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Abstract

In this paper we compare the local asymptotic and �nite sample power of two
recently proposed recursive right-tailed Dickey-Fuller-type tests for an explosive
rational bubble in asset prices. It is shown that the power of the two tests can dif-
fer substantially depending on the location of the explosive regime, and whether
such a regime ends in collapse. Since this information is typically unknown to
the practitioner, we propose a union of rejections strategy that combines infer-
ence from the two individual tests. We �nd that, for a given speci�cation of the
explosive regime, the union of rejections strategy always attains power close to
the better of the individual tests considered. An empirical illustration using the
Nasdaq composite price index is also provided.
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1 Introduction

A substantial body of theoretical and empirical research exists on statistically testing
for explosive asset price bubbles. Much of this literature has concentrated on the class
of \rational" explosive asset price bubbles where, despite the asset being overvalued,
it is still rational for investors to buy additional units because of the returns available
relative to the risk-free discount rate. Orthodox �nancial theory suggests that the
presence of explosive rational asset price bubbles should be relatively easy to uncover

�Correspondence to: Robert Sollis, Newcastle University Business School, Newcastle University, 5
Barrack Road, Newcastle upon Tyne, NE1 4SE, United Kingdom. Email: robert.sollis@ncl.ac.uk

1



using simple econometric techniques. Consider for example the standard present value
model for the fundamental price of a stock P ft

P ft =

1X
i=1

(1 + r)�iEt(Dt+i)

whereDt denotes the dividend and r denotes the risk-free discount rate. If the transver-
sality condition lim

n!1
Et[(1+r)

�nPt+n] = 0 holds, then it can be shown via the standard

no arbitrage condition that the current price of the stock Pt will be equal to the fun-
damental price P ft . However if the transversality condition above does not hold an
explosive rational bubble can exist and the price can be decomposed into the funda-
mentals component P ft and a bubble component Bt, i.e.

Pt = P
f
t +Bt

where Bt grows with an expected growth rate equal to r. There are in�nitely many
models for Bt that satisfy this condition and so a de�nitive test for the presence of
a particular type of rational asset price bubble is not feasible. However, it follows
straightforwardly from the representation above that if an asset price is not more
explosive than the fundamentals component of the price, then a bubble does not exist.
In seminal work on this issue, drawing on the fact that an explosive series is also

explosive in �rst di�erences, Diba and Grossman (1988) proposed testing the hypothesis
of no explosive rational asset price bubble using standard left-tailed Dickey-Fuller (DF)
unit root tests applied to stock price and dividends series in levels and �rst di�erences,
with the absence of an explosive rational bubble inferred from a �nding of stationarity
in the �rst di�erences of stock prices.
More direct approaches to identifying explosive rational bubbles have subsequently

been proposed, using right-tailed DF tests to detect explosive autoregressive behaviour
in stock price series. Hall et al. (1999) initially considered an approach based on
Markov-switching autoregressive models, but more recent work in this area has fo-
cused on using recursive DF-type tests. Speci�cally, Phillips et al. (2011) (PWY)
suggest detecting explosive rational bubbles using the supremum of a set of forward
recursive DF tests applied to the asset price and the relevant fundamentals series, while
Homm and Breitung (2012) (HB) recommend using the supremum of a set of backward
recursive (DF-type) Chow tests for a change from unit root to explosive autoregressive
behaviour. PWY subsequently advocate using their forward recursive statistics to con-
struct a method for time-stamping the start and end dates of the explosive regime; HB
suggest an alternative method for dating the origination of explosive behaviour based
on their backward recursive approach.
In this paper we analyze the relative local asymptotic and �nite sample power

performance of the PWY and HB tests to detect explosive autoregressive behaviour.
The maintained hypothesis for the data is a random walk process, while our alternative
hypotheses variously allow for di�erent timings and durations of a single explosive
period. Since any bubble in stock prices that originates during the sample period
under study may also terminate prior to the end of the sample, possibly with some
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form of collapse (see, for example, Evans, 1991), we include DGP designs that allow
for such behaviour. Speci�cally, in addition to explosive periods that run up to the
end of the sample, we consider non-collapsing explosive periods that return to random
walk behaviour at some point prior to the sample's end, and also cases where the post-
explosive random walk regime is re-initialized at its pre-explosive level, modelling a
bubble that terminates with instantaneous collapse.
The results from our asymptotic and �nite sample simulations are important for

practitioners as they reveal that the relative performance of the tests can di�er quite
dramatically depending on the location and timing of the explosive regime, and also
whether or not the explosive period terminates in collapse. Overall, we �nd that the
PWY test is better suited to detecting explosive regimes than the HB test when the
period of explosiveness occurs early or towards the middle of the sample, while the
HB test is better when this regime occurs towards the end of the sample, provided
the explosive period does not end in collapse. These results raise the interesting pos-
sibility that when the timing of the bubble is unknown, as it would be in practice, a
composite test based on a union of rejections strategy applied to the PWY and HB
test statistics could yield bene�ts to practitioners relative to either of these tests being
used individually. This type of strategy, based on rejecting the null hypothesis if any
of a number of individual tests indicate rejection, has previously been employed in the
literature on testing for a unit root against a stationary alternative, for example when
uncertainty exists regarding the presence of a trend in the data, or when uncertainty
surrounds the nature of the initial value of the series (see Harvey et al., 2009, 2012).
We propose such a strategy involving the PWY and HB tests which is asymptotically
correctly sized under the null hypothesis, and compare its power performance with that
of the individual tests using local asymptotic and �nite sample simulations. We �nd
that, for a given speci�cation of the explosive regime, the union of rejections approach
displays power close to the better of the individual PWY and HB tests.
The next section of the paper briey outlines the original PWY and HB tests.

Section 3 presents our model, derives the local asymptotic distributions of the tests, and
discusses the results from our asymptotic simulations to assess the power of the original
tests when explosive periods of varying timings and durations are present. Section 4
reports the �ndings of our �nite sample simulations, where a close correspondence to the
asymptotic results is seen. Section 5 details the union of rejections strategy proposed
and evaluates the asymptotic and �nite sample power of this approach relative to
that of the individual PWY and HB tests. Section 6 applies the tests to the Nasdaq
composite price index, and Section 7 concludes. The following notation is used: `b�c'
denotes the integer part, `

d!' denotes weak convergence, ` p!' denotes convergence in
probability, and I(:) denotes the indicator function.

2 Recursive right-tailed unit root tests

Consider an observed time series yt, t = 1; :::; T , where our interest focuses on testing
the null that yt follows a unit root AR(1) process throughout the full sample, against
the alternative that yt behaves as an explosive AR(1) process for at least some sub-
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period of the sample. In this context, and in the absence of knowledge concerning
the timing of any potential explosive behaviour, PWY propose a test based on the
supremum of recursive right-tailed DF tests. Speci�cally, the test statistic is given by

PWY = sup
�2[�0;1]

DF �

where DF � denotes the standard DF test, that is the t-ratio on �̂ in the �tted ordinary
least squares (OLS) regression

�yt = �̂+ �̂PWY yt�1 + "̂t (1)

calculated over the sub-sample period t = 1; :::; b�T c, i.e.

DF � =
�̂PWYq

�̂2PWY
�Pb�T c

t=2 (yt�1 � �y� )
2

where �y� = (b�T c � 1)�1
Pb�T c

t=2 yt�1 and �̂
2
PWY = (b�T c � 3)�1

Pb�T c
t=2 "̂

2
t . The PWY

statistic is therefore the supremum of a sequence of forward recursive statistics with
minimum sample length b� 0T c.
HB propose an alternative approach, based on the supremum of recursive Chow

tests. Assuming a structure for the alternative hypothesis that speci�es yt as a unit
root process up to some change-point b�T c, and explosive thereafter, they consider
structural change tests based on the �tted full-sample OLS regression

�~yt = �̂HBI(t > b�T c)~yt�1 + êt (2)

where, in the case where the series is permitted to have a non-zero mean, ~yt = yt � �y
(i.e. full-sample OLS demeaned). The Chow (DF-type) statistic in this setting is given
by the t-ratio on �̂HB , which we denote by C� :

C� =
�̂HBq

�̂2HB
�PT

t=b�T c+1 ~y
2
t�1

where �̂2HB = (T � 2)�1
PT

t=2 ê
2
t . HB then propose the test statistic

HB = sup
�2[0;1��0]

C�

i.e. the supremum of a sequence of backward recursive statistics, with minimum poten-
tial explosive regime length b� 0T c. Both the PWY and HB statistics can be adjusted
to account for additional serial correlation in yt via the usual lagged di�erence aug-
mentation to the DF-type regressions (1) and (2).
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3 Model and asymptotic results

To evaluate the performance of PWY and HB in detecting explosive, and potentially
collapsing, bubble behaviour, we will consider the following model

yt =

8<:
yt�1 + vt t = 2; :::; b� 1T c
(1 + �)yt�1 + vt t = b� 1T + 1c; :::; b� 2T c
yt�1 + vt t = b� 2T + 2c; :::; T

(3)

with � � 0, y1 = v1 and yb�2T c+1 = yb�2T c + vb�2T c+1 + y
�I(� > 0). Here, vt is

assumed to follow a martingale di�erence sequence with conditional variance �2 and
suptE("

4
t ) <1, with v1 = op(T�1=2).

This DGP imposes a unit root on yt up to time b� 1T c, after which yt is explosive
when � > 0 until time b� 2T c. In the third regime, the series reverts to unit root
behaviour, and we consider two speci�cations for the initialization of this latter regime:
Case 1. y� = 0, so that the unit root process is initialized at the last value of the
explosive regime; and Case 2. y� = yb�1T c � yb�2T c, where the �nal unit root regime
is initialized at the point prior to the explosive period, modelling the case where the
explosive bubble collapses and the level of the series reverts to its pre-explosive value,
cf. equation (14) in PWY and the subsequent discussion therein. (Note that the y�

adjustment plays no role when � = 0.) We de�ne the null and alternative hypotheses
H0 : � = 0 and H1 : � > 0.
For local alternative hypotheses of the form � = c=T , c > 0, the following Theorem

gives the asymptotic properties of PWY and HB.

Theorem 1

(i) For Case 1,

PWY
d! sup

�2[�0;1]

R �
0
~Kc;�1;�2(r)dKc;�1;�2(r)qR �

0
~Kc;�1;�2(r)

2dr
� LPWYc;�1;�2

;

HB
d! sup

�2[0;1��0]

R 1
�
�Kc;�1;�2(r)dKc;�1;�2(r)qR 1

�
�Kc;�1;�2(r)

2dr
� LHBc;�1;�2

where

~Kc;�1;�2(r) = Kc;�1;�2(r)� 1
r

R r
0
Kc;�1;�2(s)ds;

�Kc;�1;�2(r) = Kc;�1;�2(r)�
R 1
0
Kc;�1;�2(s)ds

with

Kc;�1;�2(r) =

8<:
W (r) r � � 1
e(r��1)cW (� 1) +

R r
�1
e(r�s)cdW (s) � 1 < r � � 2

e(�2��1)cW (� 1) +
R �2
�1
e(�2�s)cdW (s) +W (r)�W (� 2) r > � 2

and W (r) a standard Brownian motion process.
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(ii) For Case 2,

PWY
d! sup

�2[�0;1]

R �
0
~K�
c;�1;�2

(r)dK�
c;�1;�2

(r)q
�c;�1;�2(�)

R �
0
~K�
c;�1;�2

(r)2dr
� L�PWYc;�1;�2

;

HB
d! sup

�2[0;1��0]

R 1
�
�K�
c;�1;�2

(r)dK�
c;�1;�2

(r)q
�c;�1;�2(1)

R 1
�
�K�
c;�1;�2

(r)2dr
� L�HBc;�1;�2

where

~K�
c;�1;�2

(r) = K�
c;�1;�2

(r)� 1
r

R r
0
K�
c;�1;�2

(s)ds;

�K�
c;�1;�2

(r) = K�
c;�1;�2

(r)�
R 1
0
K�
c;�1;�2

(s)ds

with

K�
c;�1;�2

(r) =

8<:
W (r) r � � 1
e(r��1)cW (� 1) +

R r
�1
e(r�s)cdW (s) � 1 < r � � 2

W (� 1) +W (r)�W (� 2) r > � 2

and

�c;�1;�2(�) =

(
1 � � � 2
1 + ��1

h
f1� e(�2��1)cgW (� 1)�

R �2
�1
e(�2�s)cdW (s)

i2
� > � 2

:

Remark 1 The limit distributions of PWY and HB under the null hypothesisH0 : � =
0 are given by LPWY0;�1;�2

and LHB0;�1;�2 , respectively, i.e. the limits obtained from Theorem
1(i) with c set to zero. These null limits continue to hold for serially correlated vt,
provided the usual lagged di�erence augmentation is applied to the regressions (1) and
(2).

Asymptotic null critical values for � 0 = 0:1 (as used in PWY and HB) are re-
ported in Table 1; these were generated by direct simulation of LPWY0;�1;�2

and LHB0;�1;�2 ,
approximating the Wiener processes in the limiting functionals using IID N (0; 1) ran-
dom variates, with the integrals approximated by normalized sums of 1,000 steps.1

Here and throughout the paper, simulations were conducted using 50,000 Monte Carlo
replications.
Figure 1 plots local asymptotic power curves of nominal 0.05-level PWY and HB

tests for c 2 f0; 0:5; 1:0; :::; 24:0g, again obtained via direct simulation of the above
limits. Figures 1(a) and 1(b) report results where the explosive regime lies in the
middle of the sample and Case 1 holds, with (� 1; � 2) = (0:45; 0:55) in Figure 1(a) and
(� 1; � 2) = (0:40; 0:60) in Figure 1(b), i.e. non-collapsing centrally located explosive
periods of sample proportion duration 0:1 and 0:2, respectively. Figures 1(c) and 1(d)

1HB consider the case of no deterministic components in yt, and the case of a non-zero mean and
trend in yt; here we allow for a non-zero mean only.
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report powers for the same settings as in Figures 1(a) and 1(b), respectively, except
now for Case 2, such that the explosive period is collapsing. Figures 1(e) and 1(f)
present powers when explosive periods of sample proportion duration 0:1 and 0:2 run
up to the end of the sample, i.e. (� 1; � 2) = (0:90; 1:00) and (� 1; � 2) = (0:80; 1:00),
respectively (note that in these cases the third regime in (3) is redundant).
Consider �rst Figures 1(a) and 1(b), where the explosive period does not collapse.

We observe that local asymptotic power increases with the magnitude of the explosive
deviation c, and also with the length of the explosive period. The rate of increase
is much faster for PWY than for HB, with substantial power advantages o�ered by
the former test relative to the latter, particularly in the case of the shorter explosive
regime.
In Figures 1(c) and 1(d), where the explosive period is now subject to collapse,

the power curves for PWY are seen to be largely unchanged from their non-collapsing
counterparts. This feature arises since the supremum of the forward recursive statistics
involved in PWY tends to occur when the associated sub-sample does not contain the
post-explosive period of the data. In contrast, the collapsing explosive regime leads to
a dramatic fall in the power levels associated with HB ; indeed, power is less than size
and approaches zero as c (the locally explosive parameter) increases. This phenomenon
is driven by the behaviour of the �c;�1;�2(1) term (which is the limit of �̂2HB=�

2) in the
denominator of the limit of HB. This term is a positive random variable for which the
mean can be shown to be

Ef�c;�1;�2(1)g = 1 + � 1(1� e(�2��1)c)2 +
e2(�2��1)c � 1

2c
;

which is an exponentially increasing function of c. Heuristically, as c increases, this
term leads to the value of C� approaching zero (across all �), and hence HB similarly
approaches zero. On an intuitive note, such behaviour is to be expected since, for all
C� , �̂

2
HB is calculated using the full sample of residuals, and is therefore polluted by

the impact of the collapse, whose magnitude is an increasing function of �. In contrast,
for PWY we see that �̂2PWY in DF � is calculated using a subset of the data, which
is unpolluted by the collapse for any � � � 2; consequently, the PWY supremum is
typically obtained for a DF � statistic where � � � 2. Here, �c;�1;�2(�) (the limit of
�̂2PWY =�

2) takes a value of unity irrespective of c, and so the behaviour of the error
variance estimator does not inuence the PWY test statistic in the way that is seen
for HB.
Essentially, the inferior power of the HB test relative to PWY seen in both Figures

1(a)-1(b) and 1(c)-1(d) arises since the backward recursive statistics involved in HB
are necessarily calculated over sample periods polluted by the post-explosive regime.
Moreover, when this post-explosive regime involves reversion to a pre-explosive level of
the series, the backward recursive statistics are more fundamentally impacted, to the
extent that the resulting HB test has trivial power across c. On the basis of Figures
1(a)-1(d), therefore, a clear preference for the PWY test results. In Figures 1(e) and
1(f), where the explosive periods run up to the end of the sample, we �nd that the
power ranking of PWY and HB is reversed, with HB o�ering reasonable levels of power
gain over PWY. Here, the backward recursive statistics involved in HB are no longer
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polluted by a post-explosive regime, and the supremum of the statistics now tends to
occur when the associated sub-sample contains the entirety of the explosive regime.
It is noteworthy that PWY maintains decent levels of power across the di�erent

explosive settings considered, a property that is not displayed by HB ; as such, it is
clearly the more reliable of the two procedures. However, it is also apparent that while
PWY dominates HB in the majority of cases, when the series under test contains an
explosive period that is still operative at the sample end, it is HB that becomes the
preferred test. This gives rise to the question of whether a composite procedure can
be constructed that capitalizes on the relative advantages of both the individual tests;
this is pursued further in section 5 below.

4 Finite sample power comparison

To assess the extent to which these local asymptotic power comparisons are accu-
rate predictors of �nite sample behaviour, we also consider a number of �nite sample
simulations. Figures 2 and 3 plot �nite sample power curves of nominal 0.05-level
PWY and HB tests for T = 300 and T = 600 for � 2 f0; 0:001; 0:002; :::; 0:080g and
� 2 f0; 0:001; 0:002; :::; 0:040g, respectively (note that � = 0:08 and � = 0:04 corre-
spond to � = 1 + c=T with c = 24 when T = 300 and T = 600, respectively, so that
the range of � values matches those used in the local asymptotic power simulations).
Here, vt � IID N(0; 1) and the settings used for � 1 and � 2 mirror those of Figure 1,
with both Case 1 (y� = 0) and Case 2 (y� = yb�1T c � yb�2T c) again considered. We see
that in each case of Figures 2 and 3, the �nite sample powers generally align closely
with their local asymptotic counterparts, particularly in the case of the larger sample
size T = 600, thus the same comments made above regarding the relative powers of
the tests apply equally in �nite samples.
In order to assess any possible e�ects of non-normality in �nite samples, Figure 4

reports �nite sample power curves for T = 300 for the same DGPs as in Figure 2, but
with vt � IID t5. The results are found to be almost identical to those obtained under
normality of the innovations.
To further explore the e�ect that the location of the explosive period, relative to

the end of the sample, has on the performance of the test procedures, we undertake
the following exercise. We set vt � IID N(0; 1), T = 300, � = 1:05 and (� 1; � 2) =
(0:70; 0:80) so that an explosive period of length 0:1T occurs relatively late in the
sample. We then examine the performance of the tests with the end date of the sample
(denoted E) varied from E = b� 1T c = 210 to E = 300, with the PWY and HB tests
applied to a varying e�ective sample size, T �, ranging from T � = 210 (i.e. observations
t = 1; :::; 210) to T � = T = 300 (i.e. observations t = 1; :::; 300). When E = 210, no
explosive period is contained in the sample, then as E increases, the explosive period
following the initial unit root regime is increasing in length, up to the point E = 240,
where the series contains the largest possible explosive period with no �nal unit root
regime. As E increases still further, the �nal unit root period increases in length, up
to the point E = 300, where the full sample is recovered. Figure 5 reports results for
such simulations, where each point on the power curve represents the outcome of a
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simulation for a particular value of E; Figures 5(a) and 5(b) correspond to Case 1 and
Case 2, respectively.
Figure 5(a), the case where the explosive regime does not collapse, shows the power

of both PWY and HB rising in E as the length of the explosive period increases, up
to E = 240, which represents the end of the explosive period. For this range of E, all
series contain an explosive regime that runs to the sample's end, and, in line with the
results of Figures 1(e) and 1(f), HB is clearly the more powerful test. For larger values
of E, where the sample now includes a post-explosive unit root regime of increasing
length, the power of PWY stays pretty much constant, while the power of HB starts
to decline steadily (becoming lower than that of PWY for, roughly, E > 260). In
Figure 5(b), where the explosive regime collapses to pre-explosive levels, the behaviour
of the two tests across E up to E = 240 is, of course, identical to that in Figure
5(a). Thereafter, however, while PWY again retains pretty much constant power for
larger values of E, the power of HB falls immediately to zero, and remains there. It is
noteworthy that inclusion of as little as one observation of the collapsed regime induces
this behaviour.
Figure 6 reports results for a similar simulation exercise, where T = 300 and � =

1:05 as before, but now (� 1; � 2) = (0:20; 0:30), so that the explosive period occurs
relatively early. Here we examine the performance of the procedures with the start
date of the sample (denoted S) varied from S = 1 to S = b� 2T + 1c = 91, so that the
PWY and HB tests are again applied to varying e�ective sample sizes, ranging from
T � = 300 (i.e. observations t = 1; :::; 300) to T � = 210 (i.e. observations t = 91; :::; 300).
As S increases, the initial unit root period prior to the explosive regime is decreasing
in length, up to the point S = b� 1T + 1c = 61, where no initial unit root period is
present and the series begins explosively. As S increases further, the explosive period
now decreases in length, up to the point S = b� 2T +1c = 91, where no explosive period
is now present. As before, Figures 6(a) and 6(b) correspond, respectively, to Case 1
and Case 2.
In both Figures 6(a) and 6(b) we observe that HB only ever has trivial levels of

power across S. This arises because there is always a post-explosive unit root regime
of long duration (210 observations) present in the sample irrespective of the value of S.
As regards PWY, it has decent, and roughly constant, power for up to about S = 50,
after which point the reduced sample size negatively a�ects power, particularly for
S > 61 where less observations of the explosive period are included in the sample.
For S � 69, the minimum sample length constraint on the set of DF � statistics over
which the supremum is taken results in all such statistics being calculated over a sub-
sample that includes observations from the post-explosive regime; this has the e�ect of
reducing test power to trivial levels.
We can therefore conclude that, in general terms, PWY is better suited to detecting

explosive regimes that occur early or towards the middle of the sample, while HB is
better when these explosive regimes occur towards the end of the sample, provided the
associated explosive regime does not collapse prior to the sample's end.
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5 A union of rejections strategy

In practice we cannot assume knowledge of where in a given sample an explosive regime
occurs (should one occur at all); nor can we assume whether or not such a regime is
associated with a collapse. In such situations it is therefore unclear as to which of PWY
and HB will have the greater potential to detect explosive behaviour. One strategy
would be to simply apply PWY alone since post-explosive unit root regimes do not
have the potential to dramatically lower its power, unlike HB. Such an approach would,
of course, mean we sacri�ce the power advantage o�ered by HB when post-explosive
unit root regimes do not cause low power issues (for example, when the explosive period
runs to the sample end-point).
We now consider the possibility of harnessing the desirable properties of both tests

using a hybrid procedure based on PWY and HB. The approach we adopt here is the
following simple union of rejections decision rule:

UR : Reject H0 if PWY > �cv
PWY
 or HB > �cv

HB


where cvPWY and cvHB denote the asymptotic null critical values of PWY and HB for
a signi�cance level  (see Table 1). Here � is a scaling constant calculated such that
the asymptotic size associated with UR is equal to the nominal size . The decision
rule UR can also be written as

Reject H0 if max
�
PWY ;

cvPWY


cvHB
HB

�
> �cv

PWY
 (4)

where, for � = 0,

max
�
PWY ;

cvPWY


cvHB
HB

�
d! max

�
LPWY0;�1;�2

;
cvPWY


cvHB
LHB0;�1;�2

�
(5)

and for � = 1 + c=T , c > 0,

max
�
PWY ;

cvPWY


cvHB
HB

�
d!

8<: max
�
LPWYc;�1;�2

;
cvPWY


cvHB
LHBc;�1;�2

�
Case 1

max
�
L�PWYc;�1;�2

;
cvPWY


cvHB
L�HBc;�1;�2

�
Case 2

: (6)

At a given signi�cance level , the appropriate value for the constant � is obtained
by simulating the limit distribution of the right-hand-side of (5), calculating the 
level critical value for this empirical distribution, say cvU , and then computing � =
cvU =cv

PWY
 . These values are given in Table 1 for the conventional signi�cance levels.

Figures 1-6 also show the powers of UR at the nominal 0.05-level. Figure 1 shows
that across values of c, the local asymptotic power of UR always tracks very close to
(that is, just below) whichever of PWY or HB possesses the higher level of power.
In this sense, UR forms a near-envelope of the available power from PWY and HB,
displaying almost all the gains o�ered by PWY when the explosive regime ends within
the sample, while simultaneously capturing the HB power advantages for explosive
regimes that are still active at the end of the sample period. The same patterns are
observed in �nite samples, with Figures 2, 3 and 4 showing a very close correspondence
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to the results in Figure 1. In Figures 5 and 6, the bene�ts of UR can again be clearly
seen across sample end values, E, and sample start values, S, with UR always closely
tracking the power curve of the better performing test across each segment. As such,
UR would seem to be a highly e�ective means of combining inference from PWY
and HB, o�ering a size controlled and robust method for the detection of explosive
behaviour in a time series.

6 Empirical illustration

In this section we illustrate the di�ering behaviour of the PWY and HB tests, along
with the UR strategy, by applying the procedures to monthly data on the Nasdaq
composite price index, as used by PWY (and also reconsidered by HB). We employ
data over the same period as PWY, i.e. 1973:2-2005:6 (T = 389), using the composite
price index adjusted for dividends, and also the composite dividend series derived from
the the dividend yields; the data were obtained from Datastream. Logarithms of the
real values of the prices and dividends are used, with the nominal data converted using
(seasonally adjusted) US consumer price index data obtained from the Federal Reserve
Bank of St. Louis. The series are plotted in Figure 7.
In order to assess whether the inference of the tests is sensitive to the end point

of the sample (in the manner of the power results reported in Figure 5) we applied
the procedures to sample periods from 1973:2 to varying end points from E = 1996:1
to E = 2005:6, this last end date representing the full PWY sample period. When
applying the PWY and HB tests, the underlying DF statistics were computed from the
OLS regressions (1) and (2) augmented with a number of lagged di�erence terms, the
number being selected according to the Bayes information criterion, with a maximum
of 12, reecting the monthly nature of the data. Figure 8 reports the results from this
application, plotting the PWY and HB statistics across E. In the �gures, a straight
line is plotted at the level of the asymptotic 0.05-level critical value for PWY (i.e.
1.411, see Table 1), and in order to allow comparison with a common critical value, the
reported HB test statistics are multiplied by the ratio of the PWY and HB asymptotic
0.05-level critical values (i.e. 1.411/1.608 = 0.877). Figure 8 also reports results for the
union of rejections strategy UR. In order to again allow comparison with a common
critical value, the reported values are max fPWY ; 0:877HBg =1:171, based on (6) with
the critical values and � value from Table 1.
For the price series, we see that PWY rejects the unit root null in favour of explosive

behaviour at the 0.05-level for all samples with end points at E = 1999:1 or later. In
contrast, HB �nds evidence of explosiveness when the sample ends at dates E = 2000:12
and earlier (and also when E = 2001:2), but does not reject the null for any later end
dates. Hence it is only for samples with end dates in the range E = 1999:1 to E
= 2000:12 (and E = 2001:2) where both tests reject; outside of this range, inference
depends on the particular testing approach adopted. For UR, however, we �nd that
rejections are obtained for all samples with end points E = 1998:11 onwards and the
vast majority of the end dates prior to this point, delivering robust inference across
a much wider range of sample end dates than available from either constituent test.
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Indeed, the UR procedure is close to capturing all the rejections of both PWY and
HB, with 104 end points out of the 114 considered resulting in a rejection by PWY
and/or HB being matched with a rejection by UR. As might be expected, no evidence
against the unit root null is found by any of the procedures for the dividend series,
suggesting that an explosive period in the price series can be interpreted as a bubble.
Visual inspection of the Nasdaq price series plotted in Figure 7 might suggest the

presence of explosive bubble behaviour up to the maximum value observed in 2000:3,
followed by a collapse thereafter. The pattern of test rejections we obtain are consistent
with such a notion, given our earlier simulation results. Speci�cally, samples which
include a number of post-collapse observations cause HB to fail to detect evidence
of a bubble, while these observations have no e�ect on PWY. For samples where the
putative bubble is still in evidence at the end of the period considered, i.e. pre-2000:3,
HB is more likely to detect explosive behaviour than PWY.
From a practitioner's perspective, applying the tests with the bene�t of the full

sample data spanning 1973:2-2005:6 yields a rejection in favour of bubble behaviour
only with PWY. If the tests were applied in 2000:3 (or a number of months either
side) then both PWY and HB would have rejected. However, if one were to have
implemented the tests prior to 1999 (with the sample therefore ending at such a time),
PWY would have failed to �nd evidence of a bubble, and a rejection would only have
been obtained with HB. This inconsistency of inference associated with PWY and HB
is naturally a cause of concern, yet is almost completely eradicated by use of the UR
strategy, which would have consistently indicated evidence of a bubble over this period
for almost all points in time at which the application was conducted.

7 Conclusion

Recent research on testing for the presence of explosive rational asset price bubbles has
focused on the use of tests derived from conventional linear autoregressive models that
are estimated recursively to detect explosive autoregressive regimes in an otherwise
unit root process. When applied to an asset price series and the associated funda-
mentals series, tests of this type proposed by PWY and HB o�er methods of detecting
explosive rational bubbles. This paper has focused on the relative local asymptotic and
�nite sample power of the forward recursive PWY and backward recursive HB tests
when the series contains a single explosive period, possibly with some form of collapse.
Simulations of both asymptotic and �nite sample behaviour showed that the power of
these two tests can di�er quite dramatically depending on the location of the explosive
regime, and whether such a regime ends in collapse; overall, we �nd that the PWY test
is preferred for detecting explosive regimes that occur early or towards the middle of
the sample, while the HB test is preferred when the explosive behaviour occurs near the
end of the sample, provided the explosive regime does not end in collapse. Motivated
by this pattern of relative test power, we proposed a simple union of rejections strat-
egy that, for a given speci�cation of the explosive regime, attains power close to the
better of the individual PWY and HB tests. Since the timing, duration and collapse
properties of a putative bubble period are typically unknown to the practitioner, so
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that in practice it is not known which of PWY or HB would o�er the greater ability
to detect an explosive bubble, our proposed composite approach o�ers a more robust
approach to the testing problem, as further evidenced by our empirical illustration,
and we envisage it being useful to applied researchers.
While the focus of our analysis has addressed procedures for detecting the presence

of an explosive regime, it is also possible to use the statistics underlying PWY and
HB to date the beginning and end of such explosive behaviour. PWY suggest time-
stamping the origination and termination of the explosive regime based on the dates
for which the DF � statistics exceed (diverging) critical values, and a corresponding
approach could be developed using the C� statistics of HB. An alternative approach to
dating the start of an explosive regime is proposed by HB, whereby the argmax of the
backward recursive C� statistics is employed as a regime-change date estimator, and,
once again, a corresponding approach could be devised based on taking the argmax
of the forward recursive DF � statistics. We leave a proper comparison of such dating
schemes, and potential combinations thereof, as an avenue for future research.
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Appendix: Proof of Theorem 1

(i) By backward substitution in (3) we obtain

yt =

8>>><>>>:
Pt

i=1 vi t = 2; :::; b� 1T c
(1 + �)t�b�1T c

Pb�1T c
i=1 vi +

Pt
i=b�1T+1c(1 + �)

t�ivi t = b� 1T + 1c; :::; b� 2T c
(1 + �)b�2T c�b�1T c

Pb�1T c
i=1 vi

+
Pb�2T c

i=b�1T+1c(1 + �)
t�ivi +

Pt
i=b�2T+1c vi

t = b� 2T + 1c; :::; T

(7)
and subsequently

T�1=2ybrT c =

8>>>>>><>>>>>>:

T�1=2
PbrT c

i=1 vi brT c = 2; :::; b� 1T c
(1 + �)brT c�b�1T cT�1=2

Pb�1T c
i=1 vi

+T�1=2
PbrT c

i=b�1T+1c(1 + �)
brT c�ivi

brT c = b� 1T + 1c; :::; b� 2T c

(1 + �)b�2T c�b�1T cT�1=2
Pb�1T c

i=1 vi
+
Pb�2T c

i=b�1T+1c(1 + �)
brT c�ivi + T

�1=2PbrT c
i=b�2T+1c vi

brT c = b� 2T + 1c; :::; T

:

Under � = c=T , for 0 < a < b < 1, (1 + �)bbT c�baT c = e(b�a)c+ o(1), and then, following
Phillips (1987) we �nd

��1T�1=2ybrT c
d!

8<:
W (r) r � � 1
e(r��1)cW (� 1) +

R r
�1
e(r�s)cdW (s) � 1 < r � � 2

e(�2��1)cW (� 1) +
R �2
�1
e(�2�s)cdW (s) +W (r)�W (� 2) r > � 2

= Kc;�1;�2(r):

It is straightforward to show that �̂2PWY = b�T c�1
Pb�T c

t=1 �y
2
t + op(1) and �̂

2
HB =

T�1
PT

t=1�y
2
t + op(1). Then, since we can also show that b�T c�1

Pb�T c
t=1 �y

2
t

p! �2 for

any � , we �nd that �̂2PWY
p! �2 and �̂2HB

p! �2. The stated limits for PWY and HB
then follow from an application of the continuous mapping theorem.

(ii) The limits K�
c;�1;�2

(r) and Kc;�1;�2(r) are identical apart from when r > � 2. In this
case, the third partition of (7) is replaced by

yt =
Pb�1T c

i=1 vi +
PbrT c

i=b�2T+1c vi; t = b� 2T + 1c; :::; T (8)

and then
��1T�1=2ybrT c

d! W (� 1) +W (r)�W (� 2); r > � 2 :
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Using (7) and (8),

�yt =

8>>>>>>>>>>>><>>>>>>>>>>>>:

vt t = 2; :::; b� 1T c
(1 + �)b�1T+1c�b�1T c

Pb�1T c
i=1 vi

+
Pb�1T+1c

i=b�1T+1c(1 + �)
b�1T+1c�ivi �

Pb�1T c
i=1 vi

t = b� 1T + 1c

(1 + �)t�b�1T c
Pb�1T c

i=1 vi +
Pt

i=b�1T+1c(1 + �)
t�ivi

�(1 + �)t�1�b�1T c
Pb�1T c

i=1 vi �
Pt�1

i=b�1T+1c(1 + �)
t�1�ivi

t = b� 1T + 2c; :::; b� 2T cPb�1T c
i=1 vi + vb�2T+1c � (1 + �)b�2T c�b�1T c

Pb�1T c
i=1 vi

�
Pb�2T c

i=b�1T+1c(1 + �)
b�2T c�ivi

t = b� 2T + 1c

vt t = b� 2T + 2c; :::; T

=

8>>>>>>>>><>>>>>>>>>:

vt t = 2; :::; b� 1T c
�
Pb�1T c

i=1 vi + (1 + �)vb�1T+1c t = b� 1T + 1c
vt + �

Pt�1
i=b�1T+1c(1 + �)

t�1�ivi

+�(1 + �)t�b�1T c�1
Pb�1T c

i=1 vi
t = b� 1T + 2c; :::; b� 2T c

vb�2T+1c + f1� (1 + �)b�2T c�b�1T cg
Pb�1T c

i=1 vi
�
Pb�2T c

i=b�1T+1c(1 + �)
b�2T c�ivi

t = b� 2T + 1c

vt t = b� 2T + 2c; :::; T

:

Since � = c=T we then �nd that

�yt =

8>>>>>>><>>>>>>>:

vt t = 2; :::; b� 1T c
vb�1T+1c + op(1) t = b� 1T + 1c
vt + op(1) t = b� 1T + 2c; :::; b� 2T c
f1� (1 + c=T )b�2T c�b�1T cg

Pb�1T c
i=1 vi

�
Pb�2T c

i=b�1T+1c(1 + c=T )
b�2T c�ivi + op(T

�1=2)
t = b� 2T + 1c

vt t = b� 2T + 2c; :::; T

:

As regards �̂2PWY , we can again show that �̂
2
PWY = b�T c�1

Pb�T c
t=1 �y

2
t + op(1). Then

for b�T c � b� 2T c, we �nd that b�T c�1
Pb�T c

t=1 �y
2
t = b�T c�1

Pb�T c
t=1 v

2
t + op(1)

p! �2.
For b�T c > b� 2T c, write

b�T c�1
Pb�T c

t=1 �y
2
t = b�T c�1

Pb�2T c
t=1 �y2t + b�T c�1

Pb�T c
t=b�2T c+1�y

2
t :

Here

b�T c�1
Pb�2T c

t=1 �y2t = b�T c�1b� 2T cb� 2T c�1
Pb�2T c

t=1 v2t + op(1)
p! � 2

�
�2:

Also,

b�T c�1
Pb�T c

t=b�2T c+1�y
2
t = b�T c�1�y2b�2T c+1 + b�T c

�1Pb�T c
t=b�2T c+2�y

2
t

where

b�T c�1
Pb�T c

t=b�2T c+2�y
2
t = b�T c�1

Pb�T c
t=b�2T c+2 v

2
t

= b�T c�1(b�T c � b� 2T c)(b�T c � b� 2T c)�1
Pb�T c

t=b�2T c+2 v
2
t

p! � � � 2
�

�2
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while

b�T c�1�y2b�2T c+1 = ��1
h
f1� (1 + c=T )b�2T c�b�1T cgT�1=2

Pb�1T c
i=1 vi

�T�1=2
Pb�2T c

i=b�1T+1c(1 + �)
b�2T c�ivi

i2
d! �2��1

h
f1� e(�2��1)cgW (� 1)�

R �2
�1
e(�2�s)cdW (s)

i2
:

So,

b�T c�1
Pb�T c

t=1 �y
2
t

d! �2 + �2��1
h
f1� e(�2��1)cgW (� 1)�

R �2
�1
e(�2�s)cdW (s)

i2
:

Taking the limits together, we see that

�̂2PWY
d! �2

(
1 � � � 2
1 + ��1

h
f1� e(�2��1)cgW (� 1)�

R �2
�1
e(�2�s)cdW (s)

i2
� > � 2

= �2�c;�1;�2(�):

Finally, for �̂2HB , we can show that �̂
2
HB = T�1

PT
t=1�y

2
t + op(1). It follows that its

limit is the same as that of �̂2PWY upon setting � = 1, i.e. �
2�c;�1;�2(1).
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Table 1. Asymptotic critical values for PWY and HB at the γ significance level,
and λγ values for UR

Critical values

γ PWY HB λγ values

0.10 1.138 1.245 1.240
0.05 1.411 1.608 1.171
0.01 1.929 2.259 1.104
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(a) (τ1, τ2) = (0.45, 0.55), Case 1 (b) (τ1, τ2) = (0.40, 0.60), Case 1

(c) (τ1, τ2) = (0.45, 0.55), Case 2 (d) (τ1, τ2) = (0.40, 0.60), Case 2

(e) (τ1, τ2) = (0.90, 1.00) (f) (τ1, τ2) = (0.80, 1.00)

Figure 1. Local asymptotic power: PWY : - - - , HB : – – , UR:
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(a) (τ1, τ2) = (0.45, 0.55), Case 1 (b) (τ1, τ2) = (0.40, 0.60), Case 1

(c) (τ1, τ2) = (0.45, 0.55), Case 2 (d) (τ1, τ2) = (0.40, 0.60), Case 2

(e) (τ1, τ2) = (0.90, 1.00) (f) (τ1, τ2) = (0.80, 1.00)

Figure 2. Finite sample power, T = 300, vt ∼ N(0, 1): PWY : - - - , HB : – – , UR:
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(a) (τ1, τ2) = (0.45, 0.55), Case 1 (b) (τ1, τ2) = (0.40, 0.60), Case 1

(c) (τ1, τ2) = (0.45, 0.55), Case 2 (d) (τ1, τ2) = (0.40, 0.60), Case 2

(e) (τ1, τ2) = (0.90, 1.00) (f) (τ1, τ2) = (0.80, 1.00)

Figure 3. Finite sample power, T = 600, vt ∼ N(0, 1): PWY : - - - , HB : – – , UR:
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(a) (τ1, τ2) = (0.45, 0.55), Case 1 (b) (τ1, τ2) = (0.40, 0.60), Case 1

(c) (τ1, τ2) = (0.45, 0.55), Case 2 (d) (τ1, τ2) = (0.40, 0.60), Case 2

(e) (τ1, τ2) = (0.90, 1.00) (f) (τ1, τ2) = (0.80, 1.00)

Figure 4. Finite sample power, T = 300, vt ∼ t5: PWY : - - - , HB : – – , UR:
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(a) Case 1 (b) Case 2

Figure 5. Finite sample power across sample end dates, T = 300, δ = 1.05, (τ 1, τ 2) = (0.70, 0.80):
PWY : - - - , HB : – – , UR:

(a) Case 1 (b) Case 2

Figure 6. Finite sample power across sample start dates, T = 300, δ = 1.05, (τ 1, τ 2) = (0.20, 0.30):
PWY : - - - , HB : – – , UR:
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(a) Prices (b) Dividends

Figure 7. Logarithms of Nasdaq composite real price index and real dividends, 1973:2–2005:6

(a) Prices (b) Dividends

Figure 8. Application of tests to Nasdaq composite real price index and real dividends, 1973:2–E:
PWY : - - - , HB : – – , UR: , · · · : 0.05-level critical value
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