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Abstract

In this paper we evaluate the notion of scene analysis
with regard to risk. We consider the problem of evaluat-
ing risk and potential hazards in an environment and pro-
viding a quantified risk score. A definition of risk is given
incorporating two elements; Firstly scene stability, where
Newtonian Physics are introduced into the scene analysis
process, evaluating object stability within a scene. The ef-
fectiveness of which is demonstrated by conducting experi-
ments on several scenes including a variety of stability lev-
els. Secondly the analysis of the intrinsic risk related prop-
erties of an object, which is estimated using learning tech-
niques and the utilisation of the 3D Voxel HOG descriptor,
analysed against the state-of-the-art descriptors. Finally a
new dataset is provided that is designed for scene analysis
focusing on risk evaluation.

1. Introduction
Scene analysis is a research area covering a large range

of topics with applications in traffic analysis [4], domestic
robotics [32], and smart homes [5] amongst many others. In
this work we consider one such topic; scene analysis with
regard to risk, with the aim of providing a quantified risk
score for a given three dimensional scene. To achieve this
a system is proposed that will, through a combination of
novel feature selection mechanisms and Newtonian physics,
analyse the potential risk in a given 3D scene.

The definition of what can be considered a risk or haz-
ard in an environment is contextual. However regardless of
context, the elements that might contribute to the concept
of risk can be broken down into components from which
a decision can be made. These components include ele-
ments such as shape, material, temperature, position and
many others. For this work we propose a system which
focuses on two of these elements; firstly object and scene
stability, derived from the resultant energy outputs due to
an applied force, as well as its subsequent effect on other
objects within a scene. This is analysed using a novel com-
bination of vision based and physics simulation techniques.

Figure 1: Example Scenes of objects with a variety of (top) haz-
ardous properties (e.g. sharp, pointed) and (bottom) levels of sta-
bility.

As an example consider the difference between a glass bot-
tle placed at the corner of a table, against it being placed at
the centre (Figure 1).

Secondly, determining the intrinsic shape structures of
an object which may add to the prospective hazard. To for-
mulate this definition a voxel based three dimensional de-
scriptor has been uterlised that is based on the principles of
Histogram of Oriented Gradients. The proposed 3D Voxel
HOG (3D VHOG) descriptor tries to identify dangerous el-
ements or characteristics of an object (e.g. ‘hazardous fea-
tures’). When combined with a boosting technique (Ad-
aboost [12]), the resultant model aims to specify whether an
object affects the potential risk in a given 3D scene (Figure
1). Importantly object recognition is not the goal, allow-
ing the proposed approach to be more general and operate
at a lower level. In object recognition a ‘feature’ is defined
in terms of a specific structure in the data. Here the term
‘feature’ relates to an actual physical property of an object.
In this work we define ‘hazardous features’ as any structure
present in an object within the 3D scene that could increase
risk (e.g. a knife’s blade being sharp/pointed).

In this paper we evaluate the concept of risk estimation
in static and dynamic scenes by combining the novel use
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of Newtonian physics mechanics and the introduction of a
new feature descriptor. We define risk as a function of scene
stability and the intrinsic properties of the present objects.
Furthermore a novel dataset for 3D scene analysis was col-
lected and will be available online.

The paper will continue as follows; in section 2 an anal-
ysis of the similar areas of research and related work. The
proposed methodologies and processes used in the work
will be presented in section 3. Section 4 will outline the
experiment environments and analyse the results. Finally,
in section 5 conclusions are drawn.

2. Related Work
2.1. Scene Analysis and Risk Assessment

To date very little research has been done in automated
risk analysis systems. [31, 2] analyse indoor fall assessment
for elderly adults; however in both proposed methods focus
is given to analysing the person not the risk of the environ-
ment. [37] introduces the notion of analysing the fall po-
tential of objects in a scene given the influence of environ-
mental events such as human intervention or earthquakes.
However the interaction of objects is not considered nor is
the potential risk of the object itself.

Another emerging area of research within 3D scene anal-
ysis relates to Volumetric Reasoning. Here the applica-
tion of logic based algorithms to existing object clusters is
used to improve segmentation and clustering accuracy. [38]
utilises the notion that clusters in a scene should be in a
state of rest when simulation techniques are applied. Thus
by using an iterative process clusters are grouped until such
time as the scene is at equilibrium. [15] proposes a method
that better fits bounding shapes to RGB-D clusters based on
the premise that a good 3D representation of a scene is sta-
ble, fits the data well and is self-supporting. Battaglia [1]
introduces the idea of a ‘intuitive physics engine (IPE)’ that
tries to mimic a humans cognitive simulation process when
analysing a scene. It is also worth mentioning the follow-
ing papers that consider similar concepts and approaches
for scene analysis [22, 11, 18, 20, 21, 9, 19, 8].

Although the concept of risk evaluation is raised in some
of this work, an automated form of risk evaluation for a
given scene is not fully addressed.

2.2. Object Retrieval and Scene Descriptors

Object retrieval and feature selection are research sub-
jects that have received a huge amount of work in recent
years. The initial concept of HOG features [6] revolution-
ized the 2D object recognition world by creating a local
descriptor that was resistant to geometric and photometric
changes. Onishi [24] uses HOG on images from a monoc-
ular camera system to recognise human posture in a scene
and estimate, using regression, the joint angles on a 3D hu-

Figure 2: Example of the acquisition process using Kinect Fusion
and some of the obtained 3D scenes.
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Figure 3: An overview of the proposed risk assessment framework.

man model. Buch in [3] implements a vehicle recognition
framework, using a patch definition system on a 3D repre-
sentation of the found vehicle, combined with a traditional
two dimensional implementation of the HOG descriptor.

With the introduction of financially viable 3D depth
camera hardware, such as the Microsoft Kinect [29], more
research has been focusing on the 3D domain. Transfering
Dalal and Triggs work into three dimensions, Scherer [27]
performs gradient computation in 3D using a convoluted
distance field. This provides an effective way of calculat-
ing the magnitudes of the gradients, scoring them highly
when localised near a surface of a model (local maxima),
however their method also scores highly those at local min-
ima creating additional artifacts within the data. As such
this particular implementation is unsuitable for local fea-
ture recognition. Another example that uses a variation of
vectors within a histogram as a feature is [33]. Here the nor-
mal vectors are used as the feature to define an object. An
alternative method in which HOG is extended into a third
dimension is presented by Klaser [16, 25]. Here a method
is proposed that tracks people and identifies their actions
through a video sequence. They implement and then extend
HOG through use of time as the third dimension. This ap-
proach is based on intensity gradients without taking into
account concepts related to the density of an area and there-
fore is not an appropriate descriptor for local feature classi-
fication. Additionally, it is worth mentioning the following
state of the art 3D descriptors [13, 28, 30, 10].
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Figure 4: An overview of the pre processing stage.

3. Proposed Methodology
The following section will discuss the proposed method-

ologies used to define a weighted risk estimation model, and
how the parameters in that model are established from a 3D
scene. An overview of this framework is shown in Figure 3.

3.1. Pre Processing

Before the risk in a scene can be evaluated, pre pro-
cessing steps are required to convert the input data, a mesh
model of the scene, into a usable format (Figure 4). The
scene data and 3D mesh model reconstruction of an envi-
ronment is acquired using Kinect Fusion [14] (Figure 2).
Alternatively other multi-camera acquisition systems [35]
or sensors (e.g. thermal or acoustic cameras) could be used.
The surface on which the objects are set requires removal to
aid with clustering, the work in [34] provides solutions for
these problems. The removed plane’s dimensions will later
be used to define the surface during simulation.

Voxels are defined along the faces of the scene’s 3D
mesh, voxels enclosed within a mesh are also classified as
part of the scene allowing us to consider features based on
an objects’ density. This resultant volume represents a bi-
nary classification of either object or not. With this clas-
sification in place, clustering of the voxel volume can be
applied grouping voxels into object clusters. A number of
different clustering algorithms were tested, using modified
versions of the work presented in [34, 7]. A range of other
clustering algorithms were also considered. A bounding
box for each object cluster is defined (Figure 4 right), with
the number of voxels within that bounding box counted and
used as a rudimentary measure of mass. For the purposes
of physics simulation, bounding boxes must not intersect;
as such a recursive reduction process is applied reducing
bounding boxes until no overlap is detected.

3.2. The Risk Estimation Framework

Let us define the cumulative risk score R for a scene as
the weighted sum of n risk elements E.

R =

n∑
i=1

wiEi (1)

A risk element E is a measure of risk. In this work these
include stability S and hazard features H .

Transfer the scene in 
the physics simulator  

For each object apply a force from 
a set of directions sampled 

uniformly on a sphere 

Apply forces of different 
magnitude (red-to-blue colours) 

Stability Plot and 
Risk Value 

Stability Estimation 

Figure 5: The proposed stability estimation mechanism.

Other risk elements obtained from related acquisition de-
vices, such as thermal cameras, material analysis etc can
also be utilised and their impact added to the risk score.
This ensures the proposed framework is extendable as re-
quired.

For the purpose of this paper we define the cumulative
risk scoreR as a function of the weighted elements, stability
S and hazard features H .

R = f(wSS,wHH) (2)

3.3. Proposed Stability Estimation Mechanism

The proposed novel methodology for scene stability es-
timation is based on Newtonian physics. To evaluate sta-
bility, forces are applied to objects within the scene and the
resultant outputs measured (Figure 5). Statistical analysis
on those outputs can be performed providing information
about the properties of the scene. Consequently, allowing
us to model the behavior of segmented objects and compute
the energy output from the applied forces.

Using ‘collision shapes’ a 3D model can be redefined
into a simplistic form, reducing the computational power
needed to emulate its behaviour during simulation. At-
tached to these collision shapes are parameters such as po-
sition, size, mass, friction and angular dampening coef-
ficients. These parameters define the inputs required for
the simulation and therefore what information must be ex-
tracted from a scene. The bounding shape calculated from
an object cluster serves as the guidelines for the collision
shape. Global fixed parameters are defined for the friction
and angular dampening coefficients based on existing mod-
els. The mass is estimated based on the number of voxels
each object is made up of. Estimation of an objects material
would provide a better approximation of mass but is be-
yond the scope of this work, however methods based on the
estimation of an object’s BRDF function could be utilised,
[36, 17] and also considered as another element of risk. The
proposed framework supports multiple acquisition devices
but in this paper Kinect Fusion is utilised. The limitation
of this acquisition device is that it cannot identify solid and
non-solid objects, considering both as solid (e.g. tennis and
golf balls). To overcome these limitations and provide fur-
ther accuracy in the simulation process acoustic or thermal
cameras could be utilised.
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(a) (b)

(c)
Figure 6: Stability evaluation process using Newtonian Physics
(a) Initial layout in the physics simulation (b) Collision occurring
during the simulation and (c) Stability Plot with the circles around
the objects indicating the direction of instability and the radius
corresponding to the severity.

Stability s for a force k on a given object i is considered
as a dimensionless quantity and is defined as the ratio of the
applied force Fk over the summed kinetic energy Kj for all
the objects m in the scene. This is scaled by the probability
Pk,i of the force being applied.

sk,i = Pk,i

(
Fk∑m
j=1Kj

∆x

)
(3)

where Kj =
∑T
t=1

1
2MVt

2 represents the accumulated ki-
netic energy of the object j over time T from a simulation
obtained using numerical integration. Here M represents
mass and V the velocity of the object j at a given time t.
∆x is the object’s displacement, but since the kinetic en-
ergy is calculated numerically over fixed length intervals,
this value is equal to one.

Probability Pk,i represents the likelihood of a given force
Fk being applied to object i. This is defined as whether
the force could collide with the object without hitting first
another entity within the scene. For example forces from
below an object on a plane would collide with the surface
first therefore would not be considered.

Forces F of different strengths are applied to the cen-
ter of each bounding box (object) during the simulation,
with directions sampled from a uniform distribution of an-
gles over a sphere. The resultant overall kinetic energy K
for each object j is calculated. By analysing the amount of

For all the voxelized objects in the 
scenes of 3DRS apply 3DVoxel HOG 

Train a model 
using Adaboost 

Hazard Features Estimation 
3D Voxel HOG Descriptor 

Manually select 
the sharp features 

For each upcoming voxelized object 
in a new scene apply 3DVoxel HOG 

Test using the 
above model 

Obtain the  
Risk Value 

Figure 7: The proposed hazard classification system.

kinetic energy produced by each object for each force we
can ascertain if, during the course of that simulation, an ob-
ject has been dislodged from the surface or if other objects
within a scene have been affected. By varying the strength
of force we build up a picture of how unstable an object is in
its environment. The total stability S of a scene is given as
the sum of the estimated stability s for each force k applied
to each object j.

S =

r∑
k=1

m∑
j=1

sk,j (4)

The outcome of this process will allow us to differenti-
ate between the case of an object (e.g. glass bottle) being
placed at the center of a table or at the edge, evaluating with
enough precision the stability of each scene, (Figure 6).

3.4. Novel Hazard Feature Descriptor

The application of three dimensional descriptors to iden-
tify the properties of an object is a new concept. In the
proposed framework rather than focusing on object recogni-
tion, the detection of hazard features is the core vision prob-
lem. This introduces the novel classification task of recog-
nising hazardous areas in a scene. The novel 3D Voxel HOG
descriptor is introduced, which is specifically designed to be
suitable for local feature recognition whilst also considering
an objects’ density. An overview of the proposed approach
is shown in Figure 7.

The traditional HOG uses the normalized combination of
gradient vectors from a given number of pixels to build up
a histogram of binned angles that relate to the feature. We
extend this process to the third dimension though the use of
voxels and 2D histograms. The process begins by breaking
the voxel volume up into set features spaces f comprised
of a number of cubic 3D cells c, which in turn is made up
of voxels v. For each voxel within a cell the filter mask
[−1, 0, 1] is applied to its neighbouring voxels in all three
dimensions giving us the gradient vector ~g.

The magnitude ‖~g‖ of the gradient vector is obtained and
then its orientation is expressed using the azimuth θ and
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Figure 8: 3D Voxel HOG feature from a cube wall test case, (a)
visualised on its object in 3D, (b) the same 3D representation in
two different orientations, (c) as a 2D Histogram and (d) as a 162
dimension feature vector

zenith φ angles.

(θ, φ) = (cos−1 (
gz√

g2x + g2y + g2z

), tan−1 (gy, gx)) (5)

Additionally a weight w is defined for each voxel, which is
used to scale its contribution to its cell’s 2D histogram. This
is given by the mean value of the voxels within a given three
dimensional kernel indicating the density over this area. By
applying this weight, the proposed approach provides accu-
rate estimates even in the presence of noise.

Once these values are established the voxels within each
cell are binned into a 2D histogram h according to their θ
and φ angles. The value added to the specified bin is given
as the weighted magnitude of the vector w‖~g‖. Finally all
the histograms for each cell within a feature hf are nor-
malised using the L2 norm.

hf →
hf√

‖~g‖22 + e2
(6)

The obtained features are then vectorised and used by the
learning mechanism to create a classification model.

~x3DVHOG = {h1,1, ..., h1,ϕ, ..., hθ,ϕ} (7)

The resultant 2D histograms can be visualised, and
present a way of identifying different types of features
within an object (Figure 8c). Another form of visualisa-
tion plots each possible gradient vector within local 3D
histograms, showing the most common gradient vectors as
stronger (see figure 8a,b).

Training is then carried out to create a model to classify
safe and unsafe local features. The defined features of an
unknown object can then be tested against this model and
return a binary classification for each feature as either haz-
ardous or not. This data then forms the hazard component
of the Risk score.

3D HOG Proposed 3D VHOG Given 3D Objects 

Figure 9: Example showing the differences of the proposed 3D
Voxel HOG features with the 3D HOG [27] indicating that the ob-
jects’ internal density affects the proposed 3D VHOG descriptor.

One of the primary advantages of the proposed 3D Voxel
HOG (3D VHOG) is the consideration of not only the faces
of a mesh but also the area within as well. This ensures that
no additional artifacts are created within the data that may
lead to false classifications, additionally the density of an
object is also taken into consideration (e.g. empty and full
cup). This allows transference of the methodology to other
areas such as medical imaging, for example the proposed
method could detect defects such as osteoporosis in bone
MRI scans which existing methods would not. A visual
comparison of the 3D HOG features suggested in [3, 27]
against 3D VHOG is shown in figure 9 indicating that the
proposed method does not introduce erroneous information
in the internal areas of an object. Importantly 3D VHOG
returns one 2D histogram (visualised in 3D) per cell (Figure
8), as apposed to the other methods that provide multiple 1D
histograms (visualised in 2D).

The use of voxel weighting smooths the edges of an ob-
ject cluster ensuring robustness against noisy input data.
Due to the local nature of the proposed feature, issues re-
lated to the normalization of a mesh are avoided, removing
a potentially complex pre-processing step.
The pseudo code for the 3D Voxel HOG implementation is
outlined below.

1. choose Size of Cell and Block
2. FOREACH Voxel v DO
3. compute Weight w, Gradient (θ, φ),

Vector Magnitude ‖~g‖
4. FOREACH Cell c in Feature f DO
5. create blockHist(theta_bins, phi_bins)
6. FOREACH voxel v in c DO
7. insert w‖~g‖ into blockHist (θ, φ)
8. L2Normalize(blockHist in Feature)

These features are used to create a trained model that
unknown features can be tested against. A binary classifi-
cation is returned defining the object as either being haz-
ardous or not. Adaboost is a learning technique that cre-
ates a non linear classifier to separate data into two groups.
Weak classifiers are defined with a final strong classifier be-
ing a combination of these. At each iteration the weak clas-
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sifiers with the lowest error margin are used to define the
next in a ‘greedy fashion’. Regarding the proposed features
in both cases given N training examples (~x1, ..., ~xN ), the
corresponding labels (y1, ..., yN ) with yi ∈ {−1, 1}, and
an initial distribution of weights W1(i) a strong classifica-
tion modelH(x) is obtained based on the weak classifiers h.
The weak classifiers are trained over a number of iterations
Q using the weights’ distribution Wt. In each iteration the
error εt is estimated based on the current weights Wt, that
are updated before the next iteration.

Wt+1(i) = Wt(i) exp(−atyiht(xi))/Zt (8)

where at = − 1
2 log(εt/(1 − εt)) and Zt = 2

√
εt(1− εt)

is a normalization factor. The strong classifier is defined as
H(x) = sign(r(x)), where r(x) = ~a·~h(x)

‖~a‖1 .
Regarding the boosting approach, because of the way

weak classifiers are selected a complicated feature problem
can be broken down and classified using a sparse classi-
fication rule, based on only a few features. This makes
computation much faster as only a subset of the features
are used. This is essential if the methodology is to be im-
plemented in a real time scenario. Another advantage of
this approach is the explicit minimisation of error, whilst
implicitly maximising the margin. This ensures the final
strong classifier is general avoiding the problems of over-
fitting. Another similar boosting technique uses Support
Vector Machines(SVM). This also provides a non linear, ro-
bust classifier, however tends to have higher computational
requirements. This is due to their classifier taking into ac-
count all the features in a vector as apposed to a subset [23].

Finally, in order to define a second element E of the risk
score R in equation (1) related to the ‘hazard features’ the
obtained outcomes from the classification process above are
utilised.

H3DVHOG =
1

m

m∑
j=1

(∑M
k=1 wHG(j, k)∑M
k=1G(j, k)

)

Hω =
1

m

m∑
j=1

wD(j) (9)

wherewD = f(x) normalised andG = 1
2 (sign(f(x))+1).

4. Results
4.1. Experiment Environment

In our experiments, scenes containing mainly household
objects and toys placed on a surface were utilised. In order
to obtain a ground truth for each scene and to ensure that
the parameters of the tests are fully controllable and repeat-
able the objects were manually placed in specific locations
on the given surface. To effectively test this problem and as

(a) (b) (c)
Figure 10: An example scenario with each of its iterations. The
level of complexity is increased from a simple layout(a) to a com-
plex (c).

no existing dataset fits the proposed work, a new dataset for
risk estimation in 3D scenes (3DRS) was created compris-
ing of 36 scenes captured using RGBD cameras. These 36
scenes are split into 12 different scenarios, each containing
3 objects. Each of these has 3 stability levels in terms of
scene complexity, i.e. the objects are moved closer together
on the plain (Figure 10). These include examples of ‘haz-
ardous’ (scissors, stanley (open), screwdriver, plane, pencil,
pen knife (open), knife, fountain pen, fork, cleaver, ball-
point pen, axe) and safe (vase, stanley (closed), spoon, rubix
cube, pen knife (closed), mug, mouse, laptop, lamp, frame,
bowl, bottle, ball) objects, with multiple instances for most
of them. Additionally an object’s material is not defined in
this work, as such objects within a scene specified as being
made from the same material and have the same friction (1)
and angular dampening coefficients (0.4). The 3D recon-
structed models were processed to remove some noise but
also to close any gaps in the mesh since this is essential for
the voxelization stage. Regarding the voxelization process
of the 3DRS dataset, a set resolution of 256 cubic voxels
was defined for the voxel volume. The resolution has a di-
rect impact on computation time for each stage and as such
this represents a reasonable trade off for processing time
against object detail. For segmentation the the Mean Shift
algorithm was found to be the most efficient at separating
the objects across all the complexity levels.

4.2. Scene Stability

To demonstrate this concept, initially 3 experiments were
conducted in which an example bounding shape is passed to
the physics simulation and the resultant stability visualised,
(Figure 11). The simulation software employed is based on
the Bullet 3D Real-Time Multi-physics Library [26]. The
output from which is the velocity and angular velocity infor-
mation for each object at each time frame. In Figure 11 the
stability for the object is visualised, position of the spheres
represent the source (direction) of the force and their mag-
nitude. Colour and size represent the resultant instability.
In this example force was applied from points around the
object on a single plane. It can be seen that as the object
moves closer to the centre of the surface the energy output
decreases, representing an increases in stability (Figure 11)

The stability of each scene within the 3DRS dataset was
analysed. For these experiments, force was applied from
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Figure 11: Results visualised using spheres placed around the ob-
ject indicating the direction and the level of instability in case (a)
Far Left Corner, (b) Left Side and (c) Centered and (d) Scene en-
ergy per stability level in graph form.

uniform sampled points along a sphere and the scenes’ over-
all stability quantified according to equations (3), (4). Some
stability visualizations are presented in Figure 12. The re-
sultant graph demonstrates that as the objects get closer to-
gether and positioned more centrally the scenes risk is re-
duced (Figure 13). Due to the nature of this type of evalu-
ation, a ground truth is unnecessary as we are quantifying
or estimating an attribute of a scene. This allows for good
generalisation to other scene scenarios as the technique re-
lies on the measurement of a physics simulation rather than
a supervised classification technique.

4.3. 3D Voxel HOG Experiments

The second component proposed to evaluate the risk
level of a scene relates to an objects’ properties or in this
case it’s ‘hazardous features’. The evaluation of risk or what
constitutes a hazard is contextual and as such varies in each
situation. One of the areas this work aims to expand is the
implementation of smart homes and domestic robotics. As
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Figure 12: Scenes with the risk and stability levels visualised.
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Figure 13: Stability Value for each scenario per Stability Level, (a)
Proposed methods, (b) Work presented in [37]. The vertical axis
indicates the stability value obtained using equation (4), and the
horizontal axis indicates the four different stability levels shown
in figure 10. Each of the lines corresponds to one of the scenes.
Higher the stability value less stable is the scene.

these technologies are often utilised in environments where
people reside, our definition of risk relates to the household
environment. However these environments also suffer from
variance, for example a smart enabled household with chil-
dren would consider many more things hazardous than one
without. In this case we look to define all structures of the
objects in the 3DRS dataset with sharp edges and corners.

As such we extract and analyse the 3D Voxel HOG de-
scriptor over all the 3DRS dataset, conducting comparisons
with state of the art 3D descriptors. In the proposed 3D
VHOG method a number of variables are defined. Based
on experimental results the values were set for feature and
cell size; 2 cubic cells and 16 cubic voxels respectively. The
bins for the 2D histogram were set at 18 for θ and 9 for
φ. Each of the preprocessed objects had their 3D VHOG
features extracted. As is normal when evaluating a classifi-
cation based task (e.g face detection/object recognition etc)
the ground truth for the hazardous areas was manually la-
beled. Once established, the histogram data from each fea-
ture (8 cells) was arranged into a mean 162 dimension fea-
ture vector for training using Adaboost. Testing was carried
out based on the ‘leave-one out’ protocol. The results for all
the descriptors are summarised in Table 1. From the results
obtained the overall hazardous object recognition accuracy
was highest for the suggested 3D VHOG method indicating
a strong potential of the proposed descriptor for risk estima-
tion over Harris, Sift and the original HOG. In each case the
comparison method has been converted to work with a 3D
environment. Due to the nature of the 3D Harris operator
results across the dataset were inconsistent. The operator
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Figure 14: The 3D Voxel HOG visualisation of objects with the
classified areas as hazardous coloured red.

Feature F1 Sensitivity Accuracy
3D HOG [27] 0.533 0.500 0.363
3D Sift [28] 0.333 0.250 0.272

3D Harris [30] 0.200 0.110 0.272
3D VHOG 0.625 0.625 0.454

Table 1: Feature comparison against other existing 3D descriptors.

Object B C F H K M
Hazard Score 0 0.5 0.5 0.6 0.5 0

Object P Pl S Sd Bt
Hazard Score 0.7 0.6 0.3 0.6 0

Table 2: Hazard scores for the testing objects with higher val-
ues indicating higher risk (e.g. presence of hazardous features).
Some of the objects are listed below: Ball, Cleaver, Fork, Hammer,
Knife, Mug, Pencil, Plane, Scissors, Screwdriver, Bottle. Values
obtained using Equation (9).

classified almost all features as hazardous, highlighting it
as ineffective for use in the local space. In Figure 14 exam-
ples of the 3D VHOG features for some of the objects are
shown.

Since the ‘hazard features’ of the testing objects have
been estimated based on the proposed 3D VHOG descrip-
tor and the classification mechanism, the level of risk based
on the objects’ characteristics is defined using the equation
(9). The obtained results for some of the testing objects are
shown in Table 2 indicating that the proposed method pro-
vides reasonable and accurate estimates.

4.4. Overall scene risk evaluation

An overall confidence (risk) score for each scene is fi-
nally estimated combining the previous partial results using
equation (1). All the results are shown in table 3.

5. Conclusions
In this work the concept of risk analysis is considered for

3D scenes. A novel approach to evaluating scene stability

Scenario 1 2 3 4 5
Risk 0.8 0.5 0.6 0.5 0.6

Scenario 6 7 8 9 10
Risk 0.6 0.7 0 0.7 0.8

Table 3: The overall risk value for each one of the scenes. Values
obtained using Equation (1) (4) (9).

is given using Newtonian Physics. The 3D Voxel HOG de-
scriptor is introduced and designed to represent the intrinsic
properties of an object. When compared with other state of
the art features, 3D VHOG provided the highest accuracy in
risk detection. Additionally 3D VHOG has the advantages
of considering an object’s density as well avoiding issues
relating to the normalization of a mesh. Furthermore, a new
dataset was developed for 3D scene risk analysis and exper-
iments were performed showing that the proposed frame-
work has the potential to accurately measure risks in scenes.
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