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Abstract—An application-oriented integration concept for a4
half-bridge switch assembly has been developed based on the5
latest generation 70-μm-thin insulated gate bipolar transistorsandAQ1 6
diodes, which are rated at 600 V/200 A. This paper addresses the7
design and reliability of the assembly, with a fully bondwireless8
approach using cylindrical copper bumps. Advanced numerical9
structural simulation techniques are also applied to assess the10
influence of interconnect characteristics (material, size, and shape)11
and try to determine an optimum solution for reducing the stress12
and creep strain development in the solder joint. Preliminary13
experimental tests of the power module are also carried out at14
different switching frequency and loads to prove the validity of15
the proposed solution in terms of electromagnetic performance.16

Index Terms—Copper bump, flip-chip, power electronics pack-17
aging, solder joint, thermomechanical stress.18

I. INTRODUCTION19

THIS paper addresses the reliable integration of a half-20

bridge switch (HBS) based on last generation 70-μm-21

thin 600-V/200-A insulated-gate bipolar transistors (IGBTs)22

and diodes; in particular, it advances the state of the art as23

regards a recently presented packaging concept, which targets24

the optimization from an application point of view [1]. In25

the application, two transistors with antiparallel diodes need26

to be connected in series (high-side and low-side switch) to27

build a half-bridge power switch (HBS) configuration, as ex-28

tensively required, for instance, by synchronous rectified dc–dc29

converters and by dc–ac converters (i.e., inverters). During30

operation within such power converter topologies, load current31

commutations always take place between high-side transistor32

and low-side diode (Cell-P) and, vice versa, between low-side33

transistor and high-side diode (Cell-N). Current commutation34

between antiparallel transistor–diode pairs only takes place35

at zero voltage in the case of synchronous rectified dc–dc36

converters, and at zero current in the case of inverters, and37

is thus, by definition, noncritical in both cases (i.e., it does38

not imply power dissipation or potentially destructive voltage39
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overshoots). Therefore, as pointed out in [2] and illustrated in 40

Fig. 1, for improved switching performance, packaging design 41

should aim at integrating and minimizing not the high-side or 42

low-side basic switches, but rather the positive and negative 43

switching cells, i.e., the high-side transistor/low-side diode 44

and the low-side transistor/high-side diode pairs, respectively 45

(the terminology positive and negative cell is derived from 46

the sign of the load current during inverter operation). Based 47

on these considerations, this paper presents an advanced and 48

application-driven integration approach of a half-bridge power 49

switch. In particular, in trying to optimize the switching and 50

thermal performance of the HBS, the assembly is designed 51

to construct with post (power bump) bondwireless sandwich 52

packaging technology, which enables high power density levels, 53

with double-sided cooling and reduced stray inductance. In 54

the preliminary test, bondwires are still used here only for the 55

transistor drive interconnection (i.e., gate and emitter) to use the 56

existing substrate at this stage. However, the power and drive 57

loops are clearly separated, and the driving loops are kept very 58

small. 59

The use of thin devices in the switch implementation offers 60

not only superior electrical but also thermal performance, as 61

compared with thicker ones, and brings along increased power 62

density figures [3]. Consequently, here, the main focus is 63

on developing interconnect solutions, which can improve the 64

thermomechanical performance of the assembled switch during 65

fabrication and operation, preventing the benefits of thin device 66

technology from being penalized at the packaging level. 67

II. SWITCH ASSEMBLY 68

The devices used for the switch assemblies are shown in 69

Fig. 1: 10× 9.5× 0.07 mm3 IGBTs and 9.5× 5.5× 0.07 mm3 70

diodes, where the top metallization is treated with NiP/Ag 71

finish being solderable. To achieve optimum performance in 72

the application, packaging needs to target the integration of the 73

positive and negative cells in the HBS (see Fig. 1); this can 74

be achieved by having the devices in the same cell soldered 75

on separate substrates, which are then mounted, one on top of 76

the other, by means of interconnect posts (bumps), as shown in 77

Fig. 2. This results in a low stray inductance and double-sided 78

cooled power switch, where all devices have their backside in 79

direct contact with a cooling surface [1]. Here, both the top and 80

bottom substrates are direct bonded copper (DBC) consisting 81

of a 1-mm-thick aluminum nitride tile sandwiched by 0.3-mm- 82

thick copper on both sides. 83

The chips are soldered to the DBC substrates with 0.1-mm- 84

thick Sn–3.5Ag solder alloy. The bumps are Cu with an outside 85
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Fig. 1. Schematic of half-bridge power switch and the corresponding structural view.

Fig. 2. Stacked assembly of substrate–chip–bump–substrate for the HBS. (a)
Overall view. (b) Open view.

diameter of 2 mm and length of 3 mm. They are soldered86

to the front sides of the chips with Sn–3.5Ag solder of 0.1–87

0.4 mm in thickness, following the shape of the bumps. Due to88

the reduced thickness of the devices in this case, it is important89

to understand the effects of different interconnection geome-90

tries, sizes, materials, and shapes to yield optimum reliability.91

In particular, we report on a comparison of five hollow cylinder92

(0.5, 0.375, 0.25, 0.125, and 0.0625 mm in wall thickness)93

copper bumps with solid ones as the interconnect solution (see94

Fig. 3).95

III. FE MODELING AND SIMULATION96

The developed switch model was characterized electromag-97

netically and electrothermally, employing structural numerical98

analysis tools [13], and tested for functional performance.99

Fig. 4(a) shows the 3-D model mesh for the electromagnetic100

characterization of the assembly, which was performed with101

FastHenry [14]. As for the model in Fig. 4, it has been assumed102

that the paths through the chips, solders, and bumps were103

Fig. 3. Meshing systems used to discretize the assemblies with (a) solid
bumps and (b) 0.5-mm-thick hollow bumps.

considered as 5× 5× 2 mm3 copper filament cubes, which 104

carry uniform current and are connected together as a block 105

(i.e., two for diode and four for IGBT). The model also uses 106

a copper conducting material with an electrical conductivity 107

of 59–600–000 S/m. The extraction was taken on a single 108

path, while the unnecessary paths were being excluded, so that 109

they do not contribute to the measuring path. The values of 110

parasitic inductance between all terminal pairs [collector (C), 111

emitter (E), and load (L)] were extracted and provided very 112

encouraging indications. For instance, the estimated parasitic 113

inductance between collector and emitter was less than 7 nH 114

above 10 kHz (see Fig. 4). 115

The adhesions between the interfaces of the die and solder, 116

and between copper bump and solder, are the most critical 117

surfaces in the whole module because they are prone to failure 118
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Fig. 4. (a) Three-dimensional model for electromagnetic characterization of
the module; (b) extracted parasitic inductance.

with thermal cycling [4]. Finite element (FE) thermal and119

thermomechanical modeling and simulations have been carried120

out to compare the maximum junction temperature of the121

chips and the maximum residual stress/creep stain develop-122

ments in the solder joints in the three assembles constructed123

using the three different bumps. The modeling and simulation124

were done using commercial FE analysis software ABAQUS125

6.10-2 and its graphic user interface Complete Abacus126

Environment. Fig. 3 presents an overview of the meshingAQ2 127

systems consisting of 153–134 and 143–690 C3D8 and C3D6128

linear brick elements and triangular prism elements to discretize129

the assembly with solid and 0.5-mm-thick hollow cylinder130

bumps. Here, the largest element is 1× 1× 0.45 mm3, and131

the smallest element is 0.5× 0.25× 0.025 mm3. In addi-132

tion, S4 shell elements of 0.5 mm × 0.5 mm or 0.5 mm133

× 0.25 mm, in size, were also used to discretize the NiP134

(nickel–phosphorus) finish on the surfaces of the substrates135

and the Al metallization on two sides of the chips and in-136

cluded in the thermomechanical modeling and simulation. For137

both diodes and IGBTs, the top side was treated with a gal-138

vanic process consisting of a 3.2 μm/500 nm/300 nm-thick139

AlSiCu/NiP/Pd solderable metallization, and the back side140

consists of a 1 μm/300 nm/300 nm-thick AlTi/Ni/Ag metal-141

lization. However, in the present model, they were assumed142

as a layer of 3.2-μm-thick Al on the top side and a layer of143

1-μm-thick Al on the back side of the chips. This is based on the144

fact that most of the NiP/Pd and Ni/Ag layers would react with145

the liquid Sn–3.5Ag solder to form intermetallic compounds146

(IMCs) embedded within the matrix of the solder during the147

reflow process, and such IMCs were neglected.148

As shown in Fig. 5, the assembly was first subjected to149

a predefined temperature profile to simulate the stress and150

strain development during the reflow process. In this stage, all151

the solder joints were deactivated, and thus, strain/stress did152

not develop in them until solidification of the molten solder153

occurred. Then, power losses of the IGBTs and diodes (see154

Fig. 6) were taken as heating sources to simulate the thermal155

performance of the assembly during a realistic mission pro-156

Fig. 5. Temperature profile representative of the reflow process.

Fig. 6. Power losses of one IGBT and one diode during a mission profile
derived from a real system operation.

Fig. 7. Boundary condition of heat exchange applied in the thermal simulation
during the mission profile.

file, and the heat exchange boundary condition, as described 157

in Fig. 7, was applied to both the top and bottom cooling 158

surfaces of the assembly. The heat exchange coefficient of 159

5000 W · m−2 · K−1 is a typical value for using a forced- 160

convection cooling in power electronics. The temperature field 161

obtained from the thermal simulation was used as inputs to sim- 162

ulate the further development of stress/strain in the assembly 163

during the mission profile. 164

The thermal and mechanical properties of the Si, AlN ce- 165

ramic tile, and NiP finish on the substrates for the thermal and 166

thermomechanical simulations are listed in Table I [4]–[6]. For 167

the rest of the materials in the assembly, Chaboche’s plastic 168

model was used to describe the mechanical properties of the 169
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TABLE I
THERMAL AND MECHANICAL PROPERTIES OF Si, AlN CERAMIC LE, AND

NiP FINISH

Fig. 8. Simulated results of temperature distribution in the assembly for 0.5-
mm-thick hollow bumps: (a) whole assembly and (b) assembly with the top
substrate removed.

Cu and Al, and Anand’s creep model was used to describe170

the mechanical properties of the Sn–3.5Ag solder alloy. All171

the mechanical and thermal properties for the Cu, Al, and172

Sn–3.5Ag were taken from [5] and [6] and are not repeated173

here.174

The simulation cases of the three assemblies with the three175

different bumps were executed on a PC computer with an Intel176

Pentium Core i7 CPU 976 at 3.20-GHz processor and 8-GB177

RAM. The running times were about 50 h, for all the cases,178

to simulate the thermomechanical residual stress/strain devel-179

opments in the assemblies after the reflow process followed by180

six cycles of the mission profile.181

From the simulation results, the highest junction temperature182

was observed on the IGBT attached on the top substrate and183

at 23.01 s during the mission profile. Figs. 8 and 9 present the184

simulated results of temperature distribution in the assembly185

constructed with the 0.5-mm-thick hollow bumps at 23.01 s186

during a realistic mission profile, where the bottom chips and187

substrate of the assembly are separated for observing the hottest188

IGBT in Fig. 8. Such a result is readily understood because189

the power loss by an IGBT was higher than a diode, and190

Fig. 9. Simulated temperature distributions in the hottest IGBT of the assem-
bly during the mission profile for 0.5-mm-thick hollow bumps.

Fig. 10. Dependence of the simulated highest temperature in the assembly on
the wall thickness of the bumps.

the cooling surface of the top substrate was slightly smaller 191

than the bottom substrate. The simulated results of temperature 192

distribution in the assembly constructed with the other five 193

types of bumps were similar, but the highest temperature in the 194

hottest IGBT depended on the wall thickness of the bumps (see 195

Fig. 10). The highest temperatures in the assembly constructed 196

with the six types of bumps increased with decreasing the wall 197

thickness of the bumps, and were 16.2 ◦C–29.3 ◦C lower than 198

the highest temperature in the assembly where the bumps were 199

assumed to have an extremely low thermal conductivity of 200

1.0× 10−10 W/(K · m). In all the six cases with real bumps, 201

the highest temperature location is at the center of the IGBT. In 202

the case where the bumps were assumed to have extremely low 203

thermal conductivity, the highest temperature location is still at 204

the same IGBT, but has been moved to one side (see Fig. 11). 205

206

During both reflow process and switch performance over six 207

cycles of the realistic mission profile, the FE thermomechanical 208

simulation results indicate that one of the solder joints between 209

the bumps and the chips has the highest thermomechanical 210

stress and creep strain accumulation among all the solder joints. 211

The maximum von Mises stress and creep strain accumulations 212

are at the corners of the solder layer in contact with the emitter 213

metallization of the IGBT, which are the most critical areas 214

of failure. Such a result can be attributed to the mismatch 215

of thermal expansion between the Sn–3.5Ag solder and the 216
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Fig. 11. Simulated results of temperature distribution in the assembly for
the bumps assumed to have an extremely low thermal conductivity of 1.0×
10−10 W/(K · m): (a) whole assembly and (b) the hottest IGBT.

Fig. 12. Simulated result of distribution of von Mises stress in the solder joints
for the die attachment after a reflow process.

Si chips. Furthermore, it is also related to the joining area217

or the shapes and size of the bumps. This can be seen from218

the representative simulated results of the assembly with the219

0.5-mm-thick bumps, as shown in Figs. 12–19. In Figs. 14, 15,220

18, and 19, the first and last rows of four bump solders are for221

the two diodes, and the center four rows of bump solders are for222

the two IGBTs.223

Figs. 20–23 compare the simulated maximum residual von224

Mises stress and creep strain accumulation in the solder joints225

for the die attachment and bump interconnects between the226

assemblies with the six different bumps. In comparison with the227

solid bumps, the hollow bumps can reduce the residual stress228

in the as-reflowed solder joint both for the die attachment and229

for the bump interconnects (see Figs. 20 and 21). It is noted230

that the maximum residual stresses in the solder joints for the231

Fig. 13. Simulated distribution of von Mises stress in the solder joints for the
die attachment after six cycles of the mission profile.

Fig. 14. Simulated distribution of von Mises stress in the solder joints for
bump interconnects after the reflow process.

Fig. 15. Simulated distribution of von Mises stress in the solder joints for
bump interconnects after six cycles of the mission profile.

bump interconnects decrease with decreasing the wall thickness 232

of the bumps. This is readily understood because bumps with 233

thinner walls can be the bumps to be more compliant. As a 234

result, the more compliant bumps can withstand more elastic 235

deformation, and the solder joints and Si dice need relatively 236

low stress development against the mismatch coefficients of 237

thermal expansion and the different deformations. However, the 238

maximum residual von Mises stress in the solder joints for the 239

die attachment in the assembly with the 0.5-mm-thick bumps is 240

slightly lower than those in the assemblies with the other hollow 241

bumps. This may be attributed to the nonlinear stress–strain 242

relationship for the creep of the solder alloy. This is because 243
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Fig. 16. Simulated distribution of creep strain accumulation in the solder
joints for the die attachment after the reflow process.

Fig. 17. Simulated distribution of creep strain accumulation in the solder
joints for the die attachment after six cycles of the mission profile.

Fig. 18. Simulated distribution of creep strain accumulation in the solder
joints for bump interconnects after the reflow process.

a higher stress may lead to a higher creep deformation, while a244

higher creep deformation may result in a larger stress release.245

During the cooling stage of the reflow, the solder joints for the246

die attachment in the assembly with the 0.5-mm-thick bumps247

were probably experienced with relatively large stress release.248

Therefore, the maximum residual von Mises stress in the solder249

joints for the bump interconnects still decrease.250

After some stress release during the first cycle of the mission251

profile, the maximum residual von Mises stress in the solder252

joints for the die attachment is almost the same for the six253

different bumps. The stress release in the assembly with the254

0.5-mm-thick bumps is negligible, and the stress release in255

Fig. 19. Simulated distribution of creep strain accumulation in the solder
joints for bump interconnects after six cycles of the mission profile.

Fig. 20. Evolution of the simulated maximum residual von Mises stress in
the solder joints for the die attachment, with respect to cycles of the mission
profile.

Fig. 21. Evolution of the simulated maximum residual von Mises stress in
the solder joints for bump interconnects, with respect to cycles of the mission
profile.

the assembly with the solid bumps is the largest. After the 256

stress release during the first cycle of the mission profile, the 257

maximum residual von Mises stress in the solder joints for 258

the bump interconnects still decrease with decreasing the wall 259

thickness of the bumps. Again, this can be explained with the 260

increased compliance with decreasing the wall thickness of the 261

bumps. Indeed, the difference of the maximum residual von 262
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Fig. 22. Evolution of the simulated maximum creep strain accumulation in
the solder joints for the die attachment, with respect to cycles of the mission
profile.

Fig. 23. Evolution of the simulated maximum creep strain accumulation in
the solder joins for bump interconnects, with respect to cycles of the mission
profile.

Mises stress in the solder joints in the assemblies with the263

different bumps is quite low. This is due to the fact that there264

was stress saturation during the creep deformation.265

In response to the stress release during the first cycle of the266

mission profile (see Figs. 20 and 21), the maximum creep strain267

accumulations in the solder joints for both the die attachment268

and the bump interconnects over this cycle are somewhat lower269

than those over the other five cycles of the mission profile,270

which are almost constants (see Figs. 22 and 23). Among271

the six assemblies with the six different bumps, the overall272

maximum creep strain accumulations in the solder joints for273

the die attachment, with respect to cycles of the mission profile,274

slightly increase with a decrease in the wall thickness of the275

bumps. This can be attributed to the fact that the solder joints276

in the assembly with thinner hollow bumps were subjected to277

higher temperatures (see Figs. 8 and 10), and the solder alloy278

has lower creep resistance at higher temperatures. However,279

the maximum creep strain accumulation in the solder joints280

for the bump interconnects clearly decrease with a decrease281

in the wall thickness of the bumps. The 0.5-mm-thick bumps282

can slightly reduce, and the 0.0625-mm-thick bumps can sig-283

Fig. 24. Lifetimes predicted from the simulated maximum creep strain accu-
mulation per cycle for the initiation of fatigue cracks in the solder joints.

nificantly reduce the maximum creep strain accumulation in 284

the solder joints for the bump interconnects when compared to 285

that for the solid bumps. Such a result reveals that the increase 286

in the compliance of the bumps through reduction in the wall 287

thickness is more effective than reducing the temperatures 288

through an increase in the wall thickness to reduce the creep 289

strain accumulation in the solder joints. 290

From the point of view of structural reliability, the reliability 291

of the solder joints can be assessed with the creep strain range, 292

accumulation, and energy density [5], [8], [9]. In the present 293

work, we employ the lifetime model of the SnAgCu solder 294

joints based on the creep strain accumulation [9], as follows: 295

Nf =
1

0.0405Δεcr
(1)

where Nf is the lifetime in number of cycles, and Δεcr is 296

the creep strain accumulation per cycle. This is because the 297

eutectic Sn–3.5Ag solder alloy used to join the present Cu 298

bumps should be saturated with Cu during the reflow process. 299

Applying (1) to the maximum creep strain accumulations per 300

cycle, which were calculated in Figs. 22 and 23, the predicted 301

lifetimes are presented in Fig. 24. It can be seen that thinner 302

bumps can effectively improve the reliability of the assembly. 303

The maximum creep strain accumulations per cycle in all the 304

solder joints have been used, and thus, the predicted lifetimes 305

are better considered as the cycles of the mission profile, at 306

which fatigue cracks are initiated in the solder joints. They 307

can be used to compare the different bumps and optimize the 308

design. The lifetimes corresponding to the complete failure of 309

the solder joints should be longer than these predictions. 310

It is difficult to manufacture the hollow bumps with a wall 311

thickness thinner than 0.0625 mm. Based on the aforemen- 312

tioned simulation results, the 0.0625- and 0.125-mm-thick hol- 313

low bumps lead to an increase of 8.3 ◦C and 13.6 ◦C for the 314

highest temperature in the hottest IGBT, but ∼35% longer for 315

the lifetime of the solder joints for the bump interconnects than 316

the solid bumps. Therefore, it is reasonable to select a wall 317

thickness of the bumps between 0.0625 and 0.125 mm. 318
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Fig. 25. Structure of half-bridge prototype (HBS).

IV. SWITCH PROTOTYPE AND PRELIMINARY319

FUNCTIONAL TESTING320

An initial prototype was constructed with the AlN-based321

substrate available in our laboratory. First the transistor and322

diode chips are soldered underside (collector and cathode)323

onto a DBC substrate with a 100-μm-thick Sn–3.5Ag preform324

that is employed in a fluxless reflow soldering process at a325

peak temperature of 260 ◦C for 5 min. Ultrasonically bonded326

375-μm-thick aluminum wires are used to create the gate and327

emitter interconnections needed to drive the IGBT. These wires328

are not power connections but only driving signals. Then, the329

cylindrical copper bumps are soldered onto the chips using the330

62Sn36Pb2Ag solder paste reflowed at a peak temperature of331

240 ◦C for 5 min. Finally, the two substrates shown in Fig. 25332

are positioned, one on top of the other, and soldered using333

the 62Sn36Pd2Ag solder paste at a temperature of 260 ◦C334

for 5 min.335

The functionality of the prototype was tested in a basic half-336

bridge dc–ac converter, which can be implemented on typical337

working conditions of multilevel converters. Fig. 25 shows the338

structure of the HBS topology, where the top view of the HBS339

structural halves with the indication of the electrical terminals340

of HS_D and HS_T, corresponding to the high-side diode and341

transistor, respectively; LS_D and LS_T relate to the low-side342

diode and transistor, respectively. EH, GH, and EL, GL are the343

high- and low-side emitter and gate terminals, respectively.344

Fig. 26 illustrates the fully integrated prototype assembly,345

containing two heatsinks, fans, dc-link capacitors, and resistors346

mounted all together, such that the gate drive is connected at347

the bottom and the dc-link capacitors and resistors to the top348

part of the power module. This configuration will not only349

isolate the gate signals to/from the power circuit but also reduce350

the external loop inductance of the wires connected to the351

module where the dc-link capacitors and the gate signals are352

very close to the devices. The test conditions were set, as353

depicted in Table II. A fixed dead time of 0.9 μs was chosen,354

and the inverter is tested in an open-loop system. Two identical355

heatsinks, each embedded with a 12-V fan, were attached to356

Fig. 26. Half-bridge power module.

TABLE II
DESIGN PARAMETERS OF THE POWER MODULE

both cooling surfaces of the switch, in order to cool down the 357

module at high power rating while providing space exploitation 358

to the overall size of the power cell. 359

The gate drive circuit and the power side interconnections 360

are kept very close to the power converter, in order to reduce the 361

noise pickup at the gate signals and parasitic inductances. As for 362

the schematic diagram (see Fig. 27), the input is center tapped 363

with dc-link capacitors. This kind of configuration requires 364

a very large capacitor value to decrease the low-frequency 365

voltage oscillation at the capacitor midpoint. Here, both elec- 366

trolytic and high-frequency capacitors are used to suppress the 367

voltage oscillation at the dc bus. For the gate signal, a basic 368

pulsewidth modulation strategy is used, where the carrier and 369

modulating signals are taken from external signal generators 370

and are properly processed inside the gate drive to provide 371

the required sequence. Both Gate_H and Gate_L drive signals 372

are passed through isolation, deadtime, and current boosting 373

circuitry to prevent shoot through and enable high-frequency 374

operation of the power transistors. The heatsink was equipped 375
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Fig. 27. Schematic of HBS test-circuit.

Fig. 28. Experimental result: collector–emitter voltage.

with a thermocouple on the device side closer to the IGBT,376

so that the average heatsink and device temperature can be377

estimated.378

Two LeCroy differential probes were placed across the379

high-side transistor and the load resistor of 19.2 Ω, and the380

corresponding results were then observed using a LeCroy os-381

cilloscope. The representative experimental result shown in382

Fig. 28 is the voltage across the switch (Vce), and the exper-383

imental result in Fig. 29 is the voltage across the load resistor384

(V_AB) and output current.385

The test results shown in Figs. 28 and 29 were taken, and an386

average steady-state temperature of 70 ◦C was recorded, while387

the switch was operating at 400-V input voltage, 12-V fan volt-388

age, and 20-kHz switching frequency. These results confirm the389

perfect functionality of the switch and, more importantly, reveal390

a very contained value of parasitic inductance, as shown in the391

graph depicted in Fig. 28. As for the result, it is clear that there392

is an absence of voltage overshoot across the switch during393

current commutation. In addition, the result also agrees with394

the reduced stray inductance extracted by the electromagnetic395

simulation.396

The graph shown in Fig. 30 is the calculated efficiency of397

the converter, using the supply input and experimental results398

at three different frequencies, as follows:399

η =
Pout

P ′
in

× 100% (2)

P ′
in =Pin − PR (3)

PR =
2
(
Vin

2

)2

R
(4)

Fig. 29. Experimental result: output voltage (V_AB) across the (a) load
resistor and (b) output current.

Fig. 30. Efficiency as a function of output current at different switching
frequencies.

where 400

Pin input power of the overall circuit; 401

Pout output power; 402

P ′
in converter input power. 403

The total power consumed by the two resistors (R1 and R2 404

in Fig. 27) was evaluated using (4) and deducted from the 405

measured input power (Pin), which is the power that entered 406

into the converter. Then, the efficiency of the converter is 407

calculated. 408

Looking from the efficiency graph, at the higher switching 409

frequency of 20 kHz, it can be seen that the efficiencies 410

are still above 90% at light and full loads. The efficiency at 411

20 kHz is 4% lower than that of the 10-kHz switching frequency 412

operation. However, a 20-kHz frequency operation can save 413
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TABLE III
LOAD INDUCTOR COMPARISON

significant costs on the external passive components and make414

for a smaller package, while reducing the output ripple current.415

The price list shown in Table III indicates that using almost the416

same output ripple current of 0.5 A, a 20-kHz switching fre-417

quency operation can reduce the cost of the inductor by almost418

three times, using 10-kHz frequency operation. In addition, it419

is worth mentioning that the presented efficiency graph does420

not include the power consumed by the driver circuit, and it421

only includes the power semiconductor device losses, input422

resistance losses, and output inductance losses.423

V. CONCLUSION AND OUTLOOK424

This paper has presented an advanced integration approach425

for power device packaging, demonstrating the correct elec-426

trical functionality of the half-bridge power switch and its427

thermal performance. Solid bumps and thicker hollow bumps428

have better thermal performance than thinner hollow bumps,429

in terms of reducing the temperatures at the hottest IGBT.430

However, thinner hollow bumps can reduce the creep strain431

accumulation in the critical solder joints, as compared to the432

solid bumps and thicker hollow bumps. As for the thermome-433

chanical simulation results, the 0.0625-mm-thick bumps can434

significantly reduce the maximum creep strain accumulation in435

the solder joints for the bump interconnects. For this reason,436

such results can effectively improve the reliability of the assem-437

bly, and the approach can greatly enhance power density and438

reduce stray inductance, while enabling double-sided cooling439

capability. Preliminary experimental results show an interesting440

advancement of the state of the art, which is represented by the441

recently proposed sandwich package concepts based on solid442

bump interconnections and double-sided cooling [10]–[12], in443

particular by ensuring a more even temperature distribution444

within the power module and by further reducing parasitic445

inductance. For future work, it is anticipated to extend this446

approach to a more advanced scheme while further reducing the447

stray inductance, improving the reliability of such assemblies448

and the ability to test with a direct substrate liquid cooling449

system.450

REFERENCES451

[1] A. Solomon and A. Castellazzi, “Application driven integrated design of452
a half-bridge power switch,” in Proc. IEEE ISPSD ICs, San Diego, CA,453
USA, 2011, pp. 268–271.454

[2] F. Z. Peng, “Revisit power conversion circuit topologies-recent advances455
and applications,” in Proc. IEEE 6th IPEMC-ECCE Asia, Wuhan, China,456
May 2009, pp. 188–192.457

[3] H. R. Chang, J. Bu, G. Kong, and R. Labayen, “300 A 650 V 70 um thin458
IGBTs with double-sided cooling,” in Proc. IEEE ISPSD ICs, San Diego,459
CA, USA, 2011, pp. 320–323.460

[4] X. S. Liu, S. Haque, and G.-Q. Lu, “Three-dimensional flip-chip on flex461
packaging for power electronics applications,” IEEE Trans. Adv. Packag.,462
vol. 24, no. 1, pp. 1–9, Feb. 2001.463

[5] A. Zeanh et al., “Thermomechanical modelling and reliability study of 464
an IGBT module for an aeronautical application,” in Proc. 9th Int. Conf. 465
EuroSimE, 2008, pp. 1–7. 466

[6] A. Zeanh, O. Dalverny, M. Karama, and A. Bouzourene, “Lifetime and 467
reliability assessment of AlN substrates used in harsh aeronautic environ- 468
ments power switch modules,” Adv. Mater. Res., vol. 112, pp. 113–127, 469
2010. 470

[7] W. W. Sheng and R. P. Colino, Power Electronic Modules: Design and 471
Manufacture. Boca Raton, FL, USA: CRC Press, 2005. 472

[8] P. Solomalala et al., “Virtual reliability assessment of integrated power 473
switches based on multi-domain simulation approach,” in Proc. ESREF, 474
Arcachon, France, 2007, pp. 1343–1348. 475

[9] A. Syed, “Accumulated creep strain and energy density based thermal 476
fatigue life prediction models for SnAgCu solder joints,” in Proc. ECTC, 477
Las Vegas, NV, USA, 2004, pp. 737–746. 478

[10] M. Mermet-Guyennet, “New structure of power integrate module,” in 479
Proc. 4th CIPS, Naples, Italy, 2006, pp. 1–6. 480

[11] J.-N. Calata, J.-G. Bai, L. Xingsheng, W. Sihua, and G.-Q. Lu, “Three- 481
dimensional packaging for power semiconductor devices and modules,” 482
IEEE Trans. Adv. Packag., vol. 28, no. 3, pp. 404–412, Aug. 2005. 483

[12] C. Gillot, C. Schaeffer, C. Massit, and L. Meysenc, “Double-sided cooling 484
for high power IGBT modules using flip chip technology,” IEEE Trans. 485
Compon. Packag. Technol., vol. 24, no. 4, pp. 698–704, Dec. 2001. 486

[13] [Online]. Available: http://www.3ds.com/products/simulia/abaqus/ AQ3487
[14] [Online]. Available: http://www.fastfieldsolvers.com/ AQ4488

Adane Kassa Solomon received the M.Eng. degree 489
in electrical and electronic engineering in 2011 from 490
The University of Nottingham, Nottingham, U.K., 491
where he is currently working toward the Ph.D. 492
degree. 493

His area of research is advanced packaging and in- 494
tegration solutions for enhanced performance power 495
converters. 496

Jianfeng Li received the B.S. degree in mineralogy 497
from Nanjing University, Nanjing, China, in 1991 498
and the M.S. and Ph.D. degrees in materials science 499
from the Shanghai Institute of Ceramics, Chinese 500
Academy of Sciences, Shanghai, China, in 1996 and 501
1999, respectively. 502

In 2008, he joined the Power Electronics Machines 503
and Control Group, The University of Nottingham, 504
Nottingham, U.K., where he is currently a Research 505
Fellow, working in packaging and assembling tech- 506
nologies for the design and development of high- 507

performance and low-cost power electronics. His recent research interests 508
include lead-free solder alloys, transient liquid phase soldering, sintering of Ag 509
nanoparticles, and planar power modules. 510

Alberto Castellazzi is an Associate Professor AQ5511
of power electronics with The University of 512
Nottingham, Nottingham, U.K. He has been active in 513
power electronics research and development for over 514
15 years and has had extensive collaborations with 515
major European and international industrial research 516
laboratories and groups on publicly and privately 517
funded research projects. He has authored or coau- 518
thored over 100 papers published in peer-reviewed 519
specialist journals and conference proceedings, for 520
which he also regularly acts as a reviewer. His re- 521

search interests include characterization, modeling, application, packaging, and 522
cooling of power devices. 523

http://www.3ds.com/products/simulia/abaqus/
http://www.fastfieldsolvers.com/


IE
EE

Pr
oo

f

SOLOMON et al.: INTEGRATED HBS USING 70-μm-THIN DEVICES AND HOLLOW INTERCONNECTS 11

C. Mark Johnson (M’90) received the B.A. de-524
gree in engineering and the Ph.D. degree in electri-525
cal engineering from the University of Cambridge,526
Cambridge, U.K., in 1986 and 1991, respectively.527

From 1990 to 1992, he was a Research Associate528
with the University of Cambridge, and in 1992, he529
was appointed Lecturer with Newcastle University,530
Newcastle upon Tyne, U.K., where his research in-531
cluded the design, analysis, and characterization of532
power semiconductor devices, resonant power con-533
version, and instrumentation. From 1998 to 2001, he534

managed the U.K. National Programme on Silicon Carbide Electronics, and in535
2000, he became a Reader of power electronics with Newcastle University. In536
2003, he was appointed as Rolls-Royce/RAEng Research Professor of Power537
Electronic Systems with The University of Sheffield, Sheffield, U.K., and in538
2006, he was appointed as Personal Chair with The University of Nottingham,539
Nottingham, U.K., where he leads research into power semiconductor devices,540
power device packaging, reliability, thermal management, power module tech-541
nologies, and power electronic applications.542

Prof. Johnson is the Director of the Centre for Power Electronics of the543
Engineering and Physical Sciences Research Council of the U.K., which544
combines the U.K.’s best academic talent to address the key research challenges545
underpinning power electronics, and is a member of the Executive for the U.K.AQ6 546
Innovative Electronics Manufacturing Research Centre.547


