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This paper describes intervention resources designed to provide opportunities for 

student self-regulation, with a particular focus on setting subgoals when problem 

solving. Each task includes a range of pre-written interrelated “sample student 

responses” that expose students to multiple perspectives on an unstructured non-

routine problem. After students attempt the problem they are given the responses to 

collaboratively complete, critique and compare. We explore students’ capacity to 

adopt another person’s (the sample student’s) goals in order to complete a solution, 

and their capacity, through the use of comparison, to identify worthy criteria when 

critiquing the completed solutions. We then reflect on how we can make subsequent 

improvements to the resources.   
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INTRODUCTION 

Many studies cite planning and monitoring as key discriminators for problem solving 

success (e.g. Schoenfeld, 1992; Carlson & Bloom, 2005). During the initial planning 

phase, the subgoals students set determine the mathematical and self-regulating 

strategies used. Novice problem solvers often set vague, unstructured goals or their 

goals are flawed (Juwah et al., 2004). They often use naïve, inefficient strategies 

(e.g. trial and error), rather than considering the more powerful methods at their 

disposal. They pursue unfruitful or inefficient lines of enquiry relentlessly, without 

stopping to consider alternative strategies (Schoenfeld, 1992). Furthermore, they 

remain uncertain of the criteria to judge the quality of their work (Bell et al. 1997), 

other than checking the correctness of the answer. In contrast, expert problem solvers 

spend time setting hierarchical goals (Schunk & Zimmerman, 2012), carefully 

monitor their progress against these goals, and persist in the face of obstacles 

(Schunk & Zimmerman, 2012). They routinely use these goals to step back and ask 

themselves or their partner questions such as ‘Where is this strategy going?’, ‘Should 

it be so complicated?’, or ‘Does this solution make sense?’ (e.g. Schoenfeld, 1992). 

Answers to which may prompt a change of direction in order to improve, for 

example, their solution’s appropriateness, elegance, efficiency or generalizability. 

Furthermore, using subgoals makes progress visible, and their realization may 

sustain motivation to persist (Schunk, 2006). 

Empirical studies suggest that students might develop these self-regulating skills by 

critically reflecting on the work of others (e.g. Pintrich & Susho, 2002). In so doing,  

students’ criteria for success are made visible for scrutiny (Black & Willam, 1998), 
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differences surface, and opportunities arise for students to reflect on, and adapt their 

success criteria to accommodate new values. Through a series of case studies Juwah 

et al. (2004) found that providing students with opportunities for peer (and self) 

assessment encouraged the identification of goals implicit in solutions and judgments 

about how these goals related to their own solutions to a problem.  

We have carefully designed resources intended to help students develop their self-

regulating skills. In these resources, students are asked to interpret, complete, 

compare and critique pre-prepared, handwritten “sample student responses” to non-

routine, unstructured problems. The responses are designed to simulate different 

ways students may solve a problem (Evans & Swan, 2014) and provide opportunities 

for students to use and reflect on the goals set by others. We begin by explaining the 

theory and method behind the design of these resources, then discuss how our 

intentions were interpreted in the classroom and detail the subsequent improvements.  

THEORETICAL BACKGROUND 

This study is rooted in a design research paradigm. Design research involves both the 

development of intervention resources and studying what happens when they are 

enacted in the classroom. Accordingly, the design process of iteratively designing, 

testing and revising a resource and the research process of conjecturing, collecting, 

analysing data and contributing to theory, occur simultaneously and in parallel. Thus 

the development of an intervention forms a symbiotic relationship with the 

development of the research. Within this flexible environment, both the intervention 

and the initial research questions or conjectures may be refined. This flexibility is 

particularly beneficial when the research base is thin and provides only limited 

guidance for the design of an intervention (McKenney & Reeves, 2012).  

The design of the resources emerges from the findings from a large design research 

project (Swan & Burkhardt, 2014) but with some distinguishing features. Namely, 

the pre-written sample student responses are all incomplete. Thus the context has 

been mathematized; the students’ task is to complete the mathematics and 

communicate results. This design structure provides students with an opportunity to 

ask themselves questions about each sample student’s goals. Questions such as: 

‘What is this student doing?’ and ‘Why are they doing that? and ‘What should they 

do next?’ This awareness of goals set can positively influence their own performance 

when solving problems, promoting self-regulatory skills and productive goal-

directed action, engendering persistence in the face of obstacles (Schunk & 

Zimmerman, 2012). After completing solutions, students attempt to explicitly 

compare and connect them. To prevent students from simply comparing handwriting 

or checking for mistakes, responses were short, accessible and error-free (Evans & 

Swan, 2014).   

Comparing artifacts is routine practice in other disciplines. For example, English 

Language students may be asked to compare newspaper articles describing the same 



  

event. The literature suggest this practice, particularly if supported by a meaningful 

framework, focuses students attention on similarities and differences, and so 

facilitates the noticing of more features than if artifacts were viewed separately (e.g. 

Gamer, 1974; Chazan & Ball, 1999). Accordingly, in this study, students are asked to 

compare alternative approaches to non-routine unstructured mathematics problems. 

Thus encouraging students to ask themselves questions such as: ‘What are the 

differences between these two responses?’; ‘How do these differences benefit or 

constrain the solution?’; ‘Why do x rather than y?’ By encouraging students to not 

only to make sense of a solution but to make judgments about its quality, may shift 

their perspective from viewing solutions as a process, to viewing them as objects to 

be evaluated.  This shift can promote deeper understanding of the mathematics  

(Sfard, 1991).  

We know from the literature that transferring learning from one problem situation to 

another can be challenging as students often form highly concrete, context-specific, 

understandings of the solution (e.g. Gentener, 2003). This may be partially addressed 

by exposing students to multiple solutions, particularly if these solutions are 

compared rather than considered individually (e.g. Catrambone & Holyoak, 1989). 

By comparing students’ focus on structural, often abstract, commonalities rather than 

idiosyncratic, situation-specific, surface features (Gentener, 2003). A study within 

mathematics education supports these findings. The study (Rittle-Johnson & Star, 

2007) likewise focused on transferring methods studied in one context to another. 

Students learnt to solve equations by either comparing alternative methods or by 

reflecting on each method separately. The students in the ‘compare’ group made 

greater gains in procedural knowledge and flexibility to solve routine problems in 

multiple ways and comparable gains in conceptual knowledge. Although the studies 

on comparing solutions did not involve unstructured, non-routine problems, (we 

could locate no studies of this kind) we conjecture that comparing solutions to these 

types of problems could help to improve students’ ‘flexibility’ when solving other 

problems. Thus increasing their capacity to monitor their progress against interim 

goals as their solution is slowly created.  

METHOD 

The resources for each lesson include a task and a detailed teacher guide. Based on 

materials from a larger US project (Swan & Burkhardt, 2014), the interventions 

represent the initial phase in a design research cycle of the UK study. Feedback from 

this phase will inform the refinement of resources, methods used for data collection 

and analysis for the UK study. The intervention lesson described here was the first in 

a series of four taught to 30 students in a top (advanced) set Year 9 class in a UK 

secondary school. The students had little experience of working with unstructured 

problem solving tasks or sample student responses, however, the teacher had taught 

many such tasks 



  

Structure of the intervention lesson: 

• Students worked on the task in a prior lesson. This provided the teacher with 

insight into the ways students were understanding and representing the problem. 

• After the teacher briefly reintroduced the problem to the whole class, students 

worked first individually then in pairs, completing sample student responses.  

• Because students were not used to comparing responses, the teacher briefly 

explained, using a non-mathematical example, the benefits of making 

comparisons.  

• Students then glued the now completed responses to a poster and interpreted, 

completed and compared the solutions.  

• In a whole-class discussion students reviewed what they had learned.  

Figure 1 shows the problem used. Figure 2 shows the pre-written student responses. 

We carefully designed the responses to encourage students to make connections 

between approaches in order to create or strengthen networks of related ideas (Silver 

et al., 2005) and enable students to achieve ‘a coherent, comprehensive, flexible and 

more abstract knowledge structure’ (Seufert et al., 2007). 

Student Materials Solving a Real-Life Problem: Baseball Jerseys  S-1 
 © 2012 MARS, Shell Center, University of Nottingham 

Baseball Jerseys 
Bill wants to order new jerseys for his baseball team. 

He sees the following advertisements for two printing 

companies, ‘PRINT IT’ and ‘TOP PRINT’.  

Bill doesn’t know which company to choose.  

 

PRINT IT 

 

Get your baseball jerseys printed  
with your own team names here.  

Only $21 per jersey. 

 TOP PRINT 

 

We will print your baseball jerseys - just 
supply us with your design. 

Pay a one-off setting up cost of $45; we 
will then print each jersey for only $18! 

 

1. Give Bill some advice on which company he should buy from. When should he choose ‘PRINT IT’? 

When should he choose ‘TOP PRINT’? Explain your answer fully. 

 

2. A third company called ‘VALUE PRINTING’ wants 
to start trading. 

 It wants its prices to be between those of ‘PRINT 

IT’ and ‘TOP PRINT’. 

 This company never wants to be the most 

expensive and never wants to be the cheapest. 

 Can you complete this poster for the new 

company? 

 

VALUE PRINTING 

 

We print baseball jerseys.   
 

Pay a one-off set up cost of $................ 

Then each jersey will cost $.................. 

 
Give Bill some advice on which company he should buy from.  
When should he choose ‘PRINT IT’? When should he choose ‘TOP PRINT’? Explain 
your answer fully. 

Figure 1: The problem 

Dylan Cath Ezra 

 

 
 

Figure 2: The three pieces of sample student work 

We summarised students’ individual attempts to solve the problem.  However, the 

prime source of data is the 15 student posters, each produced by 2 students. 

Throughout this paper, the word ‘set’ defines a group of assessment comments on 1 

poster about 1 response. The word ‘response’ refers to the incomplete ‘sample 

student’ work, and ‘solution’ refers to a (real) student’s attempt to complete a 



  

response. We used a grounded theory approach to assess the 45 sets of assessment 

comments made by the 15 pairs of students about the 3 responses. To interpret the 

comments we used 3 themes corresponding to the 3 tasks students undertook: how 

students completed; assessed and connected the sample student responses.  

SECTION 4: RESULTS AND DISCUSSION 

When initially attempting to solve the problem one student used a graphical method 

and another an algebraic method. The rest of the class used a form of ‘trial and 

improvement’. This concurs with our earlier research (Evans & Swan, 2014) that 

suggests students often prefer this method rather than, for instance an algebraic 

strategy. Trial and improvement can forge a way into the problem but the 

information available within answers are often limited. For instance, trends may not 

be revealed. Furthermore, most students failed to effectively communicate their 

answer to ‘Bill’, thus overlooking the purpose of the problem. These results agree 

with the literature that suggests students often disconnect mathematical 

representation from the context of the problem and make little attempt to reconnect 

them (e.g. Friel, Curcio, & Bright, 2001). As trial and improvement was the 

commonly used strategy, students were to be exposed to two new approaches and a 

familiar one in the intervention lesson. 

How students completed the responses 

Table 1 summarises how pairs of students completed each response and attempted to 

advise ‘Bill’ (e.g.‘Top Print is cheaper after 15 jerseys’). 

  Did/did not attempt 

to advise Bill 

Dylan 

(Algebraic) 

4 pairs of students substituted n = 15 into the 

expressions 21n and 45 + 18n. Most of the remaining 

pairs substituted a combination of n = 14, n = 15 and n = 

16 into the expressions. Most did not explain their work.   

6 / 9 

Cath 

(Numerical) 

7 pairs of students figured out the prices of the jerseys 

when n = 14, n = 15 and n = 16. Others figured out 

between one and four prices. 9 pairs of students figured 

out the cross-over point, n = 15. Usually the existing 

table was extended to accommodate these figures. 

7 / 8 

Ezra 

(Graphical) 

All pairs of students successfully plotted a 2nd line on 

the graph. There was very little written work. 

8 / 7 

Table 1:  Summary of how students completed the sample student work.  

Despite (or possibly because of) most students figuring out the correct answer on 

their own, some failed to complete the sample student responses. For instance, one 

pair of students added two more rows to Cath’s table (Figure 3): 



  

 

Figure 3:  Response of two students  

These students understood the context, but responded in a superficial way, by finding 

something procedural to do. They followed the pattern in the first column, and used 

the procedures for calculating costs correctly, but did not engage in solving the 

problem using Cath’s method. Thus students did not attempt to understand and adopt 

Cath’s goals. This may be due to the teacher not fully explaining the purpose of the 

activity at this stage: once complete the solutions were to be critiqued and connected.  

Consonant with students’ original attempts to solve the problem there was a notable 

lack of attempts to interpret their solution in terms of the context (21 out of a 

possible 45. Of these, only 3 pairs explicitly advise ‘Bill’, the remaining 18 simply 

explained what the solution showed). However, again not fully understanding the 

purpose of the activity may discourage students from providing all 3 answers (12 out 

of the 15 pairs of students did attempt to recontextualise at least one of their 

solutions). Students may assume they would simply be repeating themselves.  

How students assessed the responses 

32 of the 45 ‘sets’ of assessment comments suggested students were making direct 

comparisons between the responses. For example, comments such as ‘it is clear to 

see the pattern [Ezra’s response] compared to Dylan’s’. There were numerous other 

assessment comments that implied students were making comparison. For example 

one pair made the two comments ‘only talked about one particular value [Dylan’s 

response] and ‘showed the full range of results in a graph [Ezra’s response]. Our 

evidence suggests that most students were not simply considering the attributes of 

individual approaches to the problem, but were using comparison to draw out the 

relative advantages and disadvantages of each. Most students (33 of the 45 sets) were 

able to make at least two comparative comments on each response and only 8 ‘sets’ 

made totally positive or totally negative comments; indicating students were using a 

range of questions when assessing the work and did not feel compelled to declare 

one solution as the ‘correct one’. This behaviour contradicts the commonly held 

assumption that mathematical solutions always consist of one right response amongst 

a hazardous field of wrong ones. It appears that as students compared solutions, 

similarities, differences, advantages and disadvantages were revealed, discouraging 

the emergence of a ‘best’ solution. We used 5 categories to investigate the nature of 

the assessment comments: 

 Assessments about clarity. These comments referred to the personal challenges 

of understanding the response. E.g.,  ‘Easiest to understand’ 



  

 Assessments about accessibility. These comments referred to the personal 

challenges of using the method. E.g., ‘Cath’s method may take a while to do’. 

 Assessment about fitness for purpose. These comments referred to students’ 

assessment of the legitimacy of the response given the context of the problem. 

(E.g., ‘hard to find an exact price, big scale, so pretty much guess work’.)  

 Assessment about the incompleteness of the method. These comments arose 

despite students being asked to complete each solution. E.g., ‘doesn’t answer 

the question’. 

  Undefined assessment comments. These were comments we were unable to 

categorise. E.g., ‘easiest’.  

 

We then categorised all assessment comments into those expressing advantages and 

those expressing disadvantages. The results of the coding are given in Table 2: 

Assessment about: Algebra (Dylan)  Table (Cath)  Graph (Ezra)  Total 

clarity  3 (1,2) 5 (4,1) 1 (1,0) 9 (6,3) 

accessibility 7 (7, 0) 5 (0,5) 5 (1,4) 17 (8,9) 

fitness for purpose 11 (1,10) 16 (9,7) 30 (17,13) 57 (27,30) 

incompleteness of method  3 (0,3) 0 0 3 (0,3) 

Undefined 4 (3,1) 7 (5,2) 1 (0,1) 12 (5,3) 

Total 28 (12,16) 35 (18,15) 37 (19,18) 98 (49,49) 

Table 2: The numbers in brackets refer to the (advantages, disadvantages). 

A large proportion of assessment comments drew on a student’s personal perspective 

(9 + 17 = 26) rather than on whether or not the solution was fit for purpose. For 

example, ‘Quite complicated if you don’t get it’. This was unsurprising. What 

students’ notice in a solution and the questions they ask themselves about it are  

often influenced by past experience of mathematics classes. In a traditional concept-

focused classroom a problem is often used by the teacher to introduce a new 

technique, then students practise and illustrate the technique using similar problems; 

what Burkhardt et al. (1988) calls ‘exposition, examples, exercises.’ It follows that 

students may assume, when critiquing solutions, their task is simply to decide if they 

understand it and if they could use the method to solve other problems. Accordingly, 

students may ask questions such as ‘Do I understand this method?’ or ‘Do I have the 

maths needed to undertake this method?’, or ‘Would it take me a long time to solve a 

problem using this method?’ These are legitimate questions, however they do not 

critique the mathematics used, nor the validity of the solution within the context. To 

do this, students need to ask further questions.  Questions such as  ‘Is this method 

efficient, elegant, generalisable?’ and ‘Is this method suitable for the given context?’ 

and ‘Is the answer appropriately communicated?’ We were encouraged to note 57 

comments did answer questions such as these. For example, Figure 5: 



  

 

Figure 5 

Now we will analyse the nature of these assessments. Rather than critiquing the 

graphical solution from a personal perspective (6), students clearly preferred to focus 

on the suitability of the graph within the context (30). The positive comments 

include: 7 on how the graph allowed them to easily see a trend, 4 on the wide range 

of costs, and 3 non-specific comments about the appearance of the graph (e.g. ‘easy 

visually to see’). There were 11 negative comments about the graph’s lack of 

accuracy due to the scale (e.g. ‘hard to find an exact price, big scale so pretty much 

guess work’). The tabular method drew 16 comments about the appropriateness of 

the solution, including positive comments about the accuracy of the costs (2), ease of 

comparing companies (3), and presentation of specific costs (2). Negative comments 

referred to the lack of a range of costs (2) and poor visual representation (2). 

Negative comments about the algebraic method referred to lack of values (4) and 

lack of detail about which company was cheaper (3).  Thus we can detect themes 

across all three solutions: the accuracy of the work, the range of values used, and the 

ease of comparing costs.  It is conceivable that these themes were instigated through 

the act of explicitly comparing solutions. For instance, an advantageous property 

noticed in one solution, may then be assessed in another.  

How students connected the responses  

Most comments about how solutions were linked were generic. For instance, ‘The 

two solutions both used the same formula.’ This concurs with research suggesting 

the need for instructional prompts that draw students’ attention to how methods are 

linked (e.g. Chazan & Ball, 1999). However, time was another important factor 

contributing to the quality and number of comments on how responses could be 

connected. Students simply did not have enough time to complete the task. 

CONCLUSION 

To effectively complete the responses students needed to adopt and use each sample 

student’s goals. To effectively critique each solution they needed to recognise the 

goal of the task (the comparison of the companies) and the role they were to adopt 

(advisers to ‘Bill’). Students struggled with these activities. For instance, when 

completing responses students were able to follow algorithms, but sometimes failed 

to engage with their purpose, rendering insubstantial solutions. Furthermore many 

students failed to effectively communicate their results to the intended audience, 

‘Bill’. These findings highlight the difficulties students have recontextualising the 

mathematics both as they complete a solution and as they communicate the results. 

Possibly indicating some students were not asking questions such as ‘Why am I 



  

figuring out this value?’ or ‘How does this result help Bill?’ To ask these questions 

students need to engage in the ‘student’s’ hierarchical goals. 

The findings do support the perspective that comparing properties of solutions to 

problems does indeed draw out the affordances and limitations of each but without 

compelling students to decide which one is correct. Students often critiqued 

solutions from a personal viewpoint, focusing on whether they understood the 

method and whether they would be able to use it again. However, many students did 

also critique the suitability of each sample student response within the context of the 

problem. This was particularly the case with the graphical response.  

Although we cannot make any generalisations beyond this classroom setting the 

findings from this study together with feedback from trials of other lessons will help 

shape a further iteration of all the resources. It is clear students need more support 

when undertaking these activities. For example, to help students complete the 

responses we will suggest teachers provide opportunities for students to reflect on 

the goals ‘students’ have set. Furthermore, if teachers ensure students understand the 

purpose of this activity, then they may be motivated to not only complete the 

mathematics, but also interpret it in the context of the problem. In so doing, 

differences may emerge in information gained from each completed solution. This in 

turn may help students undertake the next activity, critiquing the solutions.  

We endeavour, through the resources and teacher instruction to further raise 

awareness of what gets noticed when critiquing, and whether what is noticed and 

critiqued is of relevance to the context. This may help students move from simply 

noticing features of the solutions from a personal perspective to noticing them from 

the perspective of the context of the task. In this case the ‘sample student’s’ and 

‘Bill’s’ perspective. For example, it may require just a small shift in perspective to 

move from asking questions such as ‘How long would this method take me to do?’ to 

‘Is this an efficient and elegant method?’ We also plan to design follow-up task in 

which ‘Bills’ goals are slightly altered. Students will need to think carefully about 

the criteria for success when planning a strategy and monitoring its progress as it 

unfolds on the paper or in discussion. We will continue to frame these student tasks 

within the activity of comparing solutions. We regard this as a successful design 

strategy.  
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