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Abstract Many modern statistical applications involve in-
ference for complicated stochastic models for which the
likelihood function is difficult or even impossible to cal-
culate, and hence conventional likelihood-based inferential
techniques cannot be used. In such settings, Bayesian infer-
ence can be performed using Approximate Bayesian Com-
putation (ABC). However, in spite of many recent develop-
ments to ABC methodology, in many applications the com-
putational cost of ABC necessitates the choice of summary
statistics and tolerances that can potentially severely bias the
estimate of the posterior.

We propose a new “piecewise” ABC approach suitable
for discretely observed Markov models that involves writing
the posterior density of the parameters as a product of fac-
tors, each a function of only a subset of the data, and then
using ABC within each factor. The approach has the advan-
tage of side-stepping the need to choose a summary statistic
and it enables a stringent tolerance to be set, making the pos-
terior “less approximate”. We investigate two methods for
estimating the posterior density based on ABC samples for
each of the factors: the first is to use a Gaussian approxima-
tion for each factor, and the second is to use a kernel density
estimate. Both methods have their merits. The Gaussian ap-
proximation is simple, fast, and probably adequate for many
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applications. On the other hand, using instead a kernel den-
sity estimate has the benefit of consistently estimating the
true piecewise ABC posterior as the number of ABC sam-
ples tends to infinity. We illustrate the piecewise ABC ap-
proach with four examples; in each case, the approach offers
fast and accurate inference.

Keywords Approximate Bayesian Computation ·
Simulation · Stochastic Lotka–Volterra

1 Introduction

Stochastic models are commonly used to model processes
in the physical sciences (Wilkinson 2011a; Van Kampen
2007). For many such models the likelihood is difficult
or costly to compute making it infeasible to use conven-
tional inference techniques such as maximum likelihood
estimation. However, provided it is possible to simulate
from a model, then “implicit” methods such as Approxi-
mate Bayesian Computation (ABC) methods enable infer-
ence without having to calculate the likelihood. These meth-
ods were originally developed for applications in population
genetics (Pritchard et al. 1999) and human demographics
(Beaumont et al. 2002), but are now being used in a wide
range of fields including epidemiology (McKinley et al.
2009), evolution of species (Toni et al. 2009), finance (Dean
et al. 2011), and evolution of pathogens (Gabriel et al. 2010),
to name a few.

Intuitively, ABC methods involve simulating data from
the model using various parameter values and making in-
ference based on which parameter values produced reali-
sations that are “close” to the observed data. Let the data
x = (x1, . . . , xn) ≡ (x(t1), . . . , x(tn)) be a vector compris-
ing observations of a possibly vector state variable X(t) at
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Algorithm 1 Exact Bayesian Computation (EBC)
1: Sample θ∗ from π(θ).
2: Simulate dataset x∗ from the model using parameters θ∗.
3: Accept θ∗ if x∗ = x, otherwise reject.
4: Repeat.

Algorithm 2 Approximate Bayesian Computation (ABC)
As Algorithm 1, but with step 3 replaced by:
3’: Accept θ∗ if d(s(x), s(x∗)) ≤ ε, otherwise reject.

time points t1, . . . , tn. We assume that the data arise from a
Markov stochastic model (which encompasses IID data as
a special case) parameterised by the vector θ , which is the
target of inference, and we denote by π(x | θ) the probabil-
ity density of the data given a specific value of θ . Prior be-
liefs about θ are expressed via a density denoted π(θ). Algo-
rithm 1 generates exact samples from the Bayesian posterior
density π(θ | x) which is proportional to π(x | θ)π(θ).

This algorithm is only of practical use if X(t) is discrete,
else the acceptance probability in Step 3 is zero. For contin-
uous distributions, or discrete ones in which the acceptance
probability in step 3 is unacceptably low, Pritchard et al.
(1999) suggested Algorithm 2, where d(·, ·) is a distance
function, usually taken to be the L2-norm of the difference
between its arguments; s(·) is a function of the data; and ε

is a tolerance. Note that s(·) can be the identity function but
in practice, to give a tolerable acceptance rate, it is usually
taken to be a lower-dimensional vector comprising summary
statistics that characterise key aspects of the data.

The output of the ABC algorithm is a sample from the
ABC posterior density π̃ (θ | x) = π(θ | d(s(x),

s(x∗)) ≤ ε). Provided s(·) is sufficient for θ , then the ABC
posterior density converges to π(θ | x) as ε → 0 (Marin
et al. 2012). However, in practice it is rarely possible to use
an s(·) which is sufficient, or to take ε especially small (or
zero). Hence ABC requires a careful choice of s(·) and ε to
make the acceptance rate tolerably large, at the same time as
trying not to make the ABC posterior too different from the
true posterior, π(θ | x). In other words, there is a balance
which involves trading off Monte Carlo error with “ABC
error” owing to the choice of s(·) and tolerance ε.

Over the last decade, a wide range of extensions to
the original ABC algorithm have been developed, includ-
ing Markov Chain Monte Carlo (MCMC) (Marjoram et al.
2003) and sequential (Toni et al. 2009; Dean and Singh
2011) implementations, the incorporation of auxiliary re-
gression models (Beaumont et al. 2002; Blum and François
2010), and (semi-)automatic choice of summary statistics
(Fearnhead and Prangle 2012); see Marin et al. (2012) for
a review. In all of these ABC variants computational cost is
still a central issue, since it is always the computational cost

that determines the balance that can be made between con-
trolling Monte Carlo error and controlling bias arising from
using summary statistics and/or non-zero tolerance.

In this paper we propose a novel algorithm called piece-
wise ABC (PW-ABC), the aim of which is to substantially
reduce the computational cost of ABC. The algorithm is ap-
plicable to a particular (but fairly broad) class of models,
namely those with the Markov property and for which the
state variable is observable at discrete time points. The algo-
rithm is based on a factorisation of the posterior density such
that each factor corresponds to only a subset of the data. The
idea is to apply Algorithm 2 for each factor (a task which is
computationally very cheap), to compute the density esti-
mates for each factor, and then to estimate the full posterior
density as the product of these factors. Taking advantage of
the factorisation lowers the computational burden of ABC
such that the choice of summary statistic and tolerance—
and the accompanying biases—can potentially be avoided
completely.

In the following section we describe PW-ABC in more
detail. The main practical issue of the method is how to use
the ABC samples from each posterior factor to estimate the
full posterior density. We discuss two approaches to esti-
mating the relevant densities and products of densities, then
we apply PW-ABC, using both approaches, to four exam-
ples: a toy illustrative example of inferring the probability of
success in a binomial experiment, a stochastic-differential-
equation model, an autoregressive time-series model, and a
dynamical predator–prey model. We conclude with a dis-
cussion of the strengths and limitations of PW-ABC, and of
potential further generalisations.

2 Piece-wise ABC (PW-ABC)

Our starting point is to use the Markov property to write the
likelihood as

π(x | θ) =
(

n∏
i=2

π(xi | xi−1, . . . , x1, θ)

)
π(x1 | θ)

=
(

n∏
i=2

π(xi | xi−1, θ)

)
π(x1 | θ). (1)

The likelihood contribution of the first data point x1 can be
included in inference, but this contribution is asymptotically
irrelevant as the number of observations, n, increases, and
we henceforth follow the common practice to ignore the fac-
tor π(x1 | θ) in (1). Accounting for this, and by using mul-
tiple applications of Bayes’ theorem, the posterior density
can be written in the following factorised form,



Stat Comput (2015) 25:289–301 291

Algorithm 3 Piece-Wise Approximate Bayesian Computa-
tion (PW-ABC)

for i = 2 to n do
a: Apply the ABC Algorithm to draw m approximate
(or exact, if s(·) = Identity(·) and ε = 0) samples,
θ∗
i(1), . . . , θ

∗
i(m), from ϕ̃i (θ), the implied ABC density;

b: Using the samples θ∗
i(1), . . . , θ

∗
i(m) and either (6)

or (12), calculate a density estimate, ϕ̂i (θ), of ϕ̃i (θ).
end for
Substitute the density estimates ϕ̂i (θ) into (3) to calculate
an estimate, π̂ (θ | x), of π(θ | x).

π(θ | x) ∝ π(x | θ)π(θ)

=
(

n∏
i=2

π(xi | xi−1, θ)π(θ)

π(θ)

)
π(θ)

∝ π(θ)(2−n)

(
n∏

i=2

ϕi(θ)

)
, (2)

where

ϕi(θ) = c−1
i π(xi | xi−1, θ)π(θ)

ci =
∫

π(xi | xi−1, θ)π(θ)dθ.

Essentially, in (2) the posterior density, π(θ | x), of θ given
the full data x has been decomposed into a product involving
densities ϕi(θ), each of which depends only on a pair of data
points, {xi−1, xi}.

The key idea now is to use ABC to draw approximate
samples from each of the densities ϕi(θ). Applying Algo-
rithm 2 involves (i) drawing θ∗ from π(θ), (ii) simulating
x∗
i | xi−1, θ

∗, and (iii) accepting θ∗ if d(s(xi), s(x
∗
i )) ≤ ε.

We use ϕ̃i (θ) to denote the implied ABC density from
which these samples are drawn (with ϕ̃i (θ) = ϕi(θ) if s(·) =
Identity(·) and ε = 0). By repeating (i)—(iii) we generate
samples of, say, m draws, θ∗

i(1)
, . . . , θ∗

i(m)
, from each ϕ̃i (θ).

Now, suppose that ϕ̂i (θ) is an estimate, based on the sample
θ∗
i(1), . . . , θ

∗
i(m), of the density ϕ̃i (θ) (and hence of the den-

sity ϕi(θ)). Then the posterior density (2) can be estimated
by

π̂(θ | x) = g(θ)
/∫

g(θ)dθ, (3)

where

g(θ) = π(θ)(2−n)

(
n∏

i=2

ϕ̂i (θ)

)
. (4)

The steps of PW-ABC are summarised in Algorithm 3.
The rationale of the piecewise approach is to reduce the

dimension for ABC, replacing a high-dimensional problem

with multiple low-dimensional ones. In standard ABC the
summary statistic, s(·), is the tool used to reduce the dimen-
sion, but in PW-ABC, with dimension already reduced by
the factorisation in (2), we can take s(·) = Identity(·) and
typically use a much smaller ε.

The question remains of how to calculate the density es-
timates, ϕ̂i (θ). Below we discuss two approaches: (i) using
a Gaussian approximation, and (ii) using a kernel density
estimate. Henceforth, quantities based on (i) are denoted by
superscript g, and those based on (ii) are denoted by super-
script k. In both cases we discuss the behaviour of the es-
timators in the asymptotic regime in which the number of
observations, n, is kept fixed while the size of each ABC
sample increases, m → ∞.

2.1 Gaussian approximation for ϕ̂i (θ)

Denote the d-dimensional multivariate Gaussian density
with mean, μ, and covariance, Σ , by

K(θ;μ,Σ) = (2π)−d/2(detΣ)−1/2

× exp

(
−1

2
(θ − μ)T Σ−1(θ − μ)

)
. (5)

A Gaussian approximation for ϕ̂i (θ) is

ϕ̂
g
i (θ) = K

(
θ; θ̄∗

i ,Qi

)
, (6)

where

θ̄∗
i = 1

m

m∑
j=1

θ∗
i(j),

Qi = 1

m − 1

m∑
j=1

(
θ∗
i(j) − θ̄∗

i

)(
θ∗
i(j) − θ̄∗

i

)T
,

are the sample mean and sample covariance of the ABC pos-
terior sample θ∗

i(1), . . . , θ
∗
i(m). A consequence of using (6) is

that the product of the density approximations is also Gaus-
sian (though in general unnormalised):

n∏
i=2

ϕ̂
g
i (θ) = w · K(θ;a,B), (7)

where

B =
(

n∑
i=2

Q−1
i

)−1

, (8)

a = B

(
n∑

i=2

Q−1
i θ̄∗

i

)
, (9)

w = det(2πB)1/2
n∏

i=2

det(2πQi)
−1/2
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×
n∏

s=2

n∏
t>s

exp

(
−1

2

(
θ̄∗
s − θ̄∗

t

)T
Rst

(
θ̄∗
s − θ̄∗

t

))
, (10)

Rst = Q−1
s BQ−1

t . (11)

We note the following properties of approximation (6) (see,
for example, Mardia et al. 1979). If the densities ϕ̃i (θ)

from which the θ∗
i(1)

, . . . , θ∗
i(m)

are drawn are Gaussian, i.e.,

ϕ̃i (θ) = K(θ;μi,Σi), then θ̄∗
i and Qi are unbiased and con-

sistent estimators of μi and Σi , respectively, and hence a

and B are consistent estimators of the true mean and co-
variance of

∏
ϕ̃i (θ). More generally, for ϕ̃i (θ) which is not

necessarily Gaussian, θ̄∗
i and Qi are consistent estimators

of the mean and the variance of the Gaussian density, ϕ̂
g
i (θ),

which minimises the Kullback–Leibler divergence,

KL
(
ϕ̃i (θ)‖ϕ̂g

i (θ)
) =

∫
ϕ̃i (θ) log

(
ϕ̃i (θ)/ϕ̂

g
i (θ)

)
dθ;

i.e., for each i, ϕ̂
g
i (θ) is asymptotically the “optimal” Gaus-

sian approximation to ϕ̃i (θ). No such relevant optimality
holds for the product of densities, however: the (normalised)
product of Gaussians, each of which is closest in the KL
sense to ϕ̃i (θ), is in general not the Gaussian closest to (the
normalised version of)

∏
ϕ̃i (θ); and indeed it may be very

substantially different. In other words, as m → ∞, a and B

do not in general minimise

KL

({∏
ϕ̃i (θ)/

∫ (∏
ϕ̃i (θ)

)}∥∥∥K(θ, a,B)

)
.

2.2 Kernel density estimate for ϕ̂i (θ)

A second method we consider is to estimate each density
ϕ̃i (θ) using a kernel density estimate (see for instance Sil-
verman 1986 and Wand and Jones 1995). A kernel density
estimate based on Gaussian kernel functions (5) is

ϕ̂k
i (θ) = 1

m

m∑
j=1

K
(
θ; θ∗

i(j),Hi

)
, (12)

where Hi is a bandwidth matrix. We follow the approach
of Fukunaga (1972) in choosing the bandwidth matrix such
that the shape of the kernel mimics the shape of the sample,
in particular by taking Hi to be proportional to the sample
covariance matrix, Qi . Using bandwidth matrix

Hi = q · m−2/(d+4)Qi, (13)

where q > 0 is a constant not dependent on m, ensures de-
sirable behaviour as the sample size m → ∞. In particular,
in terms of the little-o notation (am = o(bm) as m → ∞ de-
notes limm→∞ |am/bm| = 0) and with E denoting expecta-
tion, using choice of bandwidth (13), subject to mild regu-
larity conditions on ϕ̃i (θ) (Wand and Jones 1995),

E
{
ϕ̂k

i (θ)
} = ϕ̃i (θ) + o(1), (14)

E
{
ϕ̂k

i (θ)2} = ϕ̃i (θ)2 + o(1). (15)

From (14)–(15), the bias, b{ϕ̂k
i (θ)} = E{ϕ̂k

i (θ)} − ϕ̃i (θ),
the variance, var{ϕ̂k

i (θ)} = E{ϕ̂k
i (θ)2} − E{ϕ̂k

i (θ)}2, and the
mean integrated squared error,

MISE
{
ϕ̂k

i

} = E

∫ (
ϕ̂k

i (θ) − ϕ̃i (θ)
)2

dθ, (16)

are all o(1). These results generalise routinely to the case
of a product of n kernel density estimates, that is, in which∏

ϕ̂k
i (θ) is used as an estimator for

∏
ϕ̃i (θ). It follows that

since the θ∗
i(j)

are independent for all i, j , then, using (14)–
(15),

b
{∏

ϕ̂k
i (θ)

}
=

{∏
Eϕ̂k

i (θ)
}

−
∏

ϕ̃i (θ) = o(1),

var
{∏

ϕ̂k
i (θ)

}
=

∏
E

{
ϕ̂k

i (θ)2} −
∏{

Eϕ̂k
i (θ)

}2 = o(1),

MISE
{∏

ϕ̂k
i

}
= E

∫ (∏
ϕ̂k

i (θ) −
∏

ϕ̃i (θ)
)2

dθ = o(1).

Hence, in the sense defined by the latter equation, the density
estimator

∏
ϕ̂k

i (θ) converges to the true density
∏

ϕ̃i (θ) as
m → ∞.

Regarding the choice of q in (13), in certain settings it is
possible to determine an optimal value. Suppose that the true
density ϕ̃i (θ) is Gaussian and let ϕ̂k

i (θ) in (12) be a kernel
density estimate of ϕ̃i (θ). Then

q = {
(d + 2)/4

}−2/(d+4) (17)

is optimal in the sense that (13) is then an unbiased and con-
sistent estimator of the bandwidth that minimises the leading
term of the large-m asymptotic expansion of (16); see Wand
and Jones (1995, p. 111). Analogous calculations are rather
more involved in the product case, however: even with the
assumption that each ϕ̃i (θ) is Gaussian, no closed expres-
sion for q is possible. Hence, in the examples in the follow-
ing section, Sect. 4, we opted to tune q in the heuristic way
described by Wand and Jones (1995), starting with a large q

(ten times that in (17)) then reducing it manually until “ran-
dom” fluctuations begin to appear in the density estimates.

A consequence of using Gaussian kernel functions (5)
in (12) is that the product of the density approximations is
then itself a weighted mixture of (n − 1)m Gaussians,

n∏
i=2

ϕ̂k
i (θ) = m(1−n)

n∏
i=2

m∑
j=1

K
(
θ; θ∗

i(j),Hi

)

= m(1−n)

m∑
j2,...,jn

n∏
i=2

K
(
θ; θ∗

i(ji )
,Hi

)

=
m∑

j2,...,jn

wj2,...,jnK(θ;aj2,...,jn ,Bj2,...,jn), (18)
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where expressions for the covariances Bj2,...,jn , means
aj2,...,jn , and weights wj2,...,jn , analogous to those in (8)–
(10), are given in Appendix 1.

2.3 Estimating the posterior density

Sections 2.1 and 2.2 describe methods for computing the
factor

∏
ϕ̂i (θ) in (3). For calculating an estimate of the

full posterior, π̂(θ | x) in (3), we must multiply
∏

ϕ̂i (θ) by
π(θ)(2−n) and normalise. Let us suppose that the prior is
Gaussian, π(θ) = K(θ;μpri,Σpri). For the case where we
are using the Gaussian approximation, ϕ̂

g
i (θ) from (6), for

each ϕ̂i (θ), then the posterior is

π̂g(θ | x) = K(θ;μpost,Σpost), (19)

where

Σpost = (
(2 − n)Σ−1

pri + B−1)−1
, (20)

μpost = Σpost
(
(2 − n)Σ−1

pri μpri + B−1a
)
, (21)

and a and B are as defined in (7).
If instead we use the kernel approximation, ϕ̂k

i (θ)

from (12), for each ϕ̂i (θ), then the posterior density is

π̂k(θ | x) =
m∑

j2,...,jn

w′
j2,...,jn

K
(
θ;a′

j2,...,jn
,B ′

j2,...,jn

)
/ m∑

j2,...,jn

w′
j2,...,jn

, (22)

where expressions for B ′
j2,...,jn

, a′
j2,...,jn

and w′
j2,...,jn

are in
Appendix 1.

2.4 An expression for the posterior density

In the preceding sections we considered how to sample from
the ϕi(θ) and then use the samples to estimate the posterior
density π(θ | x). Here we consider in more detail the im-
plied posterior density which is targeted by PW-ABC. For
either of PW-ABC and ABC, the posterior can be written as

π̃(θ | x) ∝ π̃ (x | θ)π(θ), (23)

where π̃ (x | θ) is, respectively, either the implied PW-ABC
or ABC approximation to the likelihood. First, we define the
function

Kε,p(z) = V −11{‖z‖p ≤ ε}, (24)

where argument z is of dimension, say, u, and either
continuous- or discrete-valued in accord with the support
of the data; ‖ · ‖p is the Lp-norm; 1{·} is an indicator func-
tion; and V , which depends on u, ε, and p, is such that

∫
Kε,p(z)dz = 1, with this integral interpreted as a sum in

the discrete case. For ABC with distance d(·, ·) taken to be
the Lp-norm of the difference between its arguments, the
implied ABC approximation to the likelihood (Wilkinson
2013) is the convolution

π̃ABC(x | θ) =
∫

π(y | θ)Kε,p(y − x)dy. (25)

Hence ABC replaces the true likelihood with an approxi-
mate version averaged over an Lp-ball of radius ε centred on
the data vector, x. In PW-ABC, we target each ϕi(θ) by an
ABC approximation ϕ̃i (θ) ∝ π̃ABC(xi | xi−1, θ)π(θ), with

π̃ABC(xi | xi−1, θ) =
∫

π(yi | xi−1, θ)Kε,p(yi − xi)dyi,

and the implied PW-ABC likelihood is the product

π̃PW-ABC(x | θ) =
∏

π̃ABC(xi | xi−1, θ). (26)

Now, to compare directly the implied ABC and PW-ABC
likelihood approximations, we neglect as before the likeli-
hood contribution from the first observation x1, then denote
by x′ the vector x with x1 removed (and similar for y); hence
we can write (25) and (26), respectively, as

∫
π(y2 | x1, θ)

[
n∏

i=3

π(yi | yi−1, θ)

]
Kε,p

(
y′ − x′)dy′, (27)

and

∫
π(y2 | x1, θ)

[
n∏

i=3

π(yi | xi−1, θ)

]
K∗

ε,p

(
y′ − x′)dy′, (28)

where

K∗
ε,p

(
z′) =

n∏
i=2

Kε,p

(
z′
i

)
. (29)

Two differences between ABC and PW-ABC are clear: first,
in ABC the conditioning is on the simulated trajectory,
whereas in PW-ABC the conditioning is on the data; and
second, in PW-ABC the convolution is with respect to a dif-
ferent kernel (29). This implied kernel seems intuitively rea-
sonable; for example, if the xi are scalar then the convolu-
tion in (28) amounts to an averaging over a hypercube of
side length 2ε centred on x′. The difference in the shapes of
the regions defined by Kε,p(·) and K∗

ε,p(·) is of secondary
importance, however, since PW-ABC enables use of a much
smaller ε than ABC, so the averaging will be over a much
smaller region around x′, and the approximate likelihood
will typically be much closer to the true.
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3 Some other considerations

3.1 Practical issues in drawing samples

The independence of the samples θ∗
i(j) for all i, j means that

drawing samples for PW-ABC is “embarrassingly parallel”,
i.e., the task can be divided easily between multiple cores.
For example, one approach is use all available cores simul-
taneously to sample from ϕ̃2(θ) until m draws θ∗

2(1) · · · θ∗
2(m)

are accepted, and then do likewise for ϕ̃3(θ), and so on. An-
other possibility, which requires less coordination between
the cores, is to have different cores sampling from differ-
ent ϕ̃i (θ), then reassign cores as appropriate whenever any
of the ϕ̃i (θ) reaches m accepted samples.

Another benefit of the θ∗
i(j)

being independent is that
samples can be reused in the event of deciding retrospec-
tively to perform PW-ABC with a smaller ε: the subset of
original samples acceptable with the new smaller ε can be
retained, leaving only the need, for each ϕ̃i (θ), to “top-up”
the number of samples to m. Similarly, samples can ob-
viously be retained given a retrospective decision to use a
larger m.

3.2 Estimating the marginal likelihood

In some applications, especially when model comparison is
of interest, it is useful to compute the marginal likelihood of
the data given the model. The marginal likelihood is

π(x) =
∫

π(x | θ)π(θ)dθ (30)

=
(

n∏
i=2

ci

)∫ (
n∏

i=2

ϕi(θ)

)
π(θ)2−ndθ. (31)

The unknown ci can be estimated by ĉi = m/(V Mi), where
Mi equals the number of ABC draws necessary in the ith
interval to achieve m acceptances, and V is defined in (24);
see Appendix 2. For the integral in (31), using the Gaussian
approximation (7) leads to

∫ (
n∏

i=2

ϕ̂
g
i (θ)

)
π(θ)2−ndθ

= w · (detB)−1/2 · (detΣpost)
1/2 · (det(2πΣpri)

)(n/2−1)

× exp

{
−1

2
(a − μpri)

T
(
(2 − n)−1Σpri + B

)−1

× (a − μpri)

}
, (32)

whereas using the kernel approximation (12) gives

∫ (
n∏

i=2

ϕ̂k
i (θ)

)
π(θ)2−ndθ =

m∑
j2,...,jn

w′
j2,...,jn

. (33)

3.3 Practical numerical calculations for the kernel
approximation

Since expressions (18), (22), (33) for the kernel case involve
sums with (n − 1)m terms, these expressions are largely of
academic interest and are typically not suitable for practical
calculations. For the examples in this paper we used a more
direct numerical approach, first writing (4) as

g(θ) = exp

(
n∑

i=2

hi(θ)

)
π(θ),

where hi(θ) = log(ϕk
i (θ)/π(θ)), and then evaluating hi(θ),

π(θ) and hence g(θ) pointwise on a fine lattice. Performing
calculations in this way on the log scale avoids underflow er-
rors and improves numerical stability compared with trying
to evaluate (4) directly. As a further check for robustness,
we varied the lattice position and resolution to make sure
the results were insensitive to the particular choices.

3.4 Sampling from the posterior distribution

In some circumstances it may be desirable to draw sam-
ples from the approximate posterior density. In the Gaussian
case, drawing from (19) is straightforward. For the kernel
case, (22), in principle sampling can be achieved by nor-
malising the weights, randomly choosing a component with
probability equal to these normalised weights, then sam-
pling from the selected Gaussian component. But in prac-
tice, again, the large number of terms in (22) will typically
preclude this approach. Other possibilities include using a
Gibbs sampler, or sampling approximately using Gaussian
mixtures with fewer components; see Sudderth et al. (2003).

4 Examples

In this section we test PW-ABC on synthetic data from four
models. The first, as a toy illustrative example, involves in-
ferring from IID data the probability of success in a bino-
mial experiment. Second is the Cox–Ingersoll–Ross model,
a stochastic-differential-equation model for which the con-
tinuous state variable has known transition density, which
we use to investigate PW-ABC with ε > 0. Third, we con-
sider an integer-valued time series model called INAR(1),
a model for which the likelihood is available (albeit awk-
ward to compute) and enables comparison of our approach
with a “gold standard” MCMC approach. Finally, we con-
sider a stochastic Lotka–Volterra model, a simple example
from a common class of models (which occur, for instance,
in modelling stochastic chemical kinetics) in which the like-
lihood, and therefore many standard methods of inference,
are unavailable.
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Fig. 1 Results for the binomial model in Sect. 4.1. Shown are the
true posterior density, π(θ | x), the posterior density approximations
π̂g(θ | x) and π̂k(θ | x), the prior, and the true θ

4.1 Binomial model

For this toy example we suppose the data is the set x =
{x1, . . . , x10} of n = 10 observations from the model Xi ∼
Binom(ki = 100,p = 0.6). We work in terms of the trans-
formed parameter θ = logit(p), using a prior π(θ) ∼
N(0,32). For this model the data are IID, so that
π(xi | xi−1, θ) = π(xi | θ). Exact samples from ϕi(θ)

can be obtained by sampling θ∗ from the prior, sampling
X∗

i ∼ Binom(100, θ∗), and then accepting θ∗ if and only
if X∗

i = xi . We follow the PW-ABC approach described in
Sect. 2, drawing m = 5000 samples from each ϕi(θ), us-
ing these samples to construct Gaussian ϕ̂

g
i (θ) and kernel

density ϕ̂k
i (θ) approximations, then using these density ap-

proximations to construct approximate posterior densities,
π̂g(θ | x) and π̂k(θ | x). Figure 1 shows that the approx-
imate posterior densities are very close to the true poste-
rior density for this example. The true log marginal likeli-
hood, logπ(x), computed by direct numerical integration
of (30), is −31.39; using approximation ϕ̂

g
i (θ) and (32)

gives −31.44; and using approximation ϕ̂k
i (θ) and numeri-

cal integration of the left-hand side of (33) gives −31.48.

4.2 Cox–Ingersoll–Ross Model

The Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985) is a
stochastic differential equation (SDE) describing evolution
of an interest rate, X(t). The model is

dX(t) = a
(
b − X(t)

)
dt + σ

√
X(t)dW(t),

where a, b and σ respectively determine the reversion speed,
long-run value and volatility, and where W(t) denotes a
standard Brownian motion. The density of X(ti) | X(tj ), a,
b, σ (ti > tj ) is a non-central chi-square (Eq. (18), Cox et al.

1985), and hence the likelihood is known in closed form.
Since the likelihood is known, (PW-)ABC is unnecessary
(indeed, in general for SDEs with unknown likelihoods, ap-
proaches that exploit the SDE structure—e.g., the likelihood
approximations of Aït-Sahalia (2002), or the Monte Carlo
methods developed by Durham and Gallant (2002)—are
likely to be better choices for inference than (PW-)ABC);
however, we include the CIR model here as a simple exam-
ple of PW-ABC applied to a problem with a continuous state
variable, where non-zero choice of ε is necessary, and where
the true posterior distribution is available for comparison.

We generated n = 10 equally spaced observations from a
CIR process with parameters (a, b, σ ) = (0.5,1,0.15) and
X(0) = 1 on the interval t ∈ [0,4.5]. Treating a and σ as
known, we performed inference on the transformed parame-
ter θ = log(b) with a Uniform prior on the interval (−5,2).
Using ε = 10−2 we drew samples of size m = 10,000 for
each ϕi(θ), i = 2, . . . ,10, achieving acceptance rates around
1.5 % on average.

Figure 2(a) shows the true posterior density, π(θ | X ),
together with the Gaussian- and kernel-based PW-ABC ap-
proximations, π̂g(θ | x) and π̂k(θ | x). The figure shows that
for sufficiently large m the kernel approximation π̂k(θ | x)

agrees very well with the true posterior. The Gaussian ap-
proximation π̂g(θ | x), even for large m, does badly here,
which is due to skewness of the densities ϕi(θ). Figure 2(b)
shows how the posterior density targeted by PW-ABC (see
Sect. 2.4) depends on ε, and in particular how it converges
to the true posterior density as ε → 0.

For this example, estimates of the log marginal likeli-
hood, logπ(X ) are as follows: by direct numerical integra-
tion of (30), 8.14; using approximation ϕ̂

g
i (θ), 2.78; and by

using ϕ̂k
i (θ) in conjunction with numerical integration of the

left-hand side of (33), 7.93.

4.3 An integer-valued autoregressive model

Integer-valued time series arise in contexts such as mod-
elling monthly traffic fatalities (Neal and Subba Rao 2007)
or the number of patients in a hospital at a sequence of time
points (Moriña et al. 2011). Consider the following integer-
valued autoregressive model of order p, known as INAR(p):

Xt =
p∑

i=1

αi ◦ Xt−i + Zt , t ∈ Z, (34)

where Zt for t > 1 are independent and identically dis-
tributed integer-valued random variables with E[Z2

t ] < ∞,
with the Zt assumed to be independent of the Xt . Here we
assume Zt ∼ Po(λ). Each operator αi◦ denotes binomial
thinning defined by

αi ◦ W =
{

Binomial(W,αi), W > 0,

0, W = 0,
(35)
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Fig. 2 Results for the CIR model of Sect. 4.2. (a) shows the true pos-
terior density, π(θ | x); the PW-ABC posterior density approximations
π̂g(θ | x) and π̂k(θ | x) using ε = 10−2, with values of m indicated in
the legend; the prior; and the true θ . (b) shows, for various values of ε,
the true PW-ABC posterior (defined in Sect. 2.4)

for non-negative integer-valued random variable W . The op-
erators αi◦, i = 1, . . . p, are assumed to be independent.

We consider the simplest example of this model, INAR(1)
(see, for example, Al-Osh and Alzaid 1987), supposing that
we have some observed data x = {x1, . . . , xn} from this
model and wish to make inference for the parameters (α,λ).
We generated n = 100 observations from an INAR(1) pro-
cess using parameters (α,λ) = (0.7,1) and X(0) = 10; the
realisation is plotted in Fig. 3. Working in terms of the
transformed parameter, θ = (θ1, θ2) = (logit(α), log(λ)),
we used a prior of Norm(0,32) for each of θ1 and θ2. For
the EBC algorithm, the probability of acceptance is around
10−100 (as estimated from PW-ABC calculations described
below), which is prohibitively small; even the ABC algo-
rithm requires a value of ε so large that sequential ap-
proaches are needed.

Fig. 3 The realisation of an INAR(1) process used in the example of
Sect. 4.3, of length n = 100, generated using α = 0.7 and λ = 1.0

Fig. 4 Results for the INAR(1) example of Sect. 4.3. Shown are an
MCMC approximation to the posterior density, π(θ | x), the poste-
rior density approximations π̂g(θ | x) and π̂k(θ | x), the prior, and the
true θ . The numbers on the contours denote the probability mass that
they contain

Using PW-ABC with ε = 0 we were able to draw ex-
act samples from ϕi(θ) for all of the i = 2, . . . ,100 fac-
tors, and achieve acceptance rates of around 9 %, on av-
erage. Figure 4 shows an estimate of the posterior density,
π(θ | x) based on a gold-standard MCMC approach, to-
gether with Gaussian- and kernel-based PW-ABC approx-
imations, π̂g(θ | x) and π̂k(θ | x), with m = 10,000 sam-
ples for each ϕi(θ). The figure shows good agreement be-
tween the MCMC posterior and the kernel approximation,
π̂k(θ | x), but again somewhat poor agreement with the
Gaussian approximation π̂g(θ | x). The poor performance of
π̂g(θ | x) is caused by some of the densities ϕi(θ) being sub-
stantially different from Gaussian; see Fig. 5 which shows
ϕ̂

g
50(θ) and ϕ̂k

50(θ), for example. Using Gaussian approxi-
mations to non-Gaussian ϕi(θ) appears to have a strong im-
pact on the accuracy of approximation π̂g(θ | x), even, as in
the present case, where the true posterior π(θ | x), and most
of individual ϕi(θ), are reasonably close to a Gaussian (cf.
Fig. 4).

For this example, estimates of the log marginal likeli-
hood, logπ(x), are as follows: by direct numerical integra-
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Fig. 5 For the INAR(1) example, an example of a factor with a “non–
Gaussian” density: here ϕ̂

g
50(θ) and ϕ̂k

50(θ) are substantially different
from each other

tion of (30), −161.1; using approximation ϕ̂
g
i (θ) and (32),

−185.7; and by using ϕ̂k
i (θ) and numerical integration of

the left-hand side of (33), −163.2.
We have used p = 1 for this example so that the like-

lihood is available, enabling comparison with MCMC and
calculation of the true marginal likelihood. However, we
stress that PW-ABC can be easily generalised for p > 1,
a case for which the likelihood is essentially intractable
and therefore one has to resort to either exact but less
direct methods (such the Expectation–Maximization (EM)
algorithm or data-augmented MCMC, both of which in-
volve treating the terms αi ◦ Xt−i and Zt as missing data)
or methods of approximate inference, such as conditional
least squares which involves minimizing

∑
t (Xt − E[Xt |

Xt−1])2; see, for example, McKenzie (2003) and references
therein.

4.4 Stochastic Lotka–Volterra model

The stochastic Lotka–Volterra (LV) model is a model of
predator–prey dynamics and an example of a stochastic
discrete-state-space continuous-time Markov process (see,
for example, Wilkinson 2011a). Predator–prey dynamics
can be thought of in chemical kinetics terms: the predators
and prey are two populations of “reactants” subject to three
“reactions”, namely prey birth, predation and predator death.
Exact simulation of such models is straightforward, e.g., us-
ing the algorithm of Gillespie (1977). Inference is simple
if the type and precise time of each reaction is observed.
However, a more common setting is where the population
sizes are only observed at discrete time points. In this case
the number of reactions that have taken place is unknown
and therefore the likelihood is not available and hence in-
ference is much more difficult. Reversible-jump MCMC has
been developed in this context (Boys et al. 2008) but it re-
quires substantial expertise and input from the user to imple-
ment. Particle MCMC (pMCMC) methods (Andrieu et al.

2010), which provide an approximation to the likelihood via
a Sequential Monte Carlo algorithm within an MCMC al-
gorithm, have recently been proposed for stochastic chem-
ical kinetics models (Golightly and Wilkinson 2011). Al-
though being computationally intensive, such methods can
work reliably provided the process is observed with mea-
surement error. The R package smfsb, which accompanies
(Wilkinson 2011a), contains a pMCMC implementation de-
signed for stochastic chemical kinetics models, and we use
this package to compare results for PW-ABC and pMCMC
for the following example.

Let Y1 and Y2 denote the number of prey and predators
respectively, and suppose Y1 and Y2 are subject to the fol-
lowing reactions

Y1
r1→ 2Y1, Y1 + Y2

r2→ 2Y2, Y2
r3→ ∅, (36)

which respectively represent prey birth, predation and
predator death. We consider the problem of making infer-
ence about the rates (r1, r2, r3) based on observations of Y1

and Y2 made at fixed intervals.
We generated a realisation from the stochastic LV exam-

ple of Wilkinson (Wilkinson, p. 208), that is, model (36)
using (r1, r2, r3) = (1,0.005,0.6), Y1(0) = 50 and Y2(0) =
100. We performed inference in terms of transformed
parameters, θ = (θ1, θ2, θ3) = (log r1, log r2, log r3), this
time with priors π(θ1) ∼ Norm(log(0.7),0.5), π(θ2) ∼
Norm(log(0.005),0.5), and π(θ3) ∼ Norm(log(0.3),0.5).
We again applied PW-ABC using ε = 0, in other words re-
quiring an exact match between the observed and the simu-
lated observations, to draw samples of size m = 10,000 for
each ϕi(θ). Unlike the binomial, CIR and INAR examples
where drawing posterior samples for the ϕi(θ), i = 1, . . . , n

assuming ε = 0 took a total of approximately, 1, 2 and 20
minutes respectively on a standard desktop machine, for this
example doing so was computationally more demanding.
However, since sampling in PW-ABC is embarrassingly par-
allel (see Sect. 3.1) we were able to draw the required sam-
ples in 32 hours on a 48 core machine.

To obtain pMCMC results we found it necessary to as-
sume an error model for the observations, hence we assumed
errors to be IID Gaussian with mean zero and standard devi-
ation equal to 2. Results are displayed in Fig. 6, which shows
plots for univariate and pairwise bivariate marginal posterior
densities for the pMCMC results, and for the PW-ABC ap-
proximations, π̂g(θ | x) and π̂k(θ | x). Both of the PW-ABC
approximations agree well with each other and with the pM-
CMC results for this example.

5 Conclusion and discussion

PW-ABC works by factorising the posterior density, for
which targeting by ABC would entail a careful choice of s(·)
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Fig. 6 Results for the
Lotka–Volterra example of
Sect. 4.4, showing univariate
and bivariate marginal posterior
densities of θ based on a
posterior sample from a
pMCMC algorithm, and from
the Gaussian- and kernel-based
PW-ABC approximations,
π̂g(θ | x) and π̂k(θ | x). For the
kernel approximation we used
q = 5 as the smoothing
parameter in (13). The contours
shown in the bivariate plots are
those that contain 5 %, 10 %,
50 %, 90 % and 95 % of
probability mass

and/or a large tolerance ε, into a product involving densi-
ties ϕi(θ), each amenable to using ABC with s = Identity(·)
and small or zero ε. Having sampled from each ϕi(θ) the
question then becomes how to estimate π(θ | x) using these
samples. In PW-ABC, we construct density estimates ϕ̂i (θ)

of each ϕi(θ) then approximate π(θ | x) as the product of
the ϕ̂i (θ). The approach of taking ϕ̂i (θ) to be Gaussian,
with moments matched to the sample moments, is computa-
tionally cheap, and if the prior is also taken to be Gaussian
then there is a closed form expression for the Gaussian pos-
terior density and marginal likelihood, making calculations
extremely fast. Taking ϕ̂i (θ) to be Gaussian is perhaps ade-
quate in many applications: performance was strong in two
of the four examples we considered. The poor performance
in the CIR and INAR examples was due to skewness of at
least some of the ϕi(θ). In the INAR example it is striking to
see an effect so strong when the true posterior, and many of
the ϕi(θ), are so close to Gaussian. Unfortunately, increas-
ing the number, m, of ABC samples is no remedy to this
problem: as m → ∞, the normalised product of Gaussian

densities, itself Gaussian, in general does not converge to
the Gaussian density closest in the Kullback–Leibler sense
to the target density.

Two referees suggested the possibility of testing, across
all of the ϕi(θ), whether a Gaussian approximation is appro-
priate. A wide literature exists on testing multivariate nor-
mality (see Székely and Rizzo 2005 for a recent contribu-
tion, plus many references therein to earlier work) and this
seems a promising direction, but further work is needed to
devise, and understand the properties of, a procedure based
on applying these tests in the multi-testing setting of PW-
ABC.

In terms of asymptotic performance, using the kernel ap-
proximation, ϕ̂k

i (θ), for ϕ̂i (θ) is preferable since, in this
case, the estimated posterior density converges to the target
as m → ∞. The kernel approach is computationally more
demanding, however, and its practical use is probably lim-
ited to problems in which θ has small dimension. It also
requires a heuristic choice of a scalar smoothing parameter.
The larger the value chosen for the smoothing parameter, the
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more the posterior variance will be inflated; this said, how-
ever, in the examples we have considered we have found
posterior inference to be fairly robust to the choice. A ref-
eree asked for guidance on how to choose m. It is difficult
to offer general practical advice, because the m needed will
depend on the dimension of θ , and on the number and nature
of the ϕi(θ). The larger the better, of course; one possibil-
ity for checking whether m is large enough might be to use
a resampling approach to confirm that the variance, under
resampling, of the π̂k(θ | x) is acceptably small.

Another related practical question is how to choose ε

if ε = 0 is not possible. In such a case, as with standard
ABC approaches, there is a trade-off between making m

large and making ε small. A reasonable heuristic to inves-
tigate the effects of non-zero ε would be to perform in-
ference with a chosen ε and m, and then to keep m fixed
and reduce ε (as discussed in Sect. 3.1, acceptable samples
from the run with larger ε can be retained), and then check
whether there is a marked difference in the posteriors for
the different values of ε. Figure 2(b) shows for the CIR ex-
ample, for instance, that there would be little difference be-
tween the posteriors for ε = 10−2 and ε = 10−3. Such an ap-
proach could be applied iteratively, although for challenging
problems—even using PW-ABC—the computational cost to
maintain m samples as ε is decreased may prevent reach-
ing a small enough ε that the posterior has “converged” to
the true. Such a heuristic could be applied to standard ABC,
of course, although PW-ABC has the advantage of enabling
much smaller choices of ε.

The underlying idea in PW-ABC of replacing a high-
dimensional ABC problem with multiple low-dimensional
ones is also exploited in some sequential ABC algorithms;
for example, Algorithm 4 in Fearnhead and Prangle (2012)
(adapted from an algorithm by Wilkinson 2011b) uses ABC
to incorporate observations from a Markov model sequen-
tially, the ABC at each step involving a single data point con-
ditional on the previous one, and where the posterior from
one step is used as the prior for the next. In comparison with
PW-ABC, such sequential algorithms have a potential ad-
vantage of progressively focusing computational effort on
regions of parameter space with high posterior density, but
on the other hand they are prone to problems with particle
degeneracy, an issue that does not affect PW-ABC. Another
major difference is that for sequential algorithms, samples
at each step are dependent, so calculations are not “embar-
rasingly parallel”, and nor is it so easy to reuse samples in
the event of a retrospective decision to use a smaller ε or
larger m; see Sect. 3.1.

A possibility that generalises the Gaussian and kernel ap-
proaches in PW-ABC, which we will explore in future work,
is to let ϕ̂i (θ) be a mixture of, say, u Gaussians (see Fan
et al. 2012 for an example of Gaussian mixtures being used
in a related context). This encompasses (6) and (12) as spe-
cial cases, with u = 1 and u = m respectively. For a general

mixture model for ϕ̂i (θ), each of the component Gaussians
is parameterised by a scalar weight, a mean vector and a
covariance matrix which need to be determined. We would
envisage regularising, e.g., by setting each covariance to be
equal up to scalar multiplication, perhaps as for (12) tak-
ing the covariance proportional to the sample covariance,
and then fitting each ϕ̂i (θ) based on the samples from ϕi(θ)

using, say, an EM algorithm. This approach is a compro-
mise between (6) and (12). It does not share the property
of (12) that estimated densities converge to the true densi-
ties as m → ∞, but on the other hand it is computationally
much less involved and offers much extra freedom and flexi-
bility over (6), particularly for dealing with multimodal den-
sities. If u is taken sufficiently small then it may be feasible
to work explicitly with the (n − 1)u-term resulting Gaus-
sian mixture,

∏
ϕ̂i (θ), enabling explicit calculations involv-

ing the posterior density, such as computing the marginal
likelihood, analogous to (32), and direct sampling from the
approximate posterior density (see Sect. 3.4).

Several further generalisations of PW-ABC are pos-
sible. In (1), each of the n − 1 factors π(xi | xi−1, θ),
i = 2, . . . , n is the likelihood for a single data point con-
ditional on the previous. An alternative possibility is to
factorise the likelihood into fewer factors, with each cor-
responding to a “block” of multiple observations, e.g.,
π(xi+vi

, xi+vi−1, . . . , xi | xi−1, θ) for some choice of vi ,
and the factorised likelihood becomes a product over the
relevant subset of i = 2, . . . , n. To an extent this potentially
reintroduces difficulties that with PW-ABC we sought to
avoid, namely lower acceptance rates leading to a possible
need to use a summary statistic and non-zero tolerance (and
the ensuing ABC error they bring). On the other hand, we
might expect, owing to the central limit theorem, that a fac-
tor ϕi(θ) which depends on several data points will be closer
to Gaussian than a factor dependent on only a single data
point, and hence that (6) and (12) (especially the former)
will perform better.

If using larger “blocks” of data in the factorisation makes
it necessary to use a non-zero tolerance ε > 0 (or if ε > 0 is
necessary even when using a single observation per factor)
then there are theoretical advantages to using what Fearn-
head and Prangle (2012) call “noisy ABC”. In the context of
this paper, noisy ABC would involve replacing the summary
statistic s(·) with a random variable s′(·) which has density
uniform on a ball of radius ε around s(·). Using noisy ABC
ensures that, under mild regularity conditions, as n → ∞,
the posterior converges to a point mass at the true parameter
value; see Sect. 2.2 of Fearnhead and Prangle (2012).

Recently, we have learnt of an interesting paper by
Barthelmé and Chopin (2011) who have developed an ap-
proach termed Expectation Propagation-ABC (EP-ABC)
that shares similarities with ours. EP-ABC is an ABC adap-
tation of the Expectation Propagation approach developed
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by Minka (2001). EP-ABC uses a factorisation of the pos-
terior (Eq. (1.2) in Barthelmé and Chopin 2011) analogous
to our factorisation (2), and it involves a Gaussian approx-
imation to the density of each factor analogous to (6). But
then EP-ABC proceeds rather differently: instead of draw-
ing ABC samples for, say, the ith factor by sampling from
the prior, EP-ABC draws samples from an iteratively up-
dated pseudo-prior. The pseudo-prior is a Gaussian approx-
imation to the component of the posterior that involves all
the data except those pertaining to the ith factor. The use of
the pseudo-prior offers a high acceptance rate in the ABC
sampling and so EP-ABC can potentially lead to an ex-
tremely fast approximation to the full posterior π(θ | x).
A disadvantage is that conditions sufficient for the conver-
gence of EP-ABC (or even the simpler deterministic EP)
are not known. Also, as with using PW-ABC with (7), since
EP-ABC uses a Gaussian approximation for each factor, it
is potentially ill-suited to problems with complicated (e.g.
multimodal or otherwise non-Gaussian) likelihoods; conver-
gence of the product density is not assured to any “optimal”
approximation to the target posterior. A promising direction
for future work will be to investigate adapting the EP-ABC
idea of sampling from a pseudo-prior to the ideas in this pa-
per of using kernel (or Gaussian mixture) density estimates
for each likelihood factor.

Acknowledgements S.R. White was supported by the (UK) Med-
ical Research Council [Unit Programme number U105260794] and
the EPSRC [University of Nottingham, Bridging the Gaps]. The au-
thors gratefully acknowledge valuable discussions with John Crowe,
Richard Wilkinson and Andy Wood, and helpful comments from the
anonymous referees.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix 1

Expression for Bj2,...,jn , aj2,...,jn , and wj2,...,jn in (18), anal-
ogous to (8)–(10), are as follows:

Bj2,...,jn =
(

n∑
i=2

H−1
i

)−1

,

aj2,...,jn = Bj2,...,jn

(
n∑

i=2

H−1
i θ∗

i(ji )

)
,

wj2,...,jn

= m(1−n) det(2πBj2,...,jn)
1/2

n∏
i=2

det(2πHi)
−1/2

×
n∏

s=2

n∏
t>s

exp

(
−1

2

(
θ∗
s(js )

− θ∗
t (jt )

)T
Rst

(
θ∗
s(js )

− θ∗
t (jt )

))
,

Rst = H−1
s Bj2,...,jnH

−1
t .

Expressions for B ′
j2,...,jn

, a′
j2,...,jn

, and w′
j2,...,jn

in (22) are
given respectively by the right-hand sides of (20), (21),
and (32) with B replaced by Bj2,...,jn , a replaced by aj2,...,jn ,
and w replaced by wj2,...,jn .

Appendix 2

Proposition 1 Let I = 1{θ∗ is accepted} be the indicator
function of whether an ABC draw θ∗ is accepted. The ac-
ceptance probability is

P(I = 1) = V π̃ABC(x)

where π̃ABC(x) is the marginal likelihood of the implied
ABC posterior.

Proof Recall from Sect. 2.4 that Kε,p(z) =
V −11{‖z‖p ≤ ε} and π̃ABC(x | θ) = ∫

π(y | θ) ×
Kε,p(y − x)dy is the implied ABC likelihood approxima-
tion. Then

P(I = 1) =
∫

θ

P(I = 1, θ)dθ

=
∫

θ

π(θ)P(I = 1 | θ)dθ

=
∫

θ

π(θ)

{∫
y

π(y | θ)1{‖y − x‖p ≤ ε}dy

}
dθ

=
∫

θ

π(θ)

{∫
y

π(y | θ)V Kε,p(y − x)dy

}
dθ

=
∫

θ

V π(θ)π̃ABC(x | θ)dθ

= V π̃ABC(x). �

An estimator of π̃ABC(x) is hence V −1
P̂(I = 1), where

P̂(I = 1) is the empirical proportion of ABC draws which
are accepted.
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