
For Peer Review

 

 

 

 

 

 

Evidence of introgressive hybridization between the 

morphologically divergent land snails Ainohelix and 
Ezohelix 

 

 

Journal: Biological Journal of the Linnean Society 

Manuscript ID: BJLS-3696.R1 

Manuscript Type: Research Article 

Date Submitted by the Author: 28-Nov-2014 

Complete List of Authors: Morii, Yuta; Tohoku University, Graduate School of Life Sciences 

Yokoyama, Jun; Yamagata University, Department of Biology 
Kawata, Masakado; Tohoku University, Graduate School of Life Sciences 
Davison, Angus; University of Nottingham, Centre for Genetics and 
Genomics 
Chiba, Satoshi; Tohoku University, Graduate School of Life Sciences 

Keywords: 
land snail, Bradybaenidae, phylogeny, morphology, introgression, ancestral 
hybridization 

  

 

 

Biological Journal of the Linnean Society

Biological Journal of the Linnean Society



For Peer Review

 1

TITLE 1 

Evidence of introgressive hybridization between the morphologically divergent land snails 2 

Ainohelix and Ezohelix.  3 

 4 

Running heads 5 

Introgressive hybridization between land snail species 6 

 7 

Author names and institutions 8 

Yuta Morii
1
*, Jun Yokoyama

2
, Masakado Kawata

1
, Angus Davison

3
, Satoshi Chiba

1
 9 

1
 Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8576, Japan 10 

2
 Department of Biology, Faculty of Science, Yamagata University, Kojirakawa, Yamagata 11 

990-8560, Japan 12 

3
 Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, 13 

Nottingham NG7 2RD, UK 14 

 15 

*Corresponding author 16 

E-mail address: iiromatuy@gmail.com (Y. Morii) 17 

18 

Page 1 of 42

Biological Journal of the Linnean Society

Biological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 2

ABSTRACT 1 

Hybridization between different taxa is likely to take place when adaptive morphological 2 

differences evolve more rapidly than reproductive isolation. In studying the phylogenetic 3 

relationship between two land snails of different nominal genera, Ainohelix editha and 4 

Ezohelix gainesi from Hokkaido, Japan, using nuclear ITS (nDNA) and mitochondrial 16S 5 

ribosomal DNA (mtDNA), we found a marked incongruence in the topology between nuclear 6 

and mitochondrial phylogenies. Furthermore, no clear association was found between shell 7 

morphology (which defines the taxonomy) and nuclear or mitochondrial trees and 8 

morphology of reproductive system. These patterns are most likely explained by historical 9 

introgressive hybridization between A. editha and E. gainesi. As the shell morphologies of 10 

the two species are quite distinct, even when they coexist, the implication is that natural 11 

selection is able to maintain (or has recreated) distinct morphologies in the face of gene flow. 12 

Future studies may be able to reveal the regions of the genome that maintain the 13 

morphological differences between these species. 14 

 15 

ADDITIONAL KEYWORDS: land snail - Bradybaenidae - phylogeny - morphology - 16 

introgression - ancestral hybridization17 
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INTRODUCTION 1 

The means by which phenotypic evolution is associated with speciation and genetic 2 

differentiation has been a major concern of evolutionary biology (Schluter, 2000; Gavrilets & 3 

Losos, 2009), with the general perception being that morphological divergence should reflect 4 

the underlying taxonomy and thus the genetic divergence between different species (Avise, 5 

2000; Schileyko, 2004). However, a range of recent studies has uncovered molecular genetic 6 

evidence that is suggestive of hybridization and introgression between species with quite 7 

divergent morphologies (Rieseberg et al., 2003; Seehausen, 2004; Arnold, 2006; Whitney et 8 

al., 2010; Keller et al., 2013; Parham et al., 2013). This is probably because phenotypic 9 

divergence under natural selection, or even drift, might sometimes take place much faster 10 

than the evolution of reproductive isolation, and thus speciation (Teshima et al., 2003; Nosil, 11 

2012; Stankowski, 2013). In addition, it has been argued that novel adaptations sometimes 12 

arise via hybridization (DeVicente & Tanksley, 1993; Cosse et al., 1995; Rieseberg et al., 13 

1999; Chiba, 2005; Whitney et al., 2010). However, the extent to which interspecific 14 

hybridization affects morphological diversity and phenotypic adaptation is unclear, with a 15 

few notable exceptions (Whitney et al., 2006; Rieseberg, 2011; Pardo-Diaz et al., 2012). This 16 

is partly because introgressive hybridization is often cryptic (Mallet, 2005; Good et al., 2008), 17 

and only revealed from combined nuclear and mitochondrial studies (Arnold, 2006; Parham 18 

et al., 2013). 19 

Land snails are potentially excellent systems to test theories of morphological evolution, 20 

because shell shape and colour, both inherited characters, tend to evolve rapidly (Chiba, 21 

1999; Davison & Chiba, 2006; Hoso et al., 2010; Stankowski, 2011, 2013). In this study, we 22 

focused on some species of the bradybaenid land snail in Hokkaido and Honshu, Japan. 23 

Ainohelix and Ezohelix are endemic to Japan, and include single species (Ainohelix editha 24 

and Ezohelix gainesi, respectively). Both species have large variations in morphological traits 25 

among local populations, and they included many nominal species as synonyms (Habe, 1977; 26 
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Minato, 1988; Katakura et al., 1990; Teshima et al., 2003). Paraegista is also endemic to 1 

Japan, and includes two described species, Paraegista takahidei and P. apoiensis. Another 2 

native bradybaenid genus, Karaftohelix is widely distributed in the northeastern parts of 3 

Asian continent, Sakhalin Island, Kuril Islands and Hokkaido Island. Only Karaftohelix 4 

blakeana, is distributed in Hokkaido (Habe, 1977; Minato, 1988; Schileyko, 2004). Because 5 

of clear discontinuities of shell morphological traits, these species have been thought to be 6 

quite distinct and distantly related, so these species were classified into four different genera 7 

in total (Ainohelix, Ezohelix, Karaftohelix and Paraegista). However, a previous molecular 8 

phylogenetic study suggested that three genera (Ainohelix, Ezohelix and Paraegista) were 9 

genetically close to one other (Wade et al., 2006), perhaps calling into question the generic 10 

status. A prior molecular phylogenetic analysis of A. editha suggested that morphological 11 

divergence of A. editha may have occurred independently in different lineages (Teshima et 12 

al., 2003). However, no molecular surveys have been conducted in other land snail genera of 13 

Hokkaido. 14 

In the present study, we clarified the phylogenetic relationships among all Japanese species 15 

of Ainohelix, Ezohelix, Karaftohelix and Paraegista altogether, using nuclear internal 16 

transcribed spacer DNA (ITS1 and ITS2, nDNA) and mitochondrial 16S ribosomal DNA 17 

(mtDNA) genetic markers. In particular, we aimed to understand how the topology of 18 

phylogenetic trees inferred from nDNA compares with that of mtDNA, and whether either or 19 

both are associated with the shell and genital morphological traits of two morphologically 20 

divergent land snails of Ainohelix editha and Ezohelix gainesi. The genital morphology is 21 

often used as taxonomically important trait for terrestrial molluscs (Schileyko, 2004). Causes 22 

of incongruence among the gene trees and phenotypic traits and observed evolutionary 23 

patterns are discussed. 24 

25 
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MATERIAL AND METHODS 1 

Samples 2 

Ainohelix editha (Figure 1a,b) is a widely distributed endemic species of Hokkaido Island. 3 

Two different morphs have been identified in the populations of A. editha. The keeled morph 4 

is characterized by having a peripheral angle on the shell, and the rounded morph by having 5 

no pheripheral angle. The keeled morph is found only in the populations from Urakawa 6 

(Samani, locality no.48) and Shimamaki (Obira, locality no.45), though intermediate morphs 7 

between rounded and keeled morphs are found (Teshima et al., 2003). Ezohelix gainesi 8 

(Figure 1c) is also found on Hokkaido, as well as high mountains in the Tohoku region of 9 

Honshu Island. Snail samples of these species were collected from 57 localities covering 10 

almost the entire distributional range (Figure 2; Appendix 1). The three remaining 11 

bradybaenid species of Hokkaido were also sampled, Karaftohelix blakeana (Figure 1d), 12 

Paraegista takahidei (Figure 1e) and Paraegista apoiensis (Figure 1f). These three species 13 

have limited distributions on Hokkaido (Japan Wildlife Research Center, 2002).  14 

A previous phylogenetic study sampled three of the four bradybaenid genera, Ezohelix, 15 

Ainohelix and Paraegista, putting them in a single monophyletic group (Wade et al., 2006). 16 

As we were primarily interested in the relationship between Ezohelix and Ainohelix, we used 17 

P. apoiensis from Samani (locality no. 52) as an outgroup for phylogenetic analyses.  18 

A fragment of the foot muscle of each individual was stored in 100% ethanol for DNA 19 

extraction, and the other parts of the soft tissue of each individual were stored in 70% ethanol 20 

after dissecting and observing the morphology of the reproductive system.  21 

Molecular methods 22 

Foot tissue was homogenized in 300 µl cetyltrimethylammonium bromide (CTAB) solution 23 

[2% CTAB (w/v), 100 mM Tris (pH 8.0), 20 mM EDTA (pH 8.0), 1.4M NaCl] and 20 µL of 24 

10 mg/mL proteinase K, incubated at 60 °C for approximately 1 hour, extracted once with 25 

phenol/chloroform and precipitated with two volumes of ethanol. The DNA pellet was then 26 
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rinsed with 70% ethanol, vacuum-dried for approximately 1 hour and dissolved in 50 µL of 1 

distilled water. 2 

Approximately 1200 bp of a nuclear gene cluster (nDNA), including the complete ITS-1 3 

region (approximately 530 bp), the complete 5.8S gene (approximately 160 bp), and the 4 

complete ITS-2 region (approximately 480 bp) was amplified by PCR, using six primers, 5 

ITS1 (5’-TCC GTA GGT GAA CCT GCG G-3’; White et al., 1990), ITS3 (5’-GCA TCG 6 

ATG AAG AAC GCA GC-3’; White et al., 1990), ITS4 (5’-TCC TCC GCT TAT TGA TAT 7 

GC-3’; White et al., 1990), ITS5 (5’-GGA AGT AAA AGT CGT AAC AAG G-3’; White et 8 

al., 1990), ITSsq2 (5’-CAC ACG ATA GGA AGC GAT TG-3’; original) and ITSsq4 9 

(5’-ATG CTT AAA TTC AGC GGG TA-3’; original). Similarly, approximately 900 bp of 10 

the mitochondrial 16S ribosomal DNA (mtDNA) was also amplified by PCR, using four 11 

primers, 16Scs1 (5’-AAA CAT ACC TTT TGC ATA ATG G-3’; Chiba, 1999), 16Scs2 12 

(5’-AGA AAC TGA CCT GGC TTA CG-3’; Chiba, 1999), 16SinnerF2 (5’-TAC TCT GAC 13 

TGT GCA AAG GTA G-3’; original) and 16SinnerR (5’-GGG TCT TCT CGT CTA TTA 14 

TTT A-3’; original). Both PCR reactions were conducted using Takara rTaq
TM

 (Takara 15 

Biomedicals, Japan) and buffers. Thermal cycling was performed with following reaction 16 

conditions: 94°C for 1 min., followed by 40 cycles of 94 °C for 1 min, 50 °C for 1 min and 17 

72 °C for 1 min, with final extension at 72 °C for 7 min. Cycle sequencing was carried out 18 

with both forward and reverse primers, using ~80-100 ng of PCR product in the reaction and 19 

the BigDye
TM

 Terminator v3.0 Cycle Sequencing Ready Reaction Kit (Applied Biosystems, 20 

California). DNA sequences were electrophoresed on a 310 Genetic Analyser or 3130 21 

Genetic Analyser (both Applied Biosystems, California). 22 

Phylogenetic analyses 23 

In total, 123 and 185 individuals of the five species including the outgroup taxa were used for 24 

nDNA and mtDNA analyses, respectively. Sequences were aligned using Clustal W 25 

(Thompson et al., 1994), and results were then checked manually to minimize the total 26 
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number of insertions and deletions (indels). All indel sites were removed from the alignment 1 

before phylogenetic analyses. The SH test (Shimodaira & Hasegawa, 1999) and 2 

approximately unbiased (AU) test (Shimodaira, 2002) were conducted using 114 individuals 3 

that have both nDNA and mtDNA sequences (Appendix 1). Gene trees were constructed 4 

using Bayesian inference (BI) methods and maximum likelihood (ML) methods with nDNA 5 

and mtDNA datasets analyzed separately, because SH test (Shimodaira & Hasegawa, 1999) 6 

and approximately unbiased (AU) test (Shimodaira, 2002) showed that the two datasets 7 

contained significantly different phylogenetic information. These analyses were conducted 8 

using TREEFINDER (Jobb et al., 2004) based on the selected 114 individuals that have both 9 

nDNA and mtDNA sequences (Appendix 1). Each dataset was treated as a single gene region 10 

for phylogenetic analyses. A GTR + Gamma model was selected according to the Akaike’s 11 

information criterion (AIC; Akaike, 1974) for both nDNA and mtDNA datasets. 12 

BI analyses were carried out using KAKUSAN v4.0 (Tanabe, 2007) and MrBayes v3.1.2 13 

(Huelsenbeck & Ronquist, 2001). Tree space was explored using two concurrent runs with 14 

four simultaneous Markov Chain Monte Carlo (MCMC) chains for 10 million generations, 15 

sampling every 1000 generations. The number of generations before stationarity of likelihood 16 

values was estimated, with the aid of the value of mean standard deviation of split 17 

frequencies in MrBayes (the value became less than 0.01; Huelsenback & Ronquist, 2001) 18 

and TRACER v1.5 (the effective sample sizes of all parameters became more than 100 after 19 

the burn-in; Rambaut & Drummond, 2007). The heating parameters were set to 0.15. After 20 

discarding the first 10001 trees as burn-in, we obtained the 50% majority rule consensus tree 21 

and the posterior probabilities of nodes in the tree. 22 

ML analyses were carried out using KAKUSAN v4.0 (Tanabe, 2007) and TREEFINDER 23 

(Jobb et al., 2004). Rate heterogeneity between sites was accounted for by Gamma 24 

distributed rates (Yang, 1994) in the model. The confidence level of the nodes in the ML tree 25 

was estimated using bootstrap resampling (Felsenstein, 1985) on 1000 pseudoreplicates. 26 
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Haplotype networks were constructed using using TCS v2.1 (Clement, 2000). 1 

Morphological analyses 2 

A shell morphological analysis was conducted for A. editha and E. gainesi (78 and 37 3 

specimens, respectively) from 25 sites (Appendix 1). Four shell morphological characters, 4 

aperture height (AH), aperture width (AW), shell diameter (D), shell height (H), were 5 

measured using a digital vernier caliper (Niigataseiki, Japan) and the number of coils was 6 

counted by 1/4 whorls (Figure 3a). The lengths of these traits were measured through 7 

comparison with a scale of ±0.1 mm accuracy. The mean of the three measurements for each 8 

trait was used for the analyses. A principal component analysis (PCA) was conducted on the 9 

correlation matrix of log-transformed measurements using JMP software (SAS Institute, 10 

North Carolina). 11 

An analysis of reproductive system was also conducted for A. editha and E. gainesi (38 12 

and 19 specimens, respectively) from 17 sites (Appendix 1). Nine morphological characters 13 

of the reproductive system were measured on the pictures of reproductive system using 14 

ImageJ software (National Institutes of Health, Bethesda, USA; Figure 3b): length of stalk of 15 

the bursa copulatrix (Lbc), length between the upper end of the penis sheath and the retractor 16 

muscle of the penis (Lep1), length between the upper end of the epiphallus and the retractor 17 

muscle of the penis (Lep2; i.e. length of epiphallus = Lep1+Lep2), length of oviduct (Lov), 18 

length of the penis (Lps), length of the spermoviduct (Lsd), Length of stylophore or dart sac 19 

(Lst), length of the vagina (Lva), length of the vas deferens (Lvd). A principal component 20 

analysis (PCA) was conducted using the ratio of the length of each character to the length 21 

from the genital apex to the tip of the epiphallus was calculated in JMP software (SAS 22 

Institute, North Carolina). 23 

24 
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RESULTS 1 

Phylogenetic analyses 2 

We did not concatenate the nDNA and mtDNA sequences because the SH test (Shimodaira & 3 

Hasegawa, 1999) and approximately unbiased (AU) test (Shimodaira, 2002) suggested that 4 

the two data sets contain significantly different phylogenetic information (P <0.001 on both 5 

tests). 6 

nDNA variations 7 

In the nDNA analyses, BI and ML (a single tree with -ln L 3155.) analyses did not result in 8 

identical topologies, especially for the phylogenetic position of clade E. The topology of the 9 

haplotype network was consistent with the topology of BI tree (Appendix 2). Therefore, ML 10 

tree was not used for subsequent analyses. The inferred phylogenetic relationship among the 11 

haplotypes is shown in Figure 4. 12 

There were no shared haplotypes between A. editha and E. gainesi. A. editha and E. 13 

gainesi were polyphyletic, with the majority of E. gainesi haplotypes falling into three clades, 14 

A, C and E, with high support values (BPP = 0.86, 1.00 and 1.00, BV = 82%, 92% and 96%, 15 

respectively), except for two haplotypes from three populations (locality no. 7, 15 and 49). 16 

The haplotype network suggested that E. gainesi were derived from more than two 17 

genetically distinctive clades (Clades A+C and E, Appendix1). Although the phylogenetic 18 

relationships between many haplotypes of A. editha were uncertain, three clades, B, D and F, 19 

were identified by high support values (BPP = 0.96, 0.97 and 1.00, BV = 83%, 70% and 84%, 20 

respectively). The haplotypes included in each of these six clades were those from 21 

geographically close populations, but each clade does not overlap geographically with others 22 

in most cases (Figure 5). The two populations of keeled morph of A. editha were included in 23 

the different clades respectively (Clade F and uncertain clade). 24 

mtDNA variations 25 

In the mtDNA analyses, 185 individuals of five species, including the outgroup taxa, were 26 
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analyzed, detecting 127 haplotypes. The BI and ML resulted in nearly identical topologies. 1 

The ML analysis resulted in a single tree with -lnL 9323.59. The inferred phylogenetic 2 

relationship among the haplotypes is shown in Figure 6. 3 

Similarly to the nDNA analyses, A. editha and E. gainesi, were polyphyletic in the mtDNA 4 

analyses, with no shared haplotypes between the two species. Six major clades were 5 

identified (Clades G-L). Clade G included haplotypes of both A. editha and E. gainesi (97 6 

haplotypes), and occupied the largest geographic area among the six clades, encompassing 7 

almost the entire distribution of these two species. The other clades (Clades H-L) tended to 8 

include either A. editha or E. gainesi (Figure 6). 9 

Clade G was separated into 10 well supported subclades (Subclades G1-10). These five 10 

clades (Clade H-L) and 10 subclades (Subclades G1-10) were constructed with the 11 

haplotypes of geographically close populations (Figure 7). In particular, G-1 and G-2 clades 12 

contain A. editha and E. gainesi, with the haplotypes being from geographically close sites 13 

(Figure 7a,b). The two populations of keeled morph of A. editha were included in the 14 

different clades respectively (Clade H and Subclade G-2). 15 

Morphological analyses 16 

To investigate variation in shell morphology between A. editha and E. gainesi, PCA was 17 

performed based on five traits (four measurements in Figure 3a and number of whorls). More 18 

than 98% of the variation among the individual snails was explained by two principal 19 

components (PC1 and PC2; Table 1). All factors had a sufficient loading value, and the 20 

factors, except for the number of whorls, had positive loadings on PC1. Therefore, PC1 can 21 

be interpreted as explaining both size and shape of the shell. 22 

The difference in the PC1 scores is highly significant between A. editha and E. gainesi 23 

(Wilcoxon rank sum test, P <0.001). A. editha was much smaller and coiled more than E. 24 

gainesi, and there were no intermediate shell types between A. editha and E. gainesi (Figure 25 

8a). On the basis of PCA, the keeled morph of A. editha (white triangles in Figure 8a) was 26 
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not clearly sepalated from the rounded morph, as shown in a previous study (Teshima et al., 1 

2003). 2 

Similarly, a PCA analysis was performed to investigate variation in genital morphology 3 

between A. editha and E. gainesi based on nine measurements (Figure 3b). In contradiction 4 

to the shell morphology, no differences in morphology of reproductive system were 5 

distinguishable between the two species, which completely overlapped (Figure 8b). 6 

 7 

8 
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DISCUSSION 1 

Phylogenetic relationships among bradybaenid snails in Hokkaido 2 

The evidence from the nDNA and mtDNA analyses suggests that five bradybaenid endemic 3 

species of Hokkaido and Honshu, A. gainesi, E. editha, K. blakeana, P. takahidei and P. 4 

apoiensis are genetically close to each other. On the basis of both nDNA and mtDNA trees, 5 

the populations of K. blakeana is monophyletic (Figure 4, 6). In addition, individuals of this 6 

species are morphologically close to each other (data not shown), showing that K. blakeana 7 

is clearly discriminated from A. editha and E. gainesi. However, populations of A. editha and 8 

E. gainesi show polyphyletic relationships in nDNA and mtDNA analyses (Figure 4, 6). In 9 

addition, the A. editha and E. gainesi are indistinguishable by genital morphologies (Figure 10 

8b). These results indicate that A. editha and E. gainesi are genetically and anatomically 11 

indistinguishably close to each other despite that these species belong to different nominal 12 

genera because of their distantly related shell morphologies (Figure 8a). Shell morphologies 13 

of land snails are highly labile (Chiba, 1999; Teshima et al., 2003; Stankowski, 2011, 2013; 14 

Hirano et al., 2014), and therefore, E. gainesi taxonomically belongs to Ainohelix. 15 

The evolutionary histories of Ainohelix editha and Ezohelix gainesi 16 

Despite absence of differentiation in characters that are usually key for taxonomic description 17 

(e.g. morphology of reproductive system), we argue that A. editha and E. gainesi are 18 

nonetheless good species, because the shell size and shape are distinct and often coexist at 19 

the same place (30 localities of all 54 sites in this study contained both A. editha or E. 20 

gainesi). In addition, there were no shared haplotypes/alleles between A. editha and E. 21 

gainesi, therefore the reproductive isolation between A. editha and E. gainesi is likely to be 22 

established. 23 

An array of recent molecular phylogenetic studies suggest that introgression of mtDNA 24 

tends to occur much more frequently than nuclear DNA (Ferris et al., 1983; Taylor & 25 

McPhail, 2000; Sota & Vogler, 2001; Doiron et al., 2002; Shaw, 2002; Ballard & Whitlock, 26 
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2004; Roca et al., 2005), although the reasons for this are still unclear (Llopart et al., 2005; 1 

Bachtrog et al., 2006). In our study, the phylogenetic relationship between A. editha and E. 2 

gainesi appears more complex in mtDNA analyses than in nDNA analyses, although for both 3 

genes A. editha and E. gainesi tend to have very different lineages (Figure 9), suggesting at 4 

least a recent separate history. This pattern may suggest that the introgressive hybridization 5 

between A. editha and E. gainesi has occurred during the history of evolution of these species. 6 

The geographic patterns of G-1 and G-2 clades of the mtDNA tree including haplotypes of 7 

both A. editha and E. gainesi also strongly suggest a history of introgressive hybridization 8 

between A. editha and E. gainesi. 9 

As alternative hypotheses, the observed patterns could have been produced by incomplete 10 

lineage sorting or differential retention of some ancestral polymorphism that was present in 11 

the ancestor to these two species (Bull, 1993; Sang & Zhong, 2000; Holder et al., 2001; Joly 12 

et al., 2009). The phylogenetic relationship among the mtDNA haplotypes included in G-1 13 

and G-2 clades does not reflect difference of the species but reflects geographical closeness, 14 

suggesting that the observed patterns are difficult to explain with these hypotheses. However, 15 

the phylogenetic relationships among other clades of the mtDNA tree may be explained by 16 

not only introgressive hybridization but also the incomplete lineage sorting and/or retention 17 

of some ancestral polymorphism, because there is no relationship between genetic and 18 

geographic structure among clades or subclades.  19 

In the nDNA analyses, the alleles of E. gainesi were clearly separated into three clades (A, 20 

C and E clades). The haplotype network based on the same nDNA dataset using minimum 21 

spanning network showed that the three clades of E. gainesi were derived from one clade of 22 

A. editha independently (Appendix 2). This may imply that E. gainesi has evolved three 23 

times independently by parallel evolution. Parallel evolution of similar traits in different 24 

populations experiencing ecologically similar environments strongly implicates natural 25 

selection as the cause of evolution (Hervey & Pagel, 1991; Schluter & Nagel, 1995; Rundle 26 
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et al., 2000; Schluter, 2000, 2001; Nosil et al., 2002). However, we argue that this parallel 1 

pattern of E. gainesi in nDNA is unlikely to be caused by parallel evolution, because the 2 

geographic patterns of A, C and E clades are not correlated with the geographic history of 3 

Hokkaido Island (Yonekura et al., 2001). It is possible that the observed phylogenetic 4 

patterns were created through multiple mechanisms of the introgressive hybridization, the 5 

incomplete lineage sorting with parallel evolution and/or differential retention of ancestral 6 

polymorphism. Clearly, further research is needed to clarify the causes of the observed 7 

phylogenetic patterns. 8 

As sympatric snails tend to have a discrete morphology and size, as well as there being no 9 

evidence of shared haplotypes, we argue that the incongruence of nDNA and mtDNA trees is 10 

most likely to be caused by ancestral hybridization. Similar patterns observed in the present 11 

study have been reported in several studies (DeSalle & Giddings, 1986; Bagley & Gall, 12 

1998; Wilson & Bernatchez, 1998; Llopart et al., 2005; Roca et al., 2005; Bachtrog et al., 13 

2006; Haase & Misof, 2009; Haase et al., 2013). Furthermore, as snails in different regions 14 

of Hokkaido tend to have different shared histories, this is probably evidence for 15 

geographically discrete hybridization events, perhaps strongly influenced by Pleistocene 16 

climate change (Yonekura et al., 2001; Koizumi et al., 2012). If population sizes were much 17 

smaller than today, it is likely that morphologically well differentiated snails mated in 18 

Pleistocene isolation but no longer afterwards (Haase & Misof, 2009; Haase et al., 2013). 19 

Because the mtDNA tree remained the influence of ancestral hybridization between A. editha 20 

and E. gainesi, despite mtDNA have a rapid evolutionaly rate and short coalescence times 21 

(Avise, 2000), and A. editha and E. gainesi can be distinguished clearly and significantly by 22 

difference of shell size and shape, therefore it seems possible that the divergence of 23 

morphology and speciation of A. editha and E. gainesi occurred recently, or now is occurring. 24 

Correlations between shell size and moisture have been reported in land snails (larger 25 

snails in wetter condition; Goodfriend, 1986). In such cases, mosaic patterns should appear in 26 
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the distributions of the two species because of mosaic distributions of these habitats 1 

(Futuyma, 2005). However, in unpublished work, we have found no obvious differences in 2 

the local microhabitat use between the two species when sympatric, so it is unlikely that 3 

morphological differences between the two species are caused by major differences in habitat. 4 

Probably, strong selection against intermediate form causes morphological divergence and 5 

the two distinctive forms have evolved after hybridization, but further research is needed to 6 

clarify the ecological or genetic factors that decrease fitness of intermediate forms.  7 

8 
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FIGURE LEGENDS 1 

 2 

Figure 1. Representative specimens of Ainohelix editha, Ezohelix gainesi, Karaftohelix 3 

blakeana, Paraegista takahidei and Paraegista apoiensis. Rounded morph of A. editha from 4 

Shimamaki (a), keeled morph of A. editha from Shimamaki (b), E. gainesi from Rumoi (c), K. 5 

blakeana from Rebun Island (d), P. takahidei from Sapporo (e), P. apoiensis from Samani (f). 6 

All scales indicate 10mm. 7 

 8 

Figure 2. Map showing the sampling localities of snails analyzed in this study. The numerals 9 

correspond to the locality numbers in Appendix 1. 10 

 11 

Figure 3. Characters measured for the morphological analyses of shell (a) and reproductive 12 

system (b). AH, aperture height; AW, aperture width; D, shell diameter; H, shell height; Lbc, 13 

length of stalk of the bursa copulatrix; Lep1, length between the upper end of the penis 14 

sheath and the retractor muscle of the penis; Lep2, length between the upper end of the 15 

epiphallus and the retractor muscle of the penis; Lov, length of oviduct; Lps, length of the 16 

penis sheath; Lst, length of stylophore or dart sac; Lsd, length of the spermiduct; Lva, length 17 

of the vagina; Lvd, length of the vas deferens. 18 

 19 

Figure 4. The Bayesian tree inferred from nDNA sequences (approximately 1200bp). 20 

Numbers at each branch represent the posterior probability of clades resolved in BI analysis 21 

(BPP; values <0.90 are not shown) and bootstrap support for clades resolved in the ML 22 

analysis (BV; values <70% are not shown). Numbers at the tips indicate the individual 23 

numbers shown in Appendix 1: white circle, A. editha; black circle, E. gainesi; gray circle, K. 24 

blakeana; upper gray triangle, P. takahidei; lower gray triangle, P. apoiensis. The bars on the 25 

right side indicate the species included in each clade or subclade: white bar, clade of A. 26 
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editha; black bar; clade of E. gainesi: gray bar; clade of K. blakeana, P. takahidei or P. 1 

apoiensis. Images of typical shell of the individuals belonging to each clade were shown with 2 

an asterisk (*) on the image and OTU of the tree.  3 

 4 

Figure 5. The geographic relationships among haplotypes in each clade of nDNA tree. 5 

Clades of E. gainesi (a), clades of A. editha (b), other haplotypes that did not construct any 6 

clades (c). 7 

 8 

Figure 6. The Bayesian tree inferred from mtDNA sequences (approximately 900bp). 9 

Numbers at each branch represent the posterior probability of clades resolved in BI analysis 10 

(BPP; values <0.90 are not shown) and bootstrap support for clades resolved in the ML 11 

analysis (BV; values <70% are not shown). Numbers at the tips indicate the individual 12 

numbers shown in Appendix 1: white circle, A. editha; black circle, E. gainesi; gray circle, K. 13 

blakeana; upper gray triangle, P. takahidei; lower gray triangle, P. apoiensis. The bars on the 14 

right side indicate the species included in each clade or subclade: white bar, clade or subclade 15 

of A. editha; black bar, clade or subclade of E. gainesi; stripe bar, subclade including both A. 16 

editha and E. gainesi; gray bar, clade of K. blakeana, P. takahidei or P. apoiensis. 17 

 18 

Figure 7. The geographic relationships among haplotypes in each clade and subclade of 19 

mtDNA tree. Clade G-1 and G-2 were constructed by both haplotypes of A. editha and E. 20 

gainesi (a,b). Other clades included either only A. editha (c) or E. gainesi (d). 21 

 22 

Figure 8. Scatter plots of the principal component scores of shell (a) and reproductive system 23 

(b). White circle, rounded morph of A. editha; lower white triangle, keeled morph of A. 24 

editha from Shimamaki (locality no. 45); upper white triangle, keeled morph of A. editha 25 

from Urakawa (locality no. 48); black circle, E. gainesi. 26 
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 26

 1 

Figure 9. Inconsistency of topology between nDNA tree (left) and mtDNA tree (right). 2 

Numbers at the tips indicate the locality numbers shown in Appendix 1. Haplotype possessed 3 

by the same individual was connected by a solid line (E. gainesi) and broken line (A. editha).4 
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TABLES 1 

 2 

Table 1. Summary of principal component analysis for the 

morphological analysis of shells. 

measurement PC1 PC2 

Eigenvalue 4.395 0.517 

% of total variation 87.903 10.342 

Coefficient 

   D 0.975 0.091 

   AW 0.991 0.096 

   H 0.947 0.274 

   AH 0.995 0.050 

   Coils -0.759 0.650 

 3 

Table 2. Summary of principal component analysis for the 

morphological analysis of reproductive system. 

measurement PC1 PC2 PC3 PC4 

Eigenvalue 1.932 1.750 1.374 1.126 

% of total variation 21.446 19.449 15.271 12.510 

Coefficient 

   Lbc 0.189 0.205 0.656 0.388 

   Lep1 0.310 -0.369 0.367 0.327 

   Lep2 0.635 -0.384 -0.277 -0.210 

   Lov -0.483 0.185 0.310 0.284 

   Lps 0.803 0.040 0.100 -0.018 

   Lsd -0.639 -0.640 -0.292 0.103 

   Lst -0.327 0.161 0.553 -0.646 

   Lva -0.041 0.586 -0.409 0.493 

   Lvd 0.056 0.781 -0.260 -0.269 

 4 

5 
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APPENDICES 1 

 2 

Appendix 1. Sampling information of specimens used in the present study. 3 

 4 

Appendix 2. The parsimony haplotype network conducted using the nDNA. Circles (nodes) 5 

indicate each haplotype. Numbers in the circles indicate the individual numbers shown in 6 

Appendix 1. Connection between nodes indicates a single character-state change. The empty 7 

nodes indicate missing haplotypes. Numbers in the nodes indicate the sampling location, and 8 

the size of the nodes is proportional to the haplotype’s frequency. White and black nodes 9 

indicate haplotypes of Ainohelix editha, Ezohelix gainesi, respectively. Gray nodes indicate 10 

the other three species, Karaftohelix blakeana, Paraegista takahidei and P. apoiensis. 11 
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Figure 1. Representative specimens of Ainohelix editha, Ezohelix gainesi, Karaftohelix blakeana, Paraegista 
takahidei and Paraegista apoiensis. Rounded morph of A. editha from Shimamaki (a), keeled morph of A. 

editha from Shimamaki (b), E. gainesi from Rumoi (c), K. blakeana from Rebun Island (d), P. takahidei from 

Sapporo (e), P. apoiensis from Samani (f). All scales indicate 10mm.  
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Figure 2. Map showing the sampling localities of snails analyzed in this study. The numerals correspond to 
the locality numbers in Appendix 1.  

215x279mm (300 x 300 DPI)  
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Figure 3. Characters measured for the morphological analyses of shell (a) and reproductive system (b). AH, 
aperture height; AW, aperture width; D, shell diameter; H, shell height; Lbc, length of stalk of the bursa 
copulatrix; Lep1, length between the upper end of the penis sheath and the retractor muscle of the penis; 

Lep2, length between the upper end of the epiphallus and the retractor muscle of the penis; Lov, length of 
oviduct; Lps, length of the penis sheath; Lst, length of stylophore or dart sac; Lsd, length of the spermiduct; 

Lva, length of the vagina; Lvd, length of the vas deferens.  
282x211mm (300 x 300 DPI)  
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Figure 4. The Bayesian tree inferred from nDNA sequences (approximately 1200bp). Numbers at each 
branch represent the posterior probability of clades resolved in BI analysis (BPP; values <0.90 are not 
shown) and bootstrap support for clades resolved in the ML analysis (BV; values <70% are not shown). 

Numbers at the tips indicate the individual numbers shown in Appendix 1: white circle, A. editha; black 
circle, E. gainesi; gray circle, K. blakeana; upper gray triangle, P. takahidei; lower gray triangle, P. 

apoiensis. The bars on the right side indicate the species included in each clade or subclade: white bar, clade 
of A. editha; black bar; clade of E. gainesi: gray bar; clade of K. blakeana, P. takahidei or P. apoiensis. 
Images of typical shell of the individuals belonging to each clade were shown with an asterisk (*) on the 

image and OTU of the tree.  
211x282mm (300 x 300 DPI)  
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Figure 5. The geographic relationships among haplotypes in each clade of nDNA tree. Clades of E. gainesi 
(a), clades of A. editha (b), other haplotypes that did not construct any clades (c).  

211x282mm (300 x 300 DPI)  
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Figure 6. The Bayesian tree inferred from mtDNA sequences (approximately 900bp). Numbers at each 
branch represent the posterior probability of clades resolved in BI analysis (BPP; values <0.90 are not 
shown) and bootstrap support for clades resolved in the ML analysis (BV; values <70% are not shown). 

Numbers at the tips indicate the individual numbers shown in Appendix 1: white circle, A. editha; black 
circle, E. gainesi; gray circle, K. blakeana; upper gray triangle, P. takahidei; lower gray triangle, P. 

apoiensis. The bars on the right side indicate the species included in each clade or subclade: white bar, clade 
or subclade of A. editha; black bar, clade or subclade of E. gainesi; stripe bar, subclade including both A. 

editha and E. gainesi; gray bar, clade of K. blakeana, P. takahidei or P. apoiensis.  
211x282mm (300 x 300 DPI)  
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Figure 7. The geographic relationships among haplotypes in each clade and subclade of mtDNA tree. Clade 
G-1 and G-2 were constructed by both haplotypes of A. editha and E. gainesi (a,b). Other clades included 

either only A. editha (c) or E. gainesi (d).  

215x279mm (300 x 300 DPI)  
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Figure 8. Scatter plots of the principal component scores of shell (a) and reproductive system (b). White 
circle, rounded morph of A. editha; lower white triangle, keeled morph of A. editha from Shimamaki (locality 
no. 45); upper white triangle, keeled morph of A. editha from Urakawa (locality no. 48); black circle, E. 

gainesi.  
282x211mm (300 x 300 DPI)  
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Figure 9. Inconsistency of topology between nDNA tree (left) and mtDNA tree (right). Numbers at the tips 
indicate the locality numbers shown in Appendix 1. Haplotype possessed by the same individual was 

connected by a solid line (E. gainesi) and broken line (A. editha).  

211x282mm (300 x 300 DPI)  
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measurement PC1 PC2

Eigenvalue 4.395 0.517

% of total variation 87.903 10.342

Coefficient

   D 0.975 0.091

   AW 0.991 0.096

   H 0.947 0.274

   AH 0.995 0.050

   Coils -0.759 0.650

Table 1. Summary of principal component 

analysis for the morphological analysis of 

shells.
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measurement PC1 PC2 PC3 PC4

Eigenvalue 1.932 1.750 1.374 1.126

% of total variation 21.446 19.449 15.271 12.510

Coefficient

   Lbc 0.189 0.205 0.656 0.388

   Lep1 0.310 -0.369 0.367 0.327

   Lep2 0.635 -0.384 -0.277 -0.210

   Lov -0.483 0.185 0.310 0.284

   Lps 0.803 0.040 0.100 -0.018

   Lsd -0.639 -0.640 -0.292 0.103

   Lst -0.327 0.161 0.553 -0.646

   Lva -0.041 0.586 -0.409 0.493

   Lvd 0.056 0.781 -0.260 -0.269

Table 2. Summary of principal component analysis for the 

morphological analysis of reproductive system.
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Locality no. and name Coodinates Morphology DNA (individual ID and accession no.)

Latitude/Longitude Shell Genitalia ID ITS 16S

Ainohelix editha
1 Soya, Wakkanai 45°31′N/141°56′E - 1 1-1 AB893822 AB893666

1-2 AB893823 AB893667

2 Wakkanai 45°25′N/141°38′E - - 2-1 AB893804 AB893631

2-2 AB893805 AB893632

2-3 - AB893633

3 Sarufutsu 45°22′N/142°05′E 6 - 3-1 AB893799 AB893623

3-2 AB893800 AB893624

3-3 - AB893625

5 Rebun Island 45°18′N/141°02′E 1 - 5-1 AB893803 AB893630

6 Rebun Island 45°17′N/141°01′E 4 - 6-1 AB893802 AB893628

6-2 - AB893629

7 Rishiri Island 45°13′N/141°14′E 1 1 7-1 AB893801 AB893627

7-2 - AB893626

8 Yurai, Wakkanai 45°12′N/141°35′E 1 - 8-1 - AB893634

8-2 - AB893635

8-3 - AB893636

9 Hamatombetsu 45°10′N/142°16′E - - 9-1 AB893798 AB893621

9-2 - AB893622

10 Nakatombetsu 44°59′N/142°17′E 5 2 10-1 AB893797 AB893618

10-2 - AB893619

10-3 - AB893620

11 Horonobe 44°55′N/142°00′E - - 11-1 AB893831 AB893682

11-2 AB893832 AB893683

12 Teshio 44°53′N/141°45′E 4 - 12-1 AB893806 AB893637

13 Esashi 44°46′N/142°30′E 1 1 13-1 - AB893615

13-2 - AB893616

13-3 - AB893617

14 Shosambetsu 44°35′N/141°47′E - - 14-1 AB893807 AB893638

14-2 AB893808 AB893639

16 Yagishiri Island 44°26′N/141°25′E 7 10 16-1 AB893824 AB893668

17 Yagishiri Island 44°26′N/141°25′E 3 - 17-1 AB893830 AB893679

17-2 - AB893678

18 Teuri Island 44°26′N/141°19′E 5 - 18-1 - AB893680

18-2 - AB893681

19 Nishiokoppe 44°21′N/142°58′E 1 - 19-1 - AB893614

20 Tomamae 44°20′N/141°40′E 3 4 20-1 - AB893640

20-2 - AB893641

20-3 - AB893642

21 Horokanai 44°18′N/142°10′E - 4 21-1 AB893833 AB893684

22 Takinoue 44°12′N/143°01′E - - 22-1 - AB893613

23 Tomamae 44°08′N/141°47′E - - 23-1 - AB893669

23-2 - AB893670

24 Obira 44°07′N/141°39′E 3 1 24-1 AB893809 AB893643

24-2 AB893810 AB893644

27 Rumoi 43°54′N/141°42′E 2 - 27-1 AB893811 AB893645

27-2 - AB893646

27-3 - AB893647

27-4 - AB893648

30 Kamikawa 43°43′N/142°58′E - - 30-1 - AB893612

31 Kitami 43°39′N/143°15′E 1 2 31-1 AB893795 AB893610

31-2 AB893796 AB893611

32 Furano 43°20′N/142°21′E 6 - 32-1 AB893818 AB893657

32-2 AB893819 AB893658

32-3 AB893820 AB893659

32-4 AB893821 AB893665

32-5 - AB893660

32-6 - AB893661

32-7 - AB893662

32-8 - AB893663

32-9 - AB893664

33 Bibai 43°19′N/141°58′E - 1 33-1 - AB893676

33-2 - AB893677

34 Bibai 43°19′N/141°57′E 1 1 34-1 AB893812 AB893649

34-2 AB893813 AB893650

34-3 - AB893651

35 Bibai 43°19′N/141°52′E 4 3 35-1 - AB893675

36 Shakotan 43°19′N/140°21′E - 1 36-1 AB893840 AB893694

36-2 - AB893692

36-3 - AB893693

39 Yubari 43°03′N/142°06′E 2 2 39-1 AB893814 AB893652

39-2 AB893815 AB893653

39-3 - AB893654

40 Ebetsu 43°02′N/141°31′E - - 40-1 AB893829 AB893674

41 Sapporo 42°59′N/141°06′E 1 - 41-1 AB893839 AB893691

44 Kuromatsunai 42°39′N/140°19′E 3 - 44-1 AB893828 AB893673

44-2 AB893827 -

45 Shimamaki 42°37′N/140°06′E 1 1 45-1 AB893825 AB893671

45-2 AB893826 AB893672

45-3 AB893837 AB893689

45-4 AB893838 AB893690

45-5 - AB893688

46 Oshamambe 42°35′N/140°13′E - - 46-1 AB893835 AB893687

46-2 - AB893686

48 Urakawa 42°13′N/142°58′E 9 2 48-1 AB893834 AB893685

49 Yakumo 42°11′N/140°06′E - - 49-1 AB893836 -

53 Samani 42°04′N/143°07′E 3 1 53-1 AB893816 AB893655

53-2 AB893817 AB893656

Ezohelix gainesi
5 Rebun Island 45°18′N/141°02′E - - 5-2 AB893856 AB893722

7 Rishiri Island 45°13′N/141°14′E - - 7-3 AB893854 AB893720

7-4 AB893855 AB893721

10 Nakatombetsu 44°59′N/142°17′E - - 10-4 AB893852 AB893716

10-5 AB893853 AB893717

10-6 - AB893718

10-7 - AB893719

11 Horonobe 44°55′N/142°00′E - - 11-3 AB893893 AB893765

11-4 AB893894 AB893766

13 Esashi 44°46′N/142°30′E - - 13-4 - AB893712

13-5 - AB893713

13-6 - AB893714

Appendix 1. Sampling information of specimens used in the present study.
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13-7 - AB893715

15 Okoppe 44°29′N/143°04′E - - 15-1 AB893851 AB893708

15-2 - AB893709

15-3 - AB893710

15-4 - AB893711

17 Yagishiri Island 44°26′N/141°25′E - - 17-3 AB893890 AB893762

17-4 AB893889 -

18 Teuri Island 44°26′N/141°19′E 3 - 18-3 AB893891 AB893763

18-4 AB893892 AB893764

19 Nishiokoppe 44°21′N/142°58′E - - 19-2 AB893850 AB893705

19-3 - AB893706

19-4 - AB893707

20 Tomamae 44°20′N/141°40′E - - 20-4 AB893857 AB893723

21 Horokanai 44°18′N/142°10′E - 1 21-2 AB893895 AB893767

21-3 AB893896 AB893768

21-4 AB893897 AB893769

22 Takinoue 44°12′N/143°01′E - - 22-2 AB893848 AB893701

22-3 AB893849 AB893702

22-4 - AB893703

22-5 - AB893704

23 Tomamae 44°08′N/141°47′E - - 23-3 AB893873 AB893747

23-4 - AB893746

24 Obira 44°07′N/141°39′E - - 24-3 AB893858 AB893724

26 Takinoue 43°56′N/142°57′E - - 26-1 AB893847 AB893700

27 Rumoi 43°54′N/141°42′E 1 - 27-5 AB893859 AB893725

27-6 AB893860 AB893726

27-7 - AB893727

27-8 - AB893728

28 Koshimizu 43°48′N/144°40′E - - 28-1 AB893843 AB893696

29 Mashike 43°47′N/141°40′E - - 29-1 AB893888 AB893761

29-2 AB893887 -

30 Kamikawa 43°43′N/142°58′E - - 30-2 AB893846 AB893699

31 Kitami 43°39′N/143°15′E - - 31-3 AB893844 AB893697

31-4 AB893845 AB893698

32 Furano 43°20′N/142°21′E 1 1 32-10 AB893863 AB893734

32-11 AB893872 -

33 Bibai 43°19′N/141°58′E 1 1 33-3 AB893886 AB893759

33-4 - AB893760

34 Bibai 43°19′N/141°57′E 2 2 34-4 AB893861 AB893729

34-5 AB893862 AB893730

34-6 - AB893731

35 Bibai 43°19′N/141°52′E - 2 35-2 AB893885 AB893758

35-3 AB893884 -

36 Shakotan 43°19′N/140°21′E 3 - - - -

37 Shikaoi 43°18′N/143°07′E - - 37-1 AB893842 AB893695

38 Tomari 43°03′N/140°30′E 1 1 38-1 - AB893732

39 Yubari 43°03′N/142°06′E - - 39-4 AB893864 AB893735

39-5 AB893865 AB893736

40 Ebetsu 43°02′N/141°31′E 23 7 40-2 AB893882 AB893756

40-3 AB893883 AB893757

41 Sapporo 42°59′N/141°06′E - - 41-2 AB893905 AB893776

42 Memuro 42°49′N/142°59′E - - 42-1 AB893841 -

43 Rusutsu 42°41′N/140°50′E - - 43-1 - AB893733

44 Kuromatsunai 42°39′N/140°19′E - - 44-3 AB893881 AB893754

44-4 - AB893755

45 Shimamaki 42°37′N/140°06′E - - 45-6 AB893879 AB893753

45-7 AB893880 -

46 Oshamambe 42°35′N/140°13′E 2 - 46-3 AB893899 AB893771

46-4 AB893900 AB893772

47 Mukawa 42°33′N/141°58′E - - 47-1 AB893903 AB893774

47-2 AB893904 AB893775

48 Urakawa 42°13′N/142°58′E - - 48-2 AB893898 AB893770

49 Yakumo 42°11′N/140°06′E - - 49-2 AB893901 -

49-3 AB893902 AB893773

50 Okushiri Island 42°10′N/139°30′E - - 50-1 AB893878 AB893752

51 Okushiri Island 42°09′N/139°24′E - - 51-1 AB893877 AB893751

53 Samani 42°04′N/143°07′E - - 53-3 AB893866 AB893737

53-4 AB893867 AB893738

53-5 AB893868 AB893739

53-6 - AB893740

54 Kaminokuni 41°42′N/140°18′E - - 54-1 AB893874 AB893748

55 Matsumae 41°42′N/140°18′E - 4 55-1 AB893875 AB893749

55-2 AB893876 AB893750

56 Daisen, Akita 39°33′N/140°43′E - - 56-1 - AB893741

57 Daisen, Akita 39°33′N/140°43′E - - 57-1 AB893869 AB893742

58 Yusa, Yamagata 39°06′N/140°00′E - - 58-1 AB893870 AB893743

58-2 AB893871 AB893744

58-3 - AB893745

Karaftohelix blakeana
1 Soya, Wakkanai 45°31′N/141°56′E - - 1-3 AB893911 AB893782

1-4 AB893912 AB893783

1-5 - AB893784

4 Rebun Island 45°18′N/141°01′E - - 4-1 AB893908 AB893779

4-2 AB893909 AB893780

4-3 AB893910 AB893781

25 Rausu 44°02′N/145°08′E - - 25-1 AB893906 AB893777

25-2 AB893907 AB893778

Paraegista apoiensis
52 Samani 42°06′N/143°01′E - - 52-1 AB893913 AB893788

52-2 AB893914 AB893789

52-3 AB893915 AB893790

52-4 AB893916 AB893792

52-5 - AB893786

52-6 - AB893787

52-7 - AB893791

52-8 - AB893785

Paraegista takahidei
41 Sapporo 42°59′N/141°06′E - - 41-3 AB893917 AB893794

41-4 - AB893793

Total 115 57 123 185
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Appendix 2. The parsimony haplotype network conducted using the nDNA. Circles (nodes) indicate each 
haplotype. Numbers in the circles indicate the individual numbers shown in Appendix 1. Connection between 
nodes indicates a single character-state change. The empty nodes indicate missing haplotypes. Numbers in 

the nodes indicate the sampling location, and the size of the nodes is proportional to the haplotype’s 
frequency. White and black nodes indicate haplotypes of Ainohelix editha, Ezohelix gainesi, respectively. 
Gray nodes indicate the other three species, Karaftohelix blakeana, Paraegista takahidei and P. apoiensis.  
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