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We present our study on cosmic opacity, which relates to changes in photon number as photons
travel from the source to the observer. Cosmic opacity may be caused by absorption/scattering due
to matter in the universe, or by extragalactic magnetic fields that can turn photons into unobserved
particles (e.g. light axions, chameleons, gravitons, Kaluza-Klein modes), and it is crucial to cor-
rectly interpret astronomical photometric measurements like type Ia supernovae observations. On
the other hand, the expansion rate at different epochs, i.e. the observational Hubble parameter data
H(z), are obtained from differential ageing of passively evolving galaxies or from baryon acoustic
oscillations and thus are not affected by cosmic opacity. In this work, we first construct opacity-free
luminosity distances from H(z) determinations, taking correlations between different redshifts into
consideration for our error analysis. Moreover, we let the light-curve fitting parameters, accounting
for distance estimation in type Ia supernovae observations, free to ensure that our analysis is authen-
tically cosmological-model-independent and gives a robust result. Any non-zero residuals between
these two kinds of luminosity distances can be deemed as an indication of the existence of cosmic
opacity. While a transparent universe is currently consistent with the data, our results show that
strong constraints on opacity (and consequently on physical mechanisms that could cause it) can be
obtained in a cosmological-model-independent fashion.

PACS numbers: 98.80.-k, 98.80.Es

I. INTRODUCTION

It was the unexpected dimming of type Ia supernovae
(SNe Ia) that revealed the accelerated expansion of the
universe[1, 2]. Although the existence of cosmic accel-
eration has been confirmed by several other independent
probes, initially there was some debate on the interpreta-
tion in terms of an underlying physical mechanism for the
observed SNe Ia dimming. For example, soon after[1, 2],
a cosmological distribution of dust was proposed as an al-
ternative explanation for the obscuration of distant SNe
Ia[3, 4]. Furthermore, cosmic opacity may be caused by
other exotic mechanisms, where extragalactic magnetic
fields turn photons into light axions[5–7], gravitons[8],
Kaluza-Klein modes associated with extra-dimensions[9],
or a chameleon field[10, 11], thus violating photon num-
ber conservation. Indeed, the extinction effects of SNe
Ia due to dust in their host galaxies and the Milky Way
have been well-modeled and they pose no threat to the
conclusion of cosmic acceleration. However, exotic mech-
anisms for general cosmic opacity and its influence on as-
tronomical photometric measurements are still not fully
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understood. Therefore, the question of whether cosmic
opacity contributes to the dimming of distant SNe Ia re-
mains open. In other words, can cosmic opacity mimic
the behavior of dark energy to make the universe look
like accelerating at a different rate than it actually is?
At the very least, this issue is important for reliable cos-
mological parameter determination in the era of preci-
sion cosmology, as opacity could be responsible for part
of the observed dimming of standard candles. Therefore,
as cosmological data precision improves, it is necessary
to better quantify the transparency of the universe and
try to distinguish any relevant dimming effects.

Any kind of photon number non-conservation can
result in deviations from the distance-duality relation
(DDR)[12]: DL = DA(1+z)2, where z is the redshift, and
DL, DA are the luminosity distance and angular diam-
eter distance, respectively. This relation holds on three
conditions[13]: (1)space-time in our universe is described
by Riemannian geometry; (2)photons travel along null
geodesics; (3)the number of photons between the source
and the observer is conserved. The first two requirements
are fundamental and have strong physical bases. In con-
trast, the violation of the last one is certainly possible
in a wide range of well-motivated models. Recently, a
great deal of effort has been devoted in checking the va-
lidity of the DDR with astronomical observations[14–19].
Meanwhile, there were also many studies that focused on
testing cosmic opacity under the assumption that any
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possible deviations from the DDR originate from non-
conservation of the number of photons between emission
at the source and detection[6, 20, 27–30]. There are two
general ways to carry out these studies. The first is to
confront the luminosity distances derived from SN Ia ob-
servations with the directly measured angular diameter
distances of galaxy clusters or those inferred from baryon
acoustic oscillation observations[20–27]. On the other
hand, in Refs. [24, 28–30], distances derived from other
opacity-independent probes, e.g. observational determi-
nations of the Hubble parameter H(z) based on differ-
ential ageing of passively evolving galaxies (also dubbed
“cosmic chronometers”) [31], were proposed to test or
even quantify cosmic opacity by comparing these dis-
tances with those from SN Ia observations.

However, it is noted that the luminosity distances of
SNe Ia used in previous analyses were derived from Hub-
ble diagrams where the light-curve fitting parameters,
accounting for distance estimation of SNe Ia, were deter-
mined from global fitting in the context of concordance
cosmology and in this sense were cosmological-model-
dependent [33, 34]. What is more, in Refs. [28, 29], the
authors constructed luminosity distances from H(z) data
but did not take the correlations between different red-
shifts into account. This treatment would lead to in-
accurate estimations of the errors. The two defects dis-
cussed above may give results that are both biased by the
assumed model of cosmology and statistically incorrect.
Here, in order to achieve a reasonable and compelling
test for cosmic opacity, we pay attention to these issues
by using the latest JLA SNe Ia (joint light-curve analysis
of the SDSS-II and SNLS) [35–37] and taking the corre-
lations between different redshifts into consideration in
our error analysis.

This paper is organized as follows: In Section II, we
introduce the data used in our work, including SN Ia
samples and H(z) data. In Section III, we discuss our
improved method to constrain cosmic opacity. In Sec-
tion IV, we present our results and analysis. Finally, we
summarize our work in Section V.

II. DATA

To achieve a cosmological-model-independent analysis,
we need to select the observational data very carefully to
avoid cases where data have been obtained under a spe-
cific cosmological model. Cosmological studies can suffer
from the so-called “circularity problem”, i.e., the use of
data from a certain cosmological model to constrain an-
other one, which can often lead to biased or incorrect
conclusions. We now introduce the SN Ia observations
and Hubble parameter data that are independent of cos-
mological model.

A. SN Ia observations

We adopt a joint light-curve analysis sample of SN
Ia observations (JLA) obtained by the SDSS-II and
SNLS collaborations[37]. It contains several low-redshift
samples (z<0.1), all three seasons from the SDSS-II
(0.05<z<0.4), and three years from SNLS (0.2<z<1), to-
tally 740 well-measured events.
In theory, the explosion of SN Ia has a universal phys-

ical basis, as the collapse is triggered when the white
dwarf achieves the Chandrasekhar limit. Therefore, the
peak absolute magnitude Mmax is constant. Using a
Cepheid variable at the same redshift, one can know its
value and the modulus or the luminosity distance is the
difference between the absolute and the observed magni-
tude mmax:

µ = 5 logDL(Mpc) + 25 = mmax −Mmax. (2.1)

In reality, there exits a variation of Mmax related to
the shape and color of the light curve, and the mmax

is affected by extinction. Therefore, a modified version
of Eq. (2.1) was proposed in [45] known as the SALT
method:

µB(α, β,MB) = mB −MB + αx− βc, (2.2)

where mB is the rest-frame peak magnitude in the B
band, x is the stretch determined by the shape of the SN
Ia light curve and c is the color measurement[44]. Note
that mB, x, c are all derived from the observed light curve
and are thus independent of cosmological model. α and
β are nuisance parameters that characterize the stretch-
luminosity and color-luminosity relationships, and are
related to the well-known broader-brighter and bluer-
brighter relationships. MB is also a nuisance parameter
standing for the B band absolute magnitude.
Releases of SN Ia observations are usually presented as

distance modulus µ used for cosmological study. How-
ever, this depends on the cosmological model and the
value of H0. In JLA samples[37], the authors used flat
ΛCDM model as the standard to minimize the χ2:

χ2(α, β,MB,ΩM , H0; z) =

∑

[

µB(α, β,MB; z)− µΛCDM (ΩM , H0; z)

σtotal

]2 (2.3)

where H0 = 70 kms−1Mpc−1 was fixed. They obtained
(α, β,MB)=(0.141± 0.006, 3.101± 0.075,−19.05± 0.02)
including systematic errors and (0.140 ± 0.006, 3.139 ±

0.072,−19.04± 0.01) for statistical errors only.
Since it is obvious that the distance modulus depends

on the cosmological model, we find all previous studies on
cosmic opacity are not cosmological-model-independent.
However, a quantification of these effects on biasing and
affecting the uncertainties of opacity constraints is cur-
rently lacking. In this work, we directly take the observa-
tional quantities (mB , x, c) and their errors (σmB

, σx, σc)
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as our supernova data in our analysis. We shall treat the
nuisance parameters (α, β,MB) as additional parame-
ters, uniformly distributed over appropriate prior ranges,
which can be marginalized over in a Bayesian fashion,
thus resulting in a cosmological-model-independent con-
straint on cosmic opacity.

B. Hubble parameter data

The use of observational H(z) data has successfully
been an independent and powerful tool for exploring the
evolution of the universe and the role of dark energy in
driving cosmic acceleration. The main advantage is that
H(z) data contain direct information about the expan-
sion of the universe at different redshifts, whereas other
methods can only get cosmic distances in the form of an
integral of H(z) over redshift, losing the fine structure.
There are mainly two ways to obtain H(z) data. The
first one is known as “differential ageing method” (DA),
based on differential ages of red-envelope galaxies con-
sisting of uniform stellar populations. Subtracting the
spectra between galaxies at nearby redshifts and fitting
stellar population models returns a relative age, which,
given that the stellar populations in those galaxies evolve
passively, corresponds to a relative cosmic ageing. H(z)
is given by the following relationship:

H(z) = −
1

1 + z

dz

dt
. (2.4)

In this method, we assume cosmic opacity is not strongly
wavelength-dependent in the (relatively narrow) optical
band and thus H(z) data are opacity-free. A discussion
on the relation between wavelength and cosmic opacity
can be found in Li et. al.[27]. In this work, we adopt 19
H(z) data points obtained from the DA method in [38–
41] (see also [42]), which we show in Table I. We have
excluded 4 data points that have large differences in red-
shift (∆z > 0.005) from the nearest observed SNe Ia.
This cutoff is chosen for two reasons: firstly, it is small
enough compared to the observational errors and can be
ignored, therefore it is widely used in the literature; sec-
ondly, it allows us to include most of the available H(z)
data points, see Fig. 1.
The second way to get H(z) is from from baryonic

acoustic oscillations (BAO) as a standard ruler in the
radial direction, known as the “Peak Method”. This is
completely free of cosmic opacity since it is independent
of the measured flux. However, we emphasize that this
method is obviously based on the assumed cosmological

model, and should therefore be abandoned in our work
where we endeavour to conduct a cosmological-model-
independent analysis.

III. METHODOLOGY

Based on previous works[28, 29], we introduce an im-
proved method to get luminosity distances that are not
affected by cosmic opacity and are also independent of
any specific cosmological model. We consider construct-
ing 19 luminosity distances DH

L (zn), n = 1, 2...19, from
the H(z) data at the corresponding redshifts by:

DH
L (zn) = c(1 + zn)

∫ zn

0

dz′

H(z′)
≈

c(1 + zn)

2

n
∑

i=1

Bi,

(3.1)
where

Bi = (zi − zi−1)

[

1

H(zi)
+

1

H(zi−1)

]

(3.2)

is the ith bin that contributes to the integration, H0 =
H(z0 = 0) = 73.8± 2.4 km/s/Mpc[43] is the Hubble con-
stant, and c is the speed of light. The systematic error
related to the integral approximation has been shown to
be much smaller than the observational one[29].
It is very important to note that these constructed lu-

minosity distances are correlated with each other since
they have been obtained by an accumulating process
over the bins Bi. Therefore, we have to calculate the
19 × 19 covariance matrix for DH

L (zn) rather than 19
independent errors[28, 29]. Also, even for a specific lu-
minosity distance, previous investigations have used an
inappropriate error estimate not considering the correla-
tions between adjacent bins. In our analysis, we strictly
follow the definition of covariance, i.e., Cov(X,Y ) =
E(XY ) − E(X)E(Y ), where X,Y are arbitrary vari-
ables, and E stands for the mathematical expectation.
We only take the original H(z) data points as indepen-

dent measurements. The covariance matrix C
H for the

constructed luminosity distances can be expressed as:

CH
mn := Cov

[

DH
L (zm), DH

L (zn)
]

=

c2(1 + zm)(1 + zn)

4



E(

m
∑

i=1

n
∑

j=1

BiBj)− E(

m
∑

i=1

Bi)E(

n
∑

j=1

Bj)



 ,

(3.3)

where the key is to calculate E(BiBj). Since i, j are
symmetric, we give its expression for i ≤ j:
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E(BiBj) =



















(zi − zi−1)
2
[

1
H(zi)2

+ 1
H(zi−1)2

+ σH(zi)
2

H(zi)4
+ σH (zi−1)

2

H(zi−1)4
+ 2

H(zi)H(zi−1)

]

, i=j;

(zi − zi−1)(zi+1 − zi)
[

1
H(zi)H(zi+1)

+ 1
H(zi)2

+ σH (zi)
2

H(zi)4
+ 1

H(zi−1)H(zi+1)
+ 1

H(zi−1)H(zi)

]

, i+1=j;

(zi − zi−1)(zj − zj−1)
[

1
H(zi)H(zj)

+ 1
H(zi)H(zj−1)

+ 1
H(zi−1)H(zj)

+ 1
H(zi−1)H(zj−1)

]

, i+1<j.

(3.4)
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FIG. 1: ∆z distribution with a cutoff ∆z < 0.005. ∆z in-
creases with z since there are less observed SNe at larger red-
shift.

The supernova observations are affected by cosmic
opacity through an optical depth:

DS
L,B(z) = 10µB(α,β,MB;z)/5−5 = DS

L(z)e
τ(z)/2, (3.5)

where DS
L,B is the observed luminosity distance from the

B band and DS
L stands for the true luminosity corre-

sponding to SN Ia. We parameterize the optical depth
τ(z) as:

τ(z) = 2ǫz, (3.6)

since it must return to 0 for z = 0 and, when z is small,
the Taylor Expansion should work. Other parameteriza-
tions should give similar results.
In order to compare the constructed luminosity dis-

tance from H(z) data with that from SN Ia observa-
tions at the same redshift, we follow Holanda et. al.
2010[16] and Li et. al. 2011[17], i.e., we find the near-
est redshift to H(z) data from SNe Ia. We summarize
the differences between nearest redshifts in Table I, ex-
cluding H(z) at z = 1.037, 1.43, 1.53, 1.75, which have
redshift differences ∆z = 0.0082, 0.131, 0.231, 0.451 that
are deemed too large according to the criterion described
above.
We now give the statistic for constraining cosmic opac-

ity paremetrized by ǫ. We use χ2:

χ2 = ∆P
T
C

−1∆P, (3.7)

where ∆P(α, β,MB, ǫ) is the difference between the con-
structed luminosity distances DH

L from the H(z) data
and the true luminosity distances DS

L derived from Eq.
(3.5) from the SN Ia data:

∆P =











DS
L(z1)−DH

L (z1)

DS
L(z2)−DH

L (z2)

...

DS
L(z19)−DH

L (z19)











. (3.8)

The covariance matrix C consists of CH from H(z) and
the errors related to SN Ia observations DS

L. The for-
mer considers the errors of the constructed luminosity
distances and their correlations, while the latter comes
from the observational errors of SNe Ia only:

C = C
H +C

S , (3.9)

C
S(MB, α, β, ǫ) is the covariance matrix for SNe Ia and

only the diagonal elements for statistical uncertainties are
considered since only 19 SNe Ia of 740 events are selected
to match the H(z) data,

CS
ii = σ2

DS
L
(zi) =

[

ln 10

5
DS

L(zi)

]2

σ2
µS
L
(zi), (3.10)

with

σ2
µS
L
(zi) = σ2

µB
(zi) = σ2

mB
(zi) + α2σ2

x(zi) + β2σ2
c (zi).

(3.11)
The likelihood distribution L(α, β,MB, ǫ) ∝ exp(−χ2/2)
and we consider uniform distributions (α =
[−1.0, 1.0], β = [−1.0, 10.0],MB = [−21.0,−17.0], ǫ =
[−1.5, 1.5]) as our parameter priors since we can not
explore infinite ranges. We use PyMC1, a python
module that implements Bayesian statistical models
and fitting algorithms, including Markov chain Monte
Carlo (MCMC), to generate sample points of the
probability distribution. Then, we apply a public pack-
age “triangle.py” in GITHUB2 to plot our constraint
contours.

1 http://github.com/pymc-devs/pymc
2 http://github.com/dfm/triangle.py
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z H(km · s−1
·Mpc−1) σH DH

L (Mpc) ∆z mB σmB
x σx c σc

0.07 69 19.6 315 0.00015 18.44505 0.14638 -0.43858 0.29398 0.01613 0.05654

0.1 69 12 467 0.00264 19.20614 0.11332 1.41904 0.14596 -0.02329 0.02300

0.12 68.6 26.2 574 0.00033 19.57897 0.11217 -0.01434 0.12814 -0.06787 0.02216

0.17 83 8 833 0.00028 20.13472 0.11204 0.86017 0.20045 -0.08973 0.02323

0.179 75 4 880 0.00035 20.35933 0.11332 -0.16205 0.20785 -0.10021 0.02610

0.199 75 5 990 0.00020 20.51988 0.12426 -0.44361 0.71455 -0.07573 0.04594

0.2 72.9 29.6 996 0.00041 20.84984 0.11521 1.11501 0.30976 0.01769 0.03302

0.27 77 14 1410 0.00044 21.67852 0.11868 -1.94823 0.77070 -0.06174 0.04803

0.28 88.8 36.6 1468 0.00048 21.34961 0.12190 0.69425 0.46152 -0.03017 0.04276

0.352 83 14 1891 0.00044 22.68491 0.08635 -0.67440 0.16430 0.03745 0.02466

0.4 95 17 2186 0.00049 22.58735 0.08755 -0.72529 0.12221 -0.00466 0.02591

0.48 97 62 2681 0.00057 22.94876 0.08805 -0.20702 0.12623 -0.02917 0.02490

0.593 104 13 3423 0.00117 23.38618 0.09044 1.58102 0.17420 0.02252 0.03380

0.68 92 8 4059 0.00194 23.49942 0.09416 0.54088 0.25811 -0.15070 0.04979

0.781 105 12 4854 0.00441 24.39777 0.09837 0.13522 0.28653 0.09926 0.07032

0.875 125 17 5573 0.00285 24.42659 0.11917 -0.74262 0.58221 -0.19630 0.05829

0.88 90 40 5615 0.00203 24.32923 0.10310 1.74240 0.43591 -0.11251 0.06032

0.9 117 23 5787 0.00174 24.40844 0.11134 0.90217 0.38881 -0.15435 0.05935

1.3 168 17 8845 0.00089 25.69123 0.12806 0.66432 0.35756 0.00990 0.03686

TABLE I: 19 observational Hubble parameter data from “differential age” method. Since JLA samples consist of much more
data within z ∼ 1, the redshift differences of the nearest SNe Ia to H(z) data are so small ∼ 10−4 that they can be neglected.
We also show the corresponding constructed luminosity distances from H(z) and SN Ia data at the corresponding redshifts
from observed light curves: mB, x, c and their errors.

IV. RESULTS AND ANALYSIS

Our main results are presented in Fig. 2. We give the
corner plots for (ǫ, α, β,MB) with 1-D distributions for
each parameter and 2-D constraints for combinations of
any two parameters. The inner and outer contours stand
for 1σ and 2σ ranges, respectively. We also summarize
individual results numerically in Table. II.

Since the output of MCMC is a series of points for
each parameter and the probability distribution function
(PDF) is non-Gaussian, we adopt two kinds of statistics
to calculate our results and corresponding errors. The
first one is as follows: we take the value corresponding
to the densest position of the distribution as the best-fit
value, then find two values on both sides of it that have
the same density and contain 68.3% of the distribution as
1σ lower and upper limits, respectively. 2σ corresponds
to 95.4%. We refer to this as “BEST” statistics. More-
over, we consider the mean value with errors calculated as
follows: find the 68.3%/2 area for both sides of the mean
value, corresponding to the lower and upper limits. We
call this “MEAN” statistics.

From the figure, one can easily see that ǫ = 0 is located
near the center of our contours implying a transparent
universe is favoured by the observational data. For the
SN Ia nuisance parameters (α, β,MB), we compare our
results with those of Betoule et. al. 2014[37], where
(α, β,MB)=(0.141± 0.006, 3.101± 0.075,−19.05± 0.02)

FIG. 2: The 1-D and 2-D marginalized distributions and 1σ
and 2σ constraint contours for cosmic opacity ǫ and SN Ia
nuisance parameters (α, β,MB), respectively. The results are
from MCMC sampling.
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including systematic errors and (0.140 ± 0.006, 3.139 ±

0.072,−19.04± 0.01) for statistical errors only. We find
they are sightly different but consistent with each other
within 1σ. There are three distinct aspects contribut-
ing to this small difference: firstly, we only take 19 data
points while Betoule et. al. 2014 used the whole JLA
sample; secondly, we have considered the impact of cos-
mic opacity which is degenerate with MB, as can be seen
from the (ǫ,MB) plane constraint in Fig. 2. Therefore, a
positive cosmic opacity will increase the intrinsic bright-
ness such thatMB is slightly smaller than that in Betoule
et. al. 2014; lastly, we use a different standard to calcu-
late the luminosity distance of Supernovae.

Further discussion is in order regarding our difference
in standards for the SN analysis. Since Ia supernovae do
not by themselves give luminosity distances, one can use
either ΛCDM or H(z) to calibrate the intrinsic super-
nova brightness. The ΛCDM method has been applied
widely. Using χ2 statistics, it compares µ(α, β,M) with
µΛCDM (ΩM ) to find the best-fit for (α, β,M,ΩM ), thus
yielding the luminosity distance DL(α, β,M). In this
paper, we adopt constructed luminosity distances DH

L

from H(z) data as the standard, instead of the model
DΛCDM

L (ΩM ), and so we do not have the parameter ΩM

in the standard itself. To demonstrate our method, we
present Fig. 3, where the horizontal axis stands for the
best-fit luminosity distances DJLA

L directly from Betoule
et. al. 2014 without considering cosmic opacity, and the
vertical axis stands for the derived best-fit luminosity
distances DS

L in this paper: we first get the best-fits of
(ǫ, α, β,M), then use Eq. (3.5) to get the luminosity dis-
tances. The figure shows the consistency between these,
especially at low redshifts where both the selection of
standards and cosmic opacity should have little impact.
We also notice DS

L is slightly smaller than DJLA
L at large

redshift. This is due to a positive best-fit for ǫ that makes
the observed image dimmer. We also compare the de-
rived luminosity distances DS

L with the constructed ones
DH

L from the H(z) data in Fig. 4 to show the relevant
correction of the fitting.

One of the key points in this paper was to take into
account in our analysis the correlations between con-
structed luminosity distances from H(z) data. To show
how important this is, we repeat our analysis for the
case where no correlations are considered. The result-
ing constraint is ǫ = 0.044+0.078

−0.080(1σ)
+0.159
−0.167(2σ) for the

BEST statistics and ǫ = 0.040+0.077
−0.081(1σ)

+0.147
−0.189(2σ) for

the MEAN statistics. Therefore, the impact of these cor-
relations on the 1σ error is ∼ 0.035 and cannot be ig-
nored. Also, with the same data, we recalculate the con-
straint on ǫ using a method similar to previous studies,
i.e., not taking into account these correlations and also
keeping supernova parameters (α, β,M) fixed. The result
is ǫ = 0.018± 0.044(1σ)± 0.087(2σ), corresponding to a
further reduction in the 1σ error by ∼ 0.035. Therefore,
our two improvements in the analysis presented in this
paper have an obvious influence on assessing the uncer-
tainties on cosmic opacity. Comparing to other studies in

the literature, although different datasets have been used
and the details in methodologies vary, previous studies
(which ignored the two effects we have considered here)
generally obtained a smaller limit for ǫ compared to our
1σ error ∼ 0.114. For example, in Holanda et. al. 2014
and Liao et. al. 2013, the corresponding 1σ error was
found to be in the range ∼(0.039,0.075). Apart from
the slightly different central value of ǫ, we have demon-
strated that considering these correlations and allowing
supernova parameters to vary are both very important
for a reliable estimation of the constraint limits.

We now discuss how our model-independent con-
straints compare to previous model-dependent bounds
on cosmic opacity and their implications. The strongest
model-dependent constraints on ǫ coming from distance
measure comparison (DL vs H(z)) in the context of the
DDR can be found in [6, 32] and are at the level of
ǫ < 0.04 at 2σ. These have been derived using the
Union2.1 SN compilation for DL and a collection of cos-
mic chronometer and BAO determinations of H(z), so
weak model dependences can be found both in the DL

and H(z) data used, as discussed above. Our corre-
sponding constraint derived in this paper is at the level
of ǫ < 0.26 − 0.29 (2σ), that is a factor of 6-7 weaker,
but it is not dependent on assumptions on the cosmo-
logical model3. From that point of view our constraint
is remarkably strong, being of nearly the same order of
magnitude as that of [6, 32] but free of cosmological
model dependences. In fact, our 1σ limits are largely
determined by the errors on the observed luminosity dis-
tances (of which we only used 19 out of the available 740
data-points), so our model-independent constraints could
be further strengthened by utilising more of the available
datapoints. This could be done by binning the data in
bins centred around the 19 redshifts of our H(z) data, or
by interpolation. However, both of these could introduce
systematic biases, so in this paper we have presented the
cleanest and most conservative way of doing the analysis
avoiding model-dependences and such systematic biases.
We have thus demonstrated that strong constraints on
opacity can still be obtained even if we use a small frac-
tion of the available SN data.

Finally, we consider the implications of these con-
straints for fundamental mechanisms that would generi-
cally give rise to cosmic opacity. A typical microphysi-

3 In particular, as explained above, we have not used any grid in
cosmological parameters but obtained constraints on ǫ through
direct comparison of distance measure determinations that have
been calibrated without introducing any particular cosmological
model. Strictly speaking our constraint has been derived assum-
ing a flat geometry in obtaining luminosity distances from H(z)
data, so in some sense we have specified the cosmological param-
eter Ωk. However, the independent determination of the flatness
of our universe at the percent level, implies that corrections com-
ing from deviations from flatness are of the order of Ωk/6 and
are thus at least one order of magnitude smaller than the errors
considered here.
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BEST MEAN

ǫ 0.070+0.107

−0.121(1σ)
+0.218

−0.253(2σ) 0.056+0.108

−0.122(1σ)
+0.198

−0.327(2σ)

α 0.125+0.063

−0.056(1σ)
+0.135

−0.114(2σ) 0.132+0.064

−0.055(1σ)
+0.177

−0.103(2σ)

β 3.266+1.361

−0.992(1σ)
+3.669

−1.724(2σ) 3.900+2.222

−1.015(1σ)
+6.100

−1.486(2σ)

MB −19.132+0.265

−0.220(1σ)
+0.53

−0.438(2σ) −19.094+0.260

−0.227(1σ)
+0.640

−0.410(2σ)

TABLE II: Best-fit values and mean values with 1σ and 2σ
errors for cosmic opacity ǫ and SN Ia nuisance parameters
(α, β,MB), respectively.

cal source of opacity would be a two-photon interaction
with an unobserved particle species, which would allow
astrophysical photons to decay into that species in the
presence of intergalactic magnetic fields. Such interac-
tions are typically suppressed by a high-energy physics
scale, say M , so that the photon decay probability per
unit length is small, but integrated over cosmological dis-
tances the effect can be significant, leading to observable
SN dimming that could be confused with dimming due to
cosmic acceleration. The best motivated example of this
type is photon-axion mixing. In this case, constraints on
the photon decay probability per Mpc have been obtained
in [6] and are at the level of PMpc ≃ 4 × 10−5. From
our discussion, we may expect a cosmological-model-
independent constraint on PMpc that would be a factor
of few weaker and indeed a simple computation gives:

PMpc ≃ 2.5× 10−4 (4.1)

Subject to assumptions about the astrophysics, this
can be translated into a bound on the fundamental axion-
photon coupling. Since this coupling scales with the
square root of PMpc, the resulting constraint on the cou-
pling scale M is in fact only a factor of 2-3 weaker than
in [6] and is of the order of 1010 GeV, assuming mag-
netic fields of 1 nG coherent over domains of 1 Mpc. For
chameleons, these constraints are slightly weaker as one
must marginalise over an additional parameter of order
unity describing how chameleons interact with matter.
The effect of our analysis in this case is again to weaken
the constraint on PMpc by a factor of few but extend its
validity to any cosmological model as it is free of cos-
mological biases. Finally, for alternative mixing mech-
anisms (e.g. gravitons and Kaluza-Klein modes) men-
tioned in the introduction it is harder to make a quanti-
tative connection between observational bounds on ǫ and
constraints on fundamental parameters, as these effects
are generally weaker and depend strongly on more model
parameters, e.g. on compactification scales in the case of
Kaluza-Klein modes [9]. From our discussion it is clear
that our analysis would again imply a photon decay prob-
ability per Mpc of the order ∼ 10−4. The implications of
this constraint for more fundamental parameters could
be examined in a model by model basis.

0 2000 4000 6000 8000 10000
D JLA
L /Mpc

0

2000

4000

6000

8000

10000

D
S L
/M

p
c

FIG. 3: Luminosity distances (DJLA

L ) directly from Betoule
et. al. 2014 versus DS

L. For the former, we take the best-fit
parameters (α, β,MB) in Betoule et. al. 2014 in Eq. 2.2; for
the latter, we take (ǫ, α, β,MB) corresponding to the mini-
mum χ2 in Eq. 3.5.
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FIG. 4: Luminosity distances constructed from H(z) data and
derived from Supernova, i.e., DH

L and DS

L. They are consis-
tent with each other well, corresponding to the minimum χ2.

V. SUMMARY

In this paper we have presented a clean method for
constraining cosmic opacity using distance measures in
a model-independent way. The motivation for indepen-
dently constraining opacity becomes apparent when con-
sidering the multitude of possible sources of photon ab-
sorption or decay of SN photons along the line of sight,
which can contribute to SN dimming thus affecting the
reliable reconstruction of the expansion history, espe-
cially in the accelerated era. Photons emitted from dis-
tant sources might suffer from extinction by the inter-
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galactic medium or comic dust and intervening galaxies.
Furthermore, in a wide class of theories involving two-
photon interactions with other fields, photons can decay
to light axions, chameleons, gravitons or Kaluza-Klein
modes in the presence of extragalactic magnetic fields.
Such mechanisms lead to an effective violation of photon
number conservation, thus making the observed source
dimmer than what expected and introducing a bias in
our reconstruction of universal acceleration. It is there-
fore necessary and timely to quantitatively study these
effects and to produce independent constraints on cosmic
opacity.
There have been significant efforts recently on this

topic and opacity has been constrained at the per cent
level down to redshifts of ∼ 2. However, no study to
date has achieved a completely cosmology-independent
test, as the Hubble diagrams for SNe Ia used were con-
structed from global fits in the context of the concor-
dance model. Moreover, most studies have ignored the
correlations between different redshifts when opacity-free
distances were derived from observational H(z) data. It
is therefore necessary to give an improved analysis and
present a clean test of cosmic opacity.
To this end, we compared two kinds of luminosity dis-

tances: one from SNe Ia, which is susceptible to cosmic
opacity, and one constructed from H(z) data, which is
cosmic opacity free. The SN Ia data we used were de-
rived directly from the measured light curves and do not
depend on cosmological modelling. In addition we cor-
rected the inappropriate statistics used when construct-
ing luminosity distances from H(z) data in the literature,
by taking into account the correlations between different

redshifts. Based on our improved analysis, the derived
constraints on opacity are somewhat weaker but the test
is more robust and more widely applicable as it does not
depend on cosmological model. Our results are, as ex-
pected from past work, consistent with a transparent uni-
verse, but our bounds can be used to constrain physical
mechanisms giving rise to opacity. As cosmological data
precision improves, these methods will be important in
better quantifying opacity and accurately reconstructing
dark energy parameters.
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