterpart to regression (1)

zt =
t∑

s=1

ds +
n∑
f=1

γ1f,T

t∑
s=1

sin

(
2πfs

T

)
+

n∑
f=1

γ2f,T

t∑
s=1

cos

(
2πfs

T

)
+ ηt (2)

where zt :=
∑t

s=1 ys and ηt :=
∑t

s=1 us. They then consider a scaled Wald statistic for H0 against H1

based on (2), of the form SWn
0 := (RSSR −RSSU )/RSSU , where RSSR denotes the residual sum of

squares from OLS regression of zt on
∑t

s=1 ds, and RSSU denotes the residual sum of squares from

OLS estimation of the unrestricted regression (2). The notation SWn
0 indicates we are testing the null

of zero frequencies against the alternative of up to n frequencies.

The limit distribution of SWn
0 depends on whether Assumption I(0) or Assumption I(1) holds,

but crucially it is well defined in each case. Consequently, HLX propose a Vogelsang (1998)-type

modification, basing their recommended test on the modified statisticMWn
0 := SWn

0 exp(−bξ |DF |−1),
where bξ is a finite positive constant and DF is the Dickey-Fuller t-statistic applied to the residuals

ût obtained from OLS estimation of (1), i.e. DF = (φ̂ − 1)/s.e.(φ̂) with φ̂ obtained from the OLS

regression

ût = φût−1 +

p∑
i=0

ζi∆ût−i + et. (3)

The |DF |−1 statistic has the property that it is Op(1) when the shocks are I(1), since DF has a

limit distribution (U , say), and converges in probability to zero when the shocks are I(0). Defining
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the limiting null distributions of SWn
0 under I(0) and I(1) shocks as D0 and D1, respectively, it then

follows that, under H0, MWn
0

d→ D0 under Assumption I(0) and MWn
0

d→ D1 exp(−bξ |U |−1) under
Assumption I(1). The constant bξ is chosen such that, for a given significance level ξ, the MWn

0 test

has the same asymptotic critical value under I(0) and I(1) shocks. As a result, the MWn
0 test will

have the correct size asymptotically regardless of whether Assumption I(0) or Assumption I(1) holds.

4 An Alternative Robust Test

Our proposed testing procedure involves utilising the same scaled Wald statistic as HLX, namely

SWn
0 , but we propose using an auxiliary unit root statistic (denoted by J) to switch between the

critical values appropriate for SWn
0 under Assumption I(0) and Assumption I(1), i.e. critical values

from D0 and D1, respectively, rather than modifying the test statistic itself with the multiplicative

term exp(−bξ |DF |−1) as in HLX. Such an approach has the advantage that it leads to a test with
local asymptotic power identical to the tests of HLX when the shocks are I(0), but with greater local

asymptotic power when the shocks are I(1) due to the removal of the influence of the auxiliary unit

root test statistic on the asymptotic distribution of the test in the I(1) case.

Denoting by cv0,ξ and cv1,ξ the ξ-level critical values from D0 and D1, respectively, we wish to

compare SWn
0 with cv0,ξ when the shocks are I(0), and SW

n
0 with cv1,ξ when the shocks are I(1). To

achieve this, we consider the following adaptive critical value

cvλξ := λJ,ξcv0,ξ + (1− λJ,ξ)cv1,ξ, λJ,ξ := exp(−τ ξT δJ) (4)

with τ ξ and δ positive constants. We require a value of δ and a statistic J such that T δJ converges

in probability to zero under Assumption I(0) but diverges to positive infinity under Assumption I(1).

Then, when the shocks are I(0), λJ,ξ
p→ 1 and cvλξ

p→ cv0,ξ, and when the shocks are I(1), λJ,ξ
p→ 0

and cvλξ
p→ cv1,ξ. This ensures that the correct critical value is used asymptotically, yielding a robust

testing approach. Note that although the constant τ ξ will play a role in the finite sample behaviour

of λJ,ξ, it is asymptotically irrelevant. In what follows, we denote by ASWn
0 our proposed test that

compares the statistic SWn
0 with the adaptive critical value cv

λ
ξ , given suitable choices of δ and J that

satisfy our requirements on T δJ .

5 Asymptotic Results

Defining γ := [γ11, ..., γ1n, γ21, ..., γ2n]′, Xk(r) := [m11(r), ...,m1k(r),m21(r), ...,m2k(r)]
′, andHk(r) :=

[F (r), sin(2πr), ..., sin(2πkr), cos(2πr), ..., cos(2πkr)]′, where F (r) := 1 if dt = α, F (r) := (1, r) if

dt = α + βt, m1f (r) := 1
2πf (1 − cos(2πfr)) and m2f (r) := 1

2πf sin(2πfr), the following large sample

results obtain (see HLX for the limits of MWn
0 ; the limits for SW

n
0 follow in a straightforward way).

If yt is generated by (1) under H1, then

(a) Under Assumption I(0), SWn
0 , MWn

0
d→
∫ 1
0 LR(r,γ)2dr∫ 1
0 LU (r)2

− 1 =: D0(γ)

5



where LR(r,γ) denotes the continuous time residuals from the projection of γ ′Xn(r) +W (r) onto the

space spanned by
∫ r
0 F (s)ds, and LU (r) denotes the continuous time residuals from the projection of

W (r) onto the space spanned by [
∫ r
0 F (s), Xn(r)′]; and

(b) Under Assumption I(1), SWn
0

d→
∫ 1
0 NR(r,γ)2dr∫ 1
0 NU (r)2

− 1 =: D1(γ)

MWn
0

d→ D1(γ) exp(−bξ |U |−1)

where NR(r,γ) denotes the continuous time residuals from the projection of γ ′Xn(r)+
∫ r
0 W (s)ds onto

the space spanned by
∫ r
0 F (s)ds, NU (r) denotes the continuous time residuals from the projection of∫ r

0 W (s)ds onto the space spanned by [
∫ r
0 F (s), Xn(r)′], and U := (K(1)2−K(0)2−1)/(2

√∫ 1
0 K(r)2dr),

withK(r) the continuous time residuals from the projection ofW (r) onto the space spanned byHn(r)′.

The asymptotic null distributions of SWn
0 and MWn

0 obtain by setting γ = 0 in the foregoing

representations, so that, linking with the notation of the previous section, D0 ≡ D0(0) and D1 ≡
D1(0). Note that D0 and D1 are functions of n, and thus the limit distribution of SWn

0 depends

on the choice of n. The asymptotic critical values of the with-constant SWn
0 (dt = α) and with-

trend SWn
0 (dt = α + βt) statistics, for n = 1, 2, 3 and for both I(0) and I(1) shocks, are given in

Table 1. These were obtained from direct simulation of these limiting distributions, with the Wiener

process approximated using NIID(0, 1) random variates, and with the integrals approximated by

normalized sums based on 1,000 steps. Here and throughout the paper, all Monte Carlo simulations

were conducted in Gauss 9.0 using 50,000 replications. The critical values reported for the I(0) case

are also the limit critical values of MWn
0 , and coincide with the values reported in Table 1 of HLX.

Under Assumption I(0), both the MWn
0 and ASW

n
0 tests share the same asymptotic distribution

and, as such, will possess identical local asymptotic power functions. Under Assumption I(1), however,

their local asymptotic power functions differ. Henceforth, we will concentrate attention on the with-

constant ASWn
0 test to facilitate direct comparison with the results presented in HLX. Corresponding

results for the with-trend variant are available on request. Figure 1 reports the local asymptotic

power (at the nominal 0.05 significance level) under both Assumption I(0) and Assumption I(1) for

n = 1, 2, 3, with the results again obtained from direct simulation of the limiting distributions. Due

to the multi-parameter nature of the testing problem we present results under the alternative that

γ11 = ... = γ1n = γ21 = ... = γ2n = γ. Panels (a), (c) and (e) confirm that the local asymptotic

powers of both tests are identical when the shocks are I(0). However, when the shocks are I(1), Panels

(b), (d) and (f) reveal a distinct power ordering between the two test procedures across all values of

n. The new ASWn
0 test has uniformly superior local asymptotic power to the MWn

0 test, with the

potential power gains being quite substantial. Indeed, we find that the maximum power gains across

γ afforded by using ASWn
0 rather than MWn

0 are 0.28, 0.30 and 0.31 for n = 1, n = 2 and n = 3,

respectively.
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6 Practical Implementation of the Test Procedure

To implement the ASWn
0 test, we require choices for δ and J which satisfy the conditions on T

δJ given

below (4). We followed HLX and experimented with functions of the Dickey-Fuller-type statistic, DF ,

and also a Breitung (2002)-type variance ratio unit root statistic

B := s−2u T−3
T∑
t=1

(
t∑

s=1

ûs

)2
(5)

where s2u := T−1
∑T

t=1 û
2
t , with ût the residuals obtained from OLS estimation of (1). While all

choices of δ and J that satisfy the required conditions on T δJ result in asymptotically equivalent test

procedures, we found the best overall finite sample behaviour was achieved when setting δ = 1/2 and

J = B. With these choices, following results in Breitung (2002), under Assumption I(0) we find B =

Op(T
−1) and so T 1/2J = Op(T

−1/2), while under Assumption I(1), B = Op(1) with T 1/2J = Op(T
1/2),

clearly satisfying the required conditions on T δJ . We recommend these settings for δ and J in the

implementation of the test.

While the adaptive critical value cvλξ of (4) delivers an appropriate critical value for SW
n
0 asymp-

totically, we also consider a finite sample adjustment that proves to be beneficial in controlling the new

test’s size in small samples. Results from unreported simulations showed that the procedure outlined

thus far has a tendency to exhibit finite sample over-size when the shocks are I(1), and finite sample

under-size when the shocks are I(0). We therefore consider a modification designed to inflate (deflate)

the finite sample critical value in the I(1) (I(0)) case. Specifically, we consider the following adjusted

adaptive critical value in place of (4)

cvλ,adjξ := λJ,ξ(1− κξλJ,ξT−1/2)cv0,ξ + (1− λJ,ξ){1 + κξ(1− λJ,ξ)T−1/2}cv1,ξ (6)

where κξ > 0. Note that this has no effect asymptotically as κξλJ,ξT−1/2
p→ 0 under I(0) and

κξ(1− λJ,ξ)T−1/2
p→ 0 under I(1).

Although κξ and τ ξ in (6) and (4) have no impact on the asymptotic behaviour of ASWn
0 , specific

values of these parameters are required to implement the test in practice, and the choice of these

values affects the test’s finite sample properties. We calibrated these choices according to a set of

unreported size and power simulations for n = 1, 2, 3. As a starting point, for a given n, we restricted

attention to the set of pairings of (κξ, τ ξ) which delivered a correct empirical size of exactly ξ (for

each of ξ = 0.10, 0.05 and 0.01) for the pure unit root case ∆yt = εt ∼ NIID(0, 1), y1 = ε1, and for

the sample size T = 300. Among such pairings, increases in τ ξ (with corresponding decreases in κξ)

were found to reduce the degree of any over-size displayed in stationary scenarios, but at the cost of

decreased finite sample power. We first chose (κξ, τ ξ) such that the test also had empirical size equal

to ξ when yt = εt ∼ NIID(0, 1) and T = 300. In some cases, however, we found that this choice led

to significant size distortions for moving average εt; in such cases, we selected a (κξ, τ ξ) pairing with a

larger τ ξ (and therefore smaller κξ) to reduce the size distortions. Specifically, we chose a pairing such

that, for T = 300, the empirical size lay below 0.07 for nominal 0.05-level tests (and below 0.14 and
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0.014 for nominal 0.10- and 0.01-level tests, respectively) across the ARMA(1,1) and ARIMA(0,1,1)

simulation settings considered in section 7.1 below. We advocate tolerating this modest amount of

potential over-size in order to preserve decent finite sample power levels. The chosen pairings are given

in Table 2, and we recommend these settings for practical applications of the test.

7 Finite Sample Simulations

7.1 Empirical Size

In this section we consider the finite sample size behaviour of the MWn
0 and ASW

n
0 tests, focusing

on the case n = 1. We generate data according to the following DGP, which allows for stationary

ARMA(1,1) and integrated ARIMA(0,1,1) shocks: yt = φyt−1 + εt − θεt−1, t = 2, ..., T , with u1 = ε1

and εt ∼ NIID(0, 1). Table 3 reports the empirical sizes of nominal 0.05-level MW 1
0 and ASW

1
0 tests

for the sample sizes T = {150, 300} and serial correlation parameters φ = {0, 0.5, 0.7, 0.9, 0.95, 1} and
θ = {−0.5, 0, 0.5}. When calculating the DF unit root test statistic required for the MW 1

0 procedure,

the lag truncation parameter p in (3) was chosen using the modified Akaike information criterion

(MAIC) of Ng and Perron (2001) with pmax =
⌊
12(T/100)1/4

⌋
, and using the modification of Perron

and Qu (2007), as outlined in HLX.

The finite sample sizes of the two tests follow broadly similar patterns across the different serial

correlation parameter settings. Both are close to nominal size for I(1) shocks (φ = 1), apart from

some over-size observed for ASW 1
0 when T = 150. At the other extreme, when φ = 0, we see that in

the absence of moving average components (θ = 0), the with-constant ASW 1
0 test is approximately

correctly sized and the with-trend ASW 1
0 test is a little under-sized, while some modest size distortions

are observed when θ 6= 0. On the other hand, theMW 1
0 tests are severely under-sized in all cases when

φ = 0. For stationary but autocorrelated DGPs (0 < φ < 1) all tests can be substantially under-sized

in finite samples. As was observed by HLX, for some values of φ the tests are more under-sized for

T = 300 than for T = 150; unreported simulations confirm, however, that this phenomenon eventually

vanishes for much larger sample sizes, in line with our asymptotic results. The results of Table 3 show

that the new ASWn
0 tests are generally conservative, and are therefore unlikely to spuriously signal

the presence of nonlinear deterministic components when they are in fact absent. Furthermore, while

under-size is apparent for stationary shocks, the degree of this downward size distortion is less marked

for the ASWn
0 tests than for the MWn

0 tests.

7.2 Empirical Power

To examine the finite sample power properties of the tests, we generate data according to the DGP

yt = γ

n∑
f=1

sin

(
2πft

T

)
+ γ

n∑
f=1

cos

(
2πft

T

)
+ ut, t = 1, ..., T (7)

ut = φut−1 + εt, t = 2, ..., T (8)
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with n = 1, u1 = ε1 and εt ∼ NIID(0, 1). Figure 2 presents power curves for nominal 0.05-level with-

constantMW 1
0 and ASW

1
0 tests, for T = 150 and φ = {0, 0.5, 0.7, 0.9, 0.95, 1}. The power curves were

computed using a grid of 50 steps of values for γ from to 0 to γmax, with γmax = {2, 4, 8, 20, 20, 100},
corresponding to the six values of φ considered.

Figures 2(f) and 3(f) show that when the shocks are I(1), the power of the new ASW 1
0 test is clearly

superior to that of MW 1
0 , in line with the asymptotic power results in Figure 1. It is reassuring to see

that the power gains observed in the limit are also manifest in finite samples, with quite substantial

power advantages available through use of ASW 1
0 in the I(1) setting. When the shocks are I(0), the

two tests are asymptotically equivalent, although it is to be expected that their power properties will

differ in finite samples, particularly given the differential finite sample size results discussed above.

Indeed, Figures 2(a)-2(e) show that differences between the ASW 1
0 and MW 1

0 power curves do occur.

The main observation is that ASW 1
0 generally outperforms MW 1

0 under I(0) shocks. The power gains

associated with ASW 1
0 are most marked when φ = 0, where it is evident that the under-size associated

with MW 1
0 in this case has a detrimental impact on power relative to the better sized ASW

1
0 test. A

similar, albeit less exaggerated, pattern is seen when φ = 0.5, while there is little to choose between

the two tests when φ = 0.7 and φ = 0.9. Finally, when φ = 0.95, relative power gains are again

displayed by ASW 1
0 . In summary, the ASW

1
0 test offers valuable improvements in finite sample power

relative to MW 1
0 , both in the case of I(1) shocks (as would be expected) and also in the case of I(0)

shocks where the tests are asymptotically equivalent.

As suggested by a referee, an alternative to using ût in the construction of B would be to instead

use residuals obtained from (1) but with the null hypothesis imposed, i.e. to use residuals from OLS

estimation of yt = dt + ut, t = 1, ..., T . It can be shown that cvλ,adjξ computed using B based on such

restricted residuals has exactly the same asymptotic properties as cvλ,adjξ in (6) under Assumption

I(0) and Assumption I(1), both under the null and under the respective local alternative hypotheses.

Unreported simulations show that this approach tends to be susceptible to a greater degree of under-

size than our suggested procedure, while neither procedure dominates the other across φ in terms of

finite sample power. As a result, we do not pursue this alternate approach further here.

8 Determining The Number Of Frequencies

The analysis in the previous section assumed that the true maximum number of frequencies, n, was

known. In practice, however, this setting is unknown and must be specified by the practitioner.

Unreported simulation results show that incorrectly specifying the number of frequencies, n, to include

in the testing procedure has a detrimental effect on the power of all of the tests considered in this

paper. For instance, if we choose to perform a test for at most n+1 frequencies when the true number

of frequencies is n we will sacrifice power due to over-specification in the test procedure; similarly,

under-specification of n can result in tests with very low power.

HLX attempt to overcome this problem by presenting an algorithm for determining the number
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of frequencies to include in their testing procedure. This algorithm can also be applied to the new

testing approach proposed in this paper. As part of the algorithm, HLX develop a test of the null of

at most m− 1 frequencies versus m frequencies, i.e., within the context of (1),

H∗0 : γ1m,T = γ2m,T = 0; γ1f,T , γ2f,T , f = 1, ...,m− 1 unrestricted

H∗1 : at least one of γ1m,T , γ2m,T 6= 0

They recommend the testMWm
m−1 := SWm

m−1 exp(−bξ |DF |−1), where SWm
m−1 := (RSSR−RSSU )/RSSU

with RSSR and RSSU the restricted and unrestricted residual sums of squares from OLS estimation

of (2) with n replaced by m − 1 and m, respectively, and where DF is the Dickey-Fuller t-statistic

applied to the OLS residuals from estimation of (1) with n replaced by m.

The new approach proposed in this paper can also be used to construct a test of H∗0 against

H∗1 . Specifically, we adopt the same SW
m
m−1 statistic that appears as a component in MWm

m−1, and

compare this statistic with the adjusted adaptive critical value cvλ,adjξ taking the form of (6), where

λJ,ξ is as defined in (4) with δ = 1/2 and J = B where B now denotes the statistic in (5) with ût

being the residuals from OLS estimation of (1) with n replaced by m.

The following large sample results for SWm
m−1 can be obtained directly from HLX. When yt is

generated by (1) under H∗1 ,

(a) Under Assumption I(0), SWm
m−1

d→
∫ 1
0 L
∗
R(r,γ∗)2dr∫ 1
0 L
∗
U (r)2

− 1 =: D∗0(γ
∗)

where γ∗ := [γ1m, γ2m], L∗R(r,γ∗) denotes the continuous time residuals from the projection of

γ1mm1m(r)+γ2mm2m(r)+W (r) onto the space spanned by
[∫ r
0 F (s)ds,Xm−1(r)′

]
, and L∗U (r) denotes

the continuous time residuals from the projection ofW (r) onto the space spanned by
[∫ r
0 F (s)ds,Xm(r)′

]
;

and

(b) Under Assumption I(1), SWm
m−1

d→
∫ 1
0 N

∗
R(r,γ∗)2dr∫ 1
0 N

∗
U (r)2

− 1 =: D∗1(γ
∗)

whereN∗R(r,γ∗) denotes the continuous time residuals from the projection of γ1mm1m(r)+γ2mm2m(r)+∫ r
0 W (s)ds onto the space spanned by

[∫ r
0 F (s)ds,Xm−1(r)′

]
, and N∗U (r) denotes the continuous time

residuals from the projection of
∫ r
0 W (s)ds onto the space spanned by

[∫ r
0 F (s)ds,Xm(r)′

]
.

The asymptotic distributions under the null H∗0 follow by setting γ∗ = 0 in the above limits.

Asymptotic critical values for SWm
m−1 for m = 2, 3 under both Assumption I(0) and Assumption I(1)

are given in Table 1. We also determined suitable values for τ ξ and κξ to be used in constructing

cvλ,adjξ , and these recommended values are given in Table 2. Hereafter we denote by ASWm
m−1 the new

tests that compare SWm
m−1 with cv

λ,adj
ξ .

Following the HLX algorithm, the ASWn
0 and ASW

m
m−1 tests can now be used to determine the

number of frequencies, n. Given an assumption on the largest possible value of n, nmax, we first

conduct the tests ASW i
0, i = 1, ..., nmax, and if none of these tests reject we conclude n = 0. If any of

the tests do reject, we identify the largest value of i for which the null is rejected and set m to this

value. If m = 1 it is concluded that n = 1; otherwise if m > 1 we conclude that m is the largest
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value that n might take. We then consider ASWm−1
0 , and if this test fails to reject we set n = m. If,

however, ASWm−1
0 does reject we then perform the ASWm

m−1 test; then if this test rejects we conclude

n = m, otherwise we reduce m by one and repeat the loop. For a diagrammatic representation of the

algorithm, see Figure 3 of HLX.

A natural alternative approach to identifying the number of frequencies present in a series would

be a standard model selection criterion. As such we also consider a Bayesian information criterion

(BIC) approach, which for the constant case (dt = α) is based on the following two regressions

∆yt = α+ ρyt−1 +
n∑
f=1

γ1f,T sin

(
2πft

T

)
+

n∑
f=1

γ2f,T cos

(
2πft

T

)
+

k∑
i=0

ci∆yt−i + et (9)

∆yt =

n∑
f=1

γ∗1f,T sin

(
2πft

T

)
+

n∑
f=1

γ∗2f,T cos

(
2πft

T

)
+

k∑
i=0

c∗i∆yt−i + e∗t . (10)

Consider selecting n by minimising the BIC across n = {0, 1, ..., nmax} and k = {0, 1, ..., kmax} for a
given regression. BIC based on (9) will be appropriate when the shocks are I(0), while BIC based on

(10) will be appropriate for I(1) shocks. Consequently, we propose minimising the BIC jointly over

both regressions (9) and (10), and it this procedure with which we will compare the performance of

the HLX-type algorithm below.

We now assess, by means of Monte Carlo simulation, the relative performance of the HLX algorithm

based on MWn
0 and MWm

m−1 (which we refer to as MW ), the same algorithmic approach based on

ASWn
0 and ASW

m
m−1 (which we denote by ASW ), and the BIC procedure outlined above. Note that

all tests were performed for the with-constant variants and were conducted at the nominal 0.05-level.

Data were generated according to (7)-(8) with n = 2. We compute the frequency with which each

procedure correctly selects n = 2, along with the frequencies with which each of the incorrect selections

of n = 0, 1, 3 are made. The choices nmax = 3 and kmax = 4 are adopted in all cases, and we consider

experiments with T = 150, φ = {0, 0.5, 0.7, 0.9, 0.95, 1}, as before. For each value we report results for
four different values of γ, including the case γ = 0. Results for serially correlated εt were found to be

similar to those for i.i.d. innovations and are available upon request.

The results are reported in Table 4. Comparing first the two algorithmic approaches, we observe

that ASW generally outperforms MW , in line with the superior finite sample testing properties that

the constituent tests involved in ASW display. Due to the inherent multiple testing issues with the

algorithms, when γ = 0 we see that both ASW and MW select a non-zero value of n with frequency

greater than the nominal level, less so in the case ofMW due to its lower finite sample size. However, as

might be expected from the results of section 7, when γ > 0 the ASW approach generally outperforms

the MW approach in terms of the frequency with which n = 2 is selected. Indeed, the improvements

offered by ASW over the original MW are quite substantial in a number of cases, particularly for

modest values of γ. While MW can outperform ASW , such gains are always relatively minor, and

tend to occur in situations where both procedures select n = 2 with high probability.

Turning our attention to a comparison of ASW with the BIC approach, it can be seen that when

γ = 0, BIC selects a value of n greater than zero with roughly the same frequency as was seen for
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ASW . In some cases, differences are seen, but neither procedure dominates the other overall when

there are truly no nonlinear deterministic components present. When γ > 0, we find that neither ASW

nor BIC dominates the other across the different γ magnitudes considered. While the performance of

the two methods for determining the number of frequencies can be quite different for any given DGP,

these differences do not follow a systematic pattern across all φ or γ; as such, it is diffi cult to argue

for a particular ranking between ASW and BIC. What is clear, however, is that both procedures offer

improvements relative to the MW approach of HLX.

The previous simulation study has examined the ability of the proposed algorithms and BIC

procedure to correctly specify n when the deterministic component of the series is exactly approximated

by a Fourier series expansion. It is also important to investigate how useful these approaches are in

approximating other forms of nonlinear deterministic components. To that end we generated data

according to yt = dt + ut, t = 1, ..., T , with ut as in (8) for φ = {0, 0.5, 1}, and with dt specified
as either a mid-sample ESTR, i.e. dt = γ[1 − exp(−0.1(t − 0.5T )2)], or as a mid-sample LSTR, i.e.

dt = γ/[1 + exp(0.1(t− 0.5T ))]. For a sample size of T = 150 we compute the power of the methods

to detect nonlinear deterministic elements, measured as the percentage of replications for which the

ASW algorithm or BIC selects n > 0 frequencies. Table 5 reports, for a range of γ magnitudes, the

power of with-constant ASW and BIC (results are omitted for MW as its performance was uniformly

worse than ASW ). For ESTR deterministics, both ASW and BIC have power that is increasing in γ,

indicating that the Fourier approximation works reasonably well in terms of modelling the ESTR-type

nonlinearities. Of the two procedures, BIC offers higher power than ASW , particularly when φ > 0.

In the case of LSTR deterministics, however, the powers of both with-constant ASW and BIC

are typically decreasing in γ (with the exception of BIC when φ = 1), so while we again find that

BIC outperforms ASW here, neither procedure performs well across all values of φ considered. This

feature arises since the LSTR component involves a relatively slow transition from one level to another,

which is not well modelled by the Fourier terms of frequency f = 1, 2, 3 that are included in the fitted

unrestricted model (this approximation error may also be magnified in the ASW procedure due to

the statistics being based on the partially summed regression (2)). To capture these low frequency

movements, one would need to incorporate Fourier terms with lower frequency than one, e.g. f = 0.5,

in the approximation. Of course, such low frequency Fourier terms can themselves be reasonably well

approximated by a linear trend term, hence we also report in Table 5 results obtained from application

of the with-trend version of ASW to the LSTR data generating processes. We see that for the cases

where the with-constant ASW suffered from very low power, the with-trend variant has decent power

which is also now increasing in the magnitude of γ. We also see in Table 5 that with-trend ASW also

delivers some power improvements over with-constant ASW in the ESTR simulations, particularly

when φ = 1. It appears, therefore, that when low frequency changes are present in the data, the with-

trend variant of ASW is a potentially more robust approach for detecting deterministic nonlinearities,

as the underlying fitted models provide a superior approximation to the true deterministic component.
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9 Empirical Application

There has been much interest in the financial literature in modelling the volatility of economic in-

dicators, most notably financial indicators such as stock market indices. While early work by, inter

alia, Poterba and Summers (1986), French et al. (1987) and Schwert and Seguin (1990) concentrated

on modelling volatility in stock market indices using linear methods, more recent work by Cao and

Tsay (1992) attempts to use nonlinear methods to analyse such indices using threshold autoregressive

and nonlinear GARCH and EGARCH models. Such methods assume that any observed nonlinearity

in the volatility indices is stochastic rather than deterministic. It is of interest, however, to assess

whether we can detect nonlinear behaviour in the deterministic components of such volatility indices.

To that end we collected daily data on six volatility indices for the one year period ending 18

March 2013. Five of these indices measure the volatility of a particular stock market index: the Dow

Jones Industrial Average Volatility Index (Ticker: VXD), the NASDAQ-100 Volatility Index (VXN),

the S&P 500 Volatility Index (VIX), the S&P 100 Volatility Index (VXO) and the FTSE 100 Volatility

Index (VFTSE). The final series considered is the EuroCurrency Volatility Index (EVZ), which is an

index of the volatility of the US$/EUR exchange rate. We applied the with-constant ASW and MW

algorithms described in section 8 (with nmax = 3), implemented at both the 0.05 and 0.10 significance

levels, to each series. We also applied the BIC selection procedure as a point of comparison. The

number of frequencies, n̂, detected by these methods are reported in Table 6. In all cases, some form

of nonlinear deterministic behaviour is detected in the volatility indices, suggesting a consistent body

of evidence for nonlinear behaviour in the deterministic components of these financial volatility series.

The pattern of results observed in Table 6 is consistent with the finite sample simulations presented

in sections 7 and 8. In all cases, for a given significance level, ASW chooses n̂ to be greater than or

equal to that chosen by MW ; indeed there are three series for which MW does not find any evidence

of nonlinearity at the 0.05-level, while ASW selects n̂ = 2. In comparison with the BIC procedure, we

find that ASW finds more evidence for deterministic nonlinearity, with BIC selecting n̂ = 0 for four

of the series, and never identifying a greater number of frequencies than ASW .

As a measure of the underlying persistence in each series, Table 6 also reports (in parentheses)

the estimate of φ obtained from the DF regression (3) used in the MWn
0 statistic, where n is set to

the corresponding number of frequencies listed in Table 6. These suggest that the series are highly

persistent around a nonlinear deterministic component, but it is unclear whether the stochastic com-

ponents would be best modelled by stationary or unit root processes. This highlights the advantages

of the robust procedures considered in this paper, as we do not need to take a stand on the integration

properties of the data. Interestingly, fitting only a constant to the data results in estimates of φ very

close to unity, suggesting that failure to specify the nonlinear deterministic components of these series

could well lead to the inference that they contain a unit root. Note also that since the with-constant

ASW procedure always selects n̂ > 0, it does not appear that problematic low frequency movements

are a feature of these time series.

The fitted deterministic components associated with the corresponding values of n̂ obtained by
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ASW are presented alongside the original and detrended series in Figure 3. Note that for the EVZ

series we plot the fitted and detrended series for n̂ = 3 rather than n̂ = 1. We see that the deterministic

components detected by ASW appear to fit the data rather well, with the apparent nonlinear behaviour

in the series well approximated by the Fourier frequency representation in most cases.

10 Conclusions

We have proposed a new approach to testing for the presence of nonlinear deterministic components

in an economic time series designed to be robust to the order of integration of the data and to any

weak dependence present. The recommended approach involves using a scaled Wald statistic that

has well defined, but different, limit distributions depending on whether the stochastic component of

the series is I(0) or I(1). Robustness is achieved by using an adaptive critical value constructed so

that the appropriate I(0) or I(1) critical value is selected asymptotically. This delivers a test with

the same asymptotic properties as the test of HLX in an I(0) environment, but with worthwhile local

asymptotic power gains in an I(1) setting. Monte Carlo simulations suggest that the new test also has

superior overall finite sample size and power properties to the HLX test for both I(0) and I(1) shocks.

The proposed testing procedure can be employed in the algorithm of HLX to determine the number

of frequencies used to model a series that contains potential nonlinear deterministic components. We

have also considered a model selection approach based on the BIC which was also shown to outperform

the original HLX procedure. Our empirical application to financial market volatility indices over the

last year supports the notion that the new procedures offer benefits over extant methods.
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Table 1. Asymptotic ξ-level critical values for SWn
0 and SWm

m−1 statistics

n = 1 n = 2 n = 3

ξ 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

With-constant SWn
0

cv0,ξ 5.268 7.439 13.370 9.337 12.754 21.495 13.259 17.702 29.159
cv1,ξ 50.631 76.222 167.163 193.162 274.977 565.278 475.264 680.520 1300.226

With-trend SWn
0

cv0,ξ 2.677 3.708 6.370 4.685 6.124 9.921 6.550 8.468 13.308
cv1,ξ 30.601 47.342 103.816 100.248 150.228 295.168 227.125 329.713 644.469

m = 2 m = 3

ξ 0.10 0.05 0.01 0.10 0.05 0.01

With-constant SWm
m−1

cv0,ξ 1.779 2.406 4.007 1.038 1.393 2.252
cv1,ξ 9.829 14.138 27.101 4.636 6.437 12.147

With-trend SWm
m−1

cv0,ξ 1.310 1.774 2.904 0.856 1.138 1.849
cv1,ξ 8.556 12.624 24.795 4.591 6.513 12.293

Table 2. τ ξ and κξ values for ASW
n
0 and ASWm

m−1 tests

n = 1 n = 2 n = 3

ξ 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

With-constant ASWn
0

τ ξ 14.6 17.5 26.0 23.0 29.5 50.0 32.0 41.0 90.0
κξ 5.8 6.9 8.5 10.5 11.2 8.6 14.3 14.5 6.5

With-trend ASWn
0

τ ξ 43.2 50.0 63.0 79.0 110.0 180.0 151.0 210.0 325.0
κξ 9.5 9.8 10.5 14.4 8.3 5.0 11.2 6.4 3.0

m = 2 m = 3

ξ 0.10 0.05 0.01 0.10 0.05 0.01

With-constant ASWm
m−1

τ ξ 32.4 37.0 53.9 47.7 57.0 80.0
κξ 4.9 5.6 7.4 4.4 5.2 6.8

With-trend ASWm
m−1

τ ξ 90.0 105.0 160.0 140.0 195.0 315.0
κξ 9.9 8.6 5.9 10.6 6.0 2.1
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Table 3. Finite sample size of MW 1
0 and ASW 1

0 tests

With-constant tests With-trend tests

T = 150 T = 300 T = 150 T = 300

φ θ MW 1
0 ASW 1

0 MW 1
0 ASW 1

0 MW 1
0 ASW 1

0 MW 1
0 ASW 1

0

0.00 −0.5 0.006 0.033 0.010 0.034 0.002 0.010 0.004 0.014
0.0 0.009 0.051 0.012 0.050 0.004 0.026 0.007 0.032
0.5 0.004 0.057 0.011 0.063 0.001 0.053 0.006 0.068

0.50 −0.5 0.003 0.018 0.004 0.018 0.000 0.003 0.001 0.004
0.0 0.007 0.025 0.008 0.024 0.002 0.007 0.003 0.007
0.5 0.009 0.051 0.012 0.050 0.004 0.026 0.007 0.032

0.70 −0.5 0.002 0.014 0.003 0.011 0.000 0.002 0.001 0.002
0.0 0.006 0.018 0.006 0.014 0.002 0.004 0.002 0.003
0.5 0.008 0.040 0.006 0.033 0.004 0.015 0.003 0.013

0.90 −0.5 0.010 0.022 0.005 0.009 0.002 0.005 0.001 0.001
0.0 0.015 0.025 0.007 0.010 0.005 0.006 0.002 0.002
0.5 0.015 0.045 0.007 0.018 0.006 0.017 0.002 0.005

0.95 −0.5 0.024 0.041 0.011 0.015 0.008 0.014 0.003 0.003
0.0 0.030 0.044 0.013 0.016 0.013 0.016 0.005 0.004
0.5 0.031 0.069 0.014 0.025 0.015 0.032 0.005 0.008

1.00 −0.5 0.039 0.058 0.040 0.049 0.038 0.057 0.039 0.049
0.0 0.047 0.060 0.047 0.050 0.047 0.061 0.047 0.050
0.5 0.049 0.076 0.048 0.058 0.052 0.091 0.049 0.063

Table 4. Number of frequencies selected by with-constant MW and ASW algorithms and BIC: T = 150

MW ASW BIC

φ γ n = 0 n = 1 n = 2 n = 3 n = 0 n = 1 n = 2 n = 3 n = 0 n = 1 n = 2 n = 3

0.00 0.00 0.989 0.009 0.001 0.000 0.933 0.050 0.014 0.004 0.991 0.009 0.000 0.000
0.30 0.419 0.017 0.501 0.064 0.208 0.043 0.679 0.070 0.281 0.144 0.565 0.009
0.60 0.051 0.000 0.882 0.067 0.014 0.000 0.931 0.055 0.001 0.000 0.984 0.014
1.20 0.003 0.000 0.976 0.022 0.000 0.000 0.950 0.050 0.000 0.000 0.986 0.014

0.50 0.00 0.993 0.007 0.001 0.000 0.971 0.024 0.004 0.001 0.987 0.012 0.001 0.000
0.70 0.408 0.004 0.528 0.060 0.334 0.006 0.578 0.082 0.274 0.051 0.656 0.020
1.40 0.030 0.000 0.917 0.052 0.032 0.000 0.906 0.062 0.009 0.000 0.964 0.027
2.80 0.001 0.000 0.982 0.017 0.000 0.000 0.955 0.045 0.000 0.000 0.973 0.027

0.70 0.00 0.993 0.006 0.001 0.000 0.978 0.017 0.004 0.001 0.981 0.016 0.002 0.001
1.20 0.450 0.002 0.481 0.067 0.383 0.002 0.514 0.101 0.433 0.013 0.524 0.029
2.40 0.032 0.000 0.915 0.053 0.040 0.000 0.881 0.078 0.032 0.000 0.919 0.049
4.80 0.001 0.000 0.977 0.023 0.000 0.000 0.949 0.051 0.000 0.000 0.949 0.051

0.90 0.00 0.977 0.014 0.005 0.003 0.952 0.023 0.013 0.011 0.943 0.037 0.013 0.007
3.20 0.349 0.000 0.510 0.141 0.248 0.000 0.577 0.175 0.277 0.000 0.596 0.127
6.40 0.038 0.000 0.861 0.101 0.013 0.000 0.877 0.110 0.000 0.000 0.836 0.164
12.80 0.002 0.000 0.935 0.063 0.000 0.000 0.909 0.091 0.000 0.000 0.836 0.164

0.95 0.00 0.939 0.028 0.018 0.016 0.896 0.040 0.033 0.031 0.906 0.051 0.025 0.018
4.00 0.364 0.000 0.469 0.167 0.260 0.000 0.552 0.188 0.145 0.000 0.659 0.195
8.00 0.063 0.000 0.799 0.138 0.016 0.000 0.855 0.129 0.000 0.000 0.781 0.218
16.00 0.007 0.000 0.904 0.089 0.000 0.000 0.892 0.108 0.000 0.000 0.782 0.218

1.00 0.00 0.900 0.041 0.030 0.029 0.876 0.050 0.039 0.035 0.883 0.064 0.031 0.021
10.00 0.369 0.000 0.515 0.116 0.234 0.000 0.667 0.099 0.000 0.000 0.814 0.186
20.00 0.209 0.000 0.690 0.101 0.032 0.000 0.903 0.065 0.000 0.000 0.814 0.186
40.00 0.116 0.000 0.796 0.088 0.000 0.000 0.944 0.056 0.000 0.000 0.814 0.186
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Table 5. Power of ASW algorithm and BIC to detect exponential and logistic smooth transitions: T = 150

ESTR LSTR

φ γ ASWc BIC ASWt γ ASWc BIC ASWt

0.0 1.0 0.508 0.526 0.520 2.0 0.484 0.969 0.263
1.5 0.806 0.929 0.837 4.0 0.055 0.428 0.687
2.0 0.936 0.997 0.958 6.0 0.001 0.034 0.895

0.5 3.0 0.588 0.893 0.660 10.0 0.001 0.042 0.474
4.0 0.797 0.990 0.803 15.0 0.000 0.005 0.765
5.0 0.906 0.997 0.922 20.0 0.000 0.026 0.921

1.0 25.0 0.405 0.730 0.868 25.0 0.163 0.332 0.312
50.0 0.701 0.999 1.000 50.0 0.057 0.922 0.698
75.0 0.872 1.000 1.000 75.0 0.011 0.993 0.474

Note: ASWc and ASWt denote with-constant and with-trend ASW , respectively.

Table 6. Number of frequencies selected by with-constant MW and ASW algorithms
and BIC for volatility indices

Volatility index MW (5%) MW (10%) ASW (5%) ASW (10%) BIC

DJIA (VXD) 0 (0.92) 2 (0.76) 2 (0.76) 2 (0.76) 0 (0.92)
NASDAQ-100 (VXN) 0 (0.94) 2 (0.82) 2 (0.82) 2 (0.82) 0 (0.94)
S&P 500 (VIX) 0 (0.92) 2 (0.76) 2 (0.76) 2 (0.76) 2 (0.76)
EuroCurrency (EVZ) 1 (0.90) 1 (0.90) 1 (0.90) 3 (0.85) 0 (0.97)
S&P 100 (VXO) 2 (0.74) 2 (0.74) 2 (0.74) 2 (0.74) 2 (0.74)
FTSE 100 (VFTSE) 2 (0.81) 2 (0.81) 2 (0.81) 2 (0.81) 0 (0.95)

Note: Values of φ̂ are given in parentheses.
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(a) I(0) shocks, n = 1 (b) I(1) shocks, n = 1

(c) I(0) shocks, n = 2 (d) I(1) shocks, n = 2

(e) I(0) shocks, n = 3 (f) I(1) shocks, n = 3

Figure 1. Local asymptotic power of with-constant tests: MWn
0
: - - - , ASWn

0
: —–
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(a) φ = 0.00 (b) φ = 0.50

(c) φ = 0.70 (d) φ = 0.90

(e) φ = 0.95 (f) φ = 1.00

Figure 2. Finite sample power of with-constant tests: T = 150, n = 1; MWn
0
: - - - , ASWn

0
: —–
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DJIA (VXD) NASDAQ-100 (VXN)

S&P 500 (VIX) EuroCurrency (EVZ)

S&P 100 (VXO) FTSE 100 (VFTSE)

Figure 3. Nonlinear deterministic components detected in volatility indices:
Index: —– , Fitted deterministic: . . . , Detrended series: - - -
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