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ABSTRACT  

This paper studies the impact of a dispersive gain/loss material model on Parity-Time (PT) coupled 

microresonator cavity structures using the time-domain Transmission-Line Modelling method. A modal analysis 

is also performed to compare the modal composition in the dispersive and non-dispersive cases. Furthermore, a 

waveguide-to-waveguide coupler based on the coupled PT-resonant microresonators is analysed to see how the 

resulting modal profiles are manifested in the power transmitted between input/output ports.  

 

Keywords: parity-time, coupled microcavities, amplifier and coupler, Transmission Line Modelling (TLM) 

method.  

1. INTRODUCTION 

Photonic structures with balanced gain and loss that mimic the parity-time (PT) symmetric Hamiltonians in 

quantum field theory have been a subject of intense investigation due to their unique properties [1,2]. PT 

symmetric structures in photonics are constructed by requiring that the material refractive index profile satisfies 

𝑛(𝒓) = 𝑛∗(−𝒓) where 𝒓 denotes the position and ∗ denotes complex conjugate operator. In such a configuration, 

the real part of the refractive index is an even function whilst the imaginary part of the refractive index is an odd 

function of space. This condition requires the structure to be comprised of equal amounts of gain and loss. The 

main feature of PT-symmetric structures is the existence of a threshold point that describes the amount of modal 

gain and loss in the system. If the system has gain/loss below the threshold point the eigenvalues are real, whilst 

above the threshold point the eigenvalues form a  complex conjugate pair [1,3–6]. PT-symmetric photonic 

structures based on Bragg gratings, coupler waveguides, lattices and resonant cavities have been studied 

theoretically and experimentally and shown to exhibit directionally dependent properties, such as loss-induced 

unidirectional invisibility, simultaneous laser and coherent absorber modes and loss-induced lasing. A range of 

applications such as switching, logical-gate operation, laser and memory have been proposed based on the 

existence of the threshold and their directional dependent property [7–14].  

In this paper the eigenfrequencies of an isolated coupled PT-microcavity are analysed under the condition that 

the material is dispersive and that gain/loss model satisfies the Kramers-Kronig relations. The modelling is done 

using the numerical time-domain Transmission-Line Modelling (TLM) method. Furthermore, the analysis is 

extended to a practical scenario where PT-microcavities are used to couple energy between input/output 

waveguide channels.       

2. PARITY-TIME (PT) SYMMETRIC COUPLED CAVITIES  

 
Figure 1(A) Isolated PT-coupled resonant cavities and (B) PT-resonant coupler where PT-coupled resonant 

cavities are placed between the input and output waveguides.  
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Two configurations of PT-coupled resonant cavities that are investigated in this paper are shown in  Fig. 1. The 

isolated PT-resonant cavities are shown in Fig. 1(A). Microresonators 𝜇𝑅𝐺 and 𝜇𝑅𝐿 denote the gain and lossy 

resonator respectively. Both resonators have the same radius 𝑟 and are separated by a gap 𝑔. Figure 1(B) shows 

the coupled PT-microresonators placed between two passive waveguides with a waveguide to resonator 

separation of d. The waveguides have the same width 𝑤 and refractive index 𝑛 and the ports are denoted as 1-4. 

The background in both Figs. 1(A, B) is considered to be air. 

To model these structures, a time-domain numerical model namely the transmission-line modelling (TLM) 

method is used [15,16]. The TLM method is based on the analogy between the propagating electromagnetic 

fields and voltage impulses traveling on an interconnected mesh of transmission lines (TL). Successive 

repetitions of a scatter–propagate procedure provide an explicit and stable time stepping algorithm that mimics 

electromagnetic field behaviour to second-order accuracy in both time and space [15,16]. In this paper for the 

two-dimensional problem in Fig. 1 E-polarised waves are considered. The Lorentzian model for material 

properties is used to describe dispersive gain/loss model that satisfies the Kramers-Kronig relations as [17,18],  

 

𝜀(𝜔) = 𝜀∞ − 𝑗
𝜎0

2𝜔𝜀0

[
1

1 + 𝑗(𝜔 − 𝜔𝜎)𝜏
+

1

1 + 𝑗(𝜔 + 𝜔𝜎)𝜏
], (1) 

 

where 𝜀∞ denotes the dielectric constant at infinity, 𝜔𝜎  denotes the atomic transitional angular frequency, 𝜏 is 

the atomic relaxation time parameter and 𝜎0 denotes the peak conductivity that is set by the pumping level at 𝜔𝜎 . 

The time dependent field component has been assumed in the form of exp(𝑗𝜔𝑡), so that 𝜎0 > 0 denotes loss 

while 𝜎0 < 0 denotes gain. The frequency dependent complex refractive index is expressed as √𝜀(𝜔) and the 

gain-loss parameter is defined by the imaginary part of the refractive index as 𝛼 = 𝜔𝑛′′. The implementation of 

the dispersive gain/loss model in the TLM is done using the bilinear-transformation technique, as described 

in [16], and has also previously been used to model PT-Bragg gratings as in [13].  

3. MODAL ANALYSIS OF PT-COUPLED RESONANT CAVITIES 

In this section, the modal composition of the isolated PT-coupled resonant cavities depicted in Fig. 1(A) with a 

dielectric constant of 𝜀∞ = 12.25 and an air (𝑛 = 1) background material is considered. The coupled resonators 

have a radius 𝑟 = 0.54 μm and are separated by 𝑔 = 0.15μm. The cavities are operated at a high Q-factor mode 

of (10,1) where (m,n) denotes the azimuthal and radial mode order respectively. The resonant frequency of the 

high Q-factor mode is 𝑓0
(10,1)

= 336.81 THz with the Q-factor 𝑄 = 1.05 × 107. The structure is discretised 

using a uniform square mesh of size Δ𝑥 = 2.5 nm. The excitation is a Gaussian dipole with a FWHM of 250 fs 

modulated at 𝑓0
(10,1)

 inside the gain resonator and the simulation is run for total time of 2.3ps. A set of time-

domain simulation data is recorded by a point monitor located in the lossy resonator. Discrete spectra are 

obtained from the time-domain simulation data by using the “Harminv” program, an implementation of the filter 

diagonalization method [19] available at [20].    

 
Figure 2(A) the real part and (B) the imaginary part of the eigenfrequencies of the isolated PT-coupled resonant 

cavities as a function of gain/loss parameter 𝛼0 = 𝜔0𝑛′′.  

  

Figure 2 depicts the eigenfrequencies of the isolated PT-coupled resonant cavities as a function of gain-loss 

parameter 𝛼0 = 𝜔0𝑛′′ for both dispersive and non-dispersive gain/loss material models. The gain and loss is 

assumed to be tuned at the resonant frequency of a single resonator, i.e. 𝜔𝜎 = 2𝜋𝑓0
(10,1)

 with the atomic 
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relaxation time of 𝜏 = 0.1ps. Figure 2(A) shows that the real parts of the eigenfrequencies are beating, are 

centred at 𝑓0
(10,1)

, and coalesce at the threshold point. After the threshold point, the real part of the 

eigenfrequency is no longer beating but remains constant at 𝑓0
(10,1)

. Note that the agreement is very good 

between the PT resonators with dispersive and ideal gain/loss material model both before and after the threshold, 

with only minor discrepancies around the threshold point. The imaginary parts of the eigenfrequenices for the 

cases of the dispersive and non-dispersive gain/loss material models are plotted in Fig. 2(B) for different 

gain/loss parameters. It can be seen that in the absence of gain/loss, 𝛼0 = 0, the imaginary parts of the 

eigenfrequencies are almost zero, as the high Q-factor implies a low radiation loss. For the case of the non-

dispersive gain/loss model, the imaginary parts of the eigenfrequencies remain constant at Im(𝑓) ≈ 0, and split 

at the threshold point forming a complex conjugate pair. Meanwhile for the case of the dispersive gain/loss 

model, as the gain/loss parameter increases the imaginary part of the eigenfrequencies increases, i.e., the 

eigenvalues are becoming more lossy below the threshold point. At the threshold point the imaginary part splits 

asymmetrically meaning that above the threshold, and in the presence of dispersion, eigenvalues are not a 

complex conjugate pair. Similar modal behaviour was also noted in a recent publication [18] in which the 

resonant frequencies of the coupled PT-microcavities were calculated analytically by solving Green’s integral 

equation. 

4. PT-RESONANT DIRECTIONAL COUPLER 

 

 
Figure 3. Transmittance of PT-coupled resonant cavities as an optical circuit component. (A) the bar 

transmittance 𝑇12; (B) the cross transmittance 𝑇14 when port 1 is excited; (C) the cross transmittance 𝑇41; (D) 

the bar transmittance 𝑇43 when port 4 is excited;     

 

This section investigates the real-time behaviour of the PT-microresonators in the context of the coupler. The 

coupled PT-resonators have the radius 𝑟 = 0.54μm and are separated by a gap 𝑔 = 0.16μm. Two passive 

waveguides of width 𝑤 = 0.15μm, separated by  𝑑 = 0.16μm from a resonator and having a refractive index 

𝑛 = 3.5 are introduced as a way of coupling input signal to cavities. Two different excitations ports are 

considered, i.e. port 1 and port 4. In both cases, the waveguide is operated as a single mode at 𝑓0
(10,1)

 with a 

modal effective index of 𝑛𝑒𝑓𝑓 = 2.966. In the case of port 1 excitation, two different transmissions occur, 
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namely direct transmission 𝑇12 and cross transmission 𝑇14. On the other hand, if port 4 is excited, the direct 

transmission is 𝑇43 and the cross transmission is 𝑇41. 

The direct transmittance for port 1 excitation, 𝑇12 is displayed in Fig. 3(A) in a log scale as a function of 

gain/loss parameter 𝛼0. Figure 3(A) shows very low 𝑇12transmittance at the frequencies corresponding to the 

beating frequencies of the coupled PT-resonant cavities. As the gain/loss parameter increases this minimum 

transmittance coalesce at the threshold point creating a no transmission point at the 𝑓0
(10,1)

. The cross 

transmittance 𝑇14 depicted in Fig 3(B), shows that in the absence of gain/loss 𝛼0 = 0, the transmitted spectra are 

related to the beating frequencies between the resonators. As the gain/loss increases this transmitted signal 

coalesces at the threshold point. A further increase in the gain/loss parameter causes lasing to occur at ports 2 

and 4.   

    Figures 3(C,D)  show the case when port 4 is excited, with the cross transmittance 𝑇41 shown in Fig.3(C) 

and the direct transmittance 𝑇43 shown in Fig.3(D). In the case of cross transmittance 𝑇41 only the spectra related 

to the beating frequencies are transmitted across from port 4 to port 1. As the gain/loss increases these 

transmitted spectra coalesce at the threshold point and lasing is observed above the threshold point. The direct 

transmittance of 𝑇43 depicted in Fig. 3(D)  shows that in the absence of gain/loss 𝛼0 = 0, there is no transmission 

on the two frequencies related to the beating frequencies of the coupled resonators. Further increase of gain/loss 

causes an amplification of transmission of signal frequencies in the range between these two frequencies. It is 

important to note the fact that 𝑇14 = 𝑇41 , i.e. that Lorentz reciprocity [21] is preserved in PT-coupled resonators.     

5. CONCLUSION 

In this paper, we show that PT-coupled resonant cavities with a dispersive material gain/loss model preserves the 

threshold point found in ideal non-dispersive PT resonant structures. However, it is found that in the case of 

dispersive materials the eigenfrequencies are not a complex conjugate pair but are skewed more towards the 

lossy mode. Furthermore, the transmission response of the PT resonant directional coupler is analysed for 

different amounts of gain/loss in the model. It is shown that, depending on the direction of excitation, the coupler 

exhibits an asymmetric response in bar transmission whilst the cross transmission is preserved.   
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