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ABSTRACT
In railway track dynamics, the stiffness and damping properties of railpads have
a significant effect on track vibration, decay rates as well forces transmitted to
the track supporting structure. Many studies have shown that railpads exhibit
pronounced nonlinear behaviour, with preload and frequency dependent
properties. This paper presents a three parameter railpad model, together with
its differential equation of motion and the required model parameters obtained
from experimental data. A time domain model of a rail discretely supported on
these railpads is then formulated using the finite element method. The model is
subjected to static and dynamic loading in order to study the effects of preload
and frequency on its dynamic behaviour. Results are shown as time histories and
frequency spectra for the track displacements and reaction forces for various
preload levels. They emphasise the necessity of accounting for nonlinear
behaviour based on the large disparities (up to 20 dB) observed between the
linear and nonlinear cases for the parameters used in this study.

1. INTRODUCTION
The type of railpad model adopted in modelling the dynamic behaviour of a railway
track influences the accuracy of prediction of vibration of the track, as well as the
forces transmitted through the railpad into the track supporting structure. Owing to
the relative simplicity of linear analysis and the potential of obtaining exact
analytical solutions, linear railpad properties have been widely assumed by many
authors over the years [1–3]. However, many studies, including [4–7], have shown
that railpads exhibit pronounced nonlinear behaviour and their properties are
dependent on preload and frequency. Characterising these dependencies is, to a
large extent, subjective to a particular data set and is by no means a generic process.
It has been suggested by [8], that “a closer representation of the dynamic properties
of a particular material can be achieved by devising a more complicated
arrangement of spring and dashpot elements and, although the dynamic properties
may be more accurately represented, the parameters required cannot be related to
the fundamental physical properties of the material”. Therefore, this exercise should
be carried out with the scope set to particular applications, for e.g. in railway track
dynamics, the scope may be to predict the vibration levels in a track for which
experimental data is available for the railpads.

Some attempts have been made to characterise the nonlinear static and dynamic
properties of railpads and rubber material in general. Examples include fractional
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derivative models [9, 10], the generalised Zener model [11]; the Poynting-Thomson
model [6], etc. The generalised Zener model consists of a parallel array of an infinite
number of standard linear solid models. The Poynting-Thomson model, on the other
hand, consists of a frequency independent spring in parallel with a Maxwell
combination of spring and dashpot in series. Reference [6] presented an empirical
expression for the dynamic stiffness of this type of railpad model using curve fitting
procedures. However, the expression was derived explicitly as a function of
frequency, thereby limiting its use to single frequency problems; e.g. a linear single
degree of freedom system excited by a harmonic load.

The modelling of a railway track with nonlinear railpads and ballast was
presented in [12]. The individual nonlinear load-deflection laws for the railpad and
ballast were combined into one load-deflection relationship for the whole track
foundation, which was used to obtain the local preloads in the track foundation
caused by a single wheel load. These were then used in a discretely supported track
model to obtain the track receptances and decay rates. In a subsequent work [13],
the calculation of receptances and decay rates of a similar track preloaded with
multiple wheels was presented. These studies did not, however, consider the
frequency dependent behaviour of railpads as well as the track dynamic behaviour
under moving load conditions. The response of infinite beams on nonlinear elastic
foundations subjected to harmonic loads has been studied by [14], [15], etc. using
perturbation techniques. These studies utilised a two parameter nonlinear model for
the elastic foundation, accounting only for load amplitude dependence. However,
according to [16], a three parameter model such as the Poynting-Thomson model is
necessary to account for both preload and frequency dependence of a railpad.

Other more recent studies in the area of railway track dynamics and ground
vibration are as follows. A two-step approach for studying ground vibration due to
railway operation is presented by [17]. The first step involves modelling the vehicle-
track system including an approximate discrete soil layer, presented in [18], to
calculate the track-ground interaction forces. These are then used as input for the
second step, which is calculating ground vibration. In a subsequent paper, [19], a
parametric study is conducted on the effects of vehicle and track properties on the
level of ground vibration in the vicinity of the track. It is shown that the vibration level
is not only affected by the vehicle types and speeds, but also by the railpad stiffness,
rail mass and bending stiffness, sleeper mass and spacing. In [20] a comprehensive
three dimensional time domain vehicle-track model excited by wheel flats is studied.
Nonlinearity of the railpad and ballast are considered as exponential functions of their
respective displacements. The results, plotted as peak wheel/rail contact forces show
larger values for the linear track than for the non-linear one. This observation is
inconsistent with [21], where stiffer foundations lead to larger contact forces.

In this paper, the static and dynamic properties of the railpad are modelled using
a three parameter Poynting-Thomson (P-T) model. The differential equation of
motion for this model is derived in section 2, with the necessary model parameters
obtained by curve fitting of experimental data presented in [5]. In Section 3.1, this
railpad model is incorporated into a finite element based model of a railway track in
order to study its effects on the track dynamic behaviour. The model is solved in the
time domain using a time integration scheme for both stationary and moving load
cases as described in Section 4. For the purpose of validating the results from this
model, a semi-analytical solution is presented in Section 3.2 for linear parameters,
using the Fourier Transformation Method. Results are then presented in Section 5
for the track displacements and reaction forces both as time histories and as
frequency spectra for various levels of static load.

2. RAILPAD STIFFNESS AND DAMPING PROPERTIES
In this section, the static and dynamic load-displacement relationships of a railpad
are presented. Based on experimental data presented in [5], empirical
approximations are derived for both the static and dynamic stiffnesses of a railpad
using a three parameter P-T visco-elastic model, see [6]. This model consists of a
spring that is in parallel with a series combination of spring and dashpot. The latter



Vol. 34  No. 3  2015

two parameters ensure that the frequency dependence of the railpad is accounted for,
as will be shown later from the differential equation of motion. In this model, the
spring represents the stiffness and the dashpot the damping of the railpad. Section 2.1
deals with the static stiffness while Section 2.2 deals with the dynamic stiffness.

2.1. Static stiffness of railpads
The characterisation of a railpad’s load-displacement relationship, and hence its
static stiffness is presented in this section. For static loading conditions, the railpad
is assumed to behave purely as an elastic material with nonlinear load-displacement
relationship. Consider the static force, p0, on the railpad is a nonlinear function of
its static displacement, u0, which can be described by a polynomial of degree, a,

(1)

where k1, …, ka are the coefficients of the polynomial and are obtained through
nonlinear curve fitting of experimental data, and j is a positive integer. In order to
ensure that the fit between p0 and u0 is well conditioned, the approximation is done
with p0 being in kN and u0 in mm.

From equation (1), two types of stiffness can be obtained; the secant stiffness,
ks = Dp0/Du0, and the tangent stiffness, kt = dp0/du0. A seventh degree polynomial
was found to sufficiently describe the p0 - u0 relationship given in [5]. The values
of the coefficients are k1 = 20.00 kN/mm, k3 = 3.94×103 kN/mm3, k5 = -1.78×103

kN/mm5 and k7 = 3.2×103 kN/mm7, representing only stiffening load-deflection
behaviour of the railpad. The coefficients of the polynomial that are not included
here are zero. Note that when fully unloaded, the railpad possesses an unloaded
stiffness of k1.

Figure 1 shows the approximated nonlinear load-deflection and load-stiffness
plots together with the corresponding data from [5], and confirms the good
agreement between equation (1) and experimental data.

In the construction of railway tracks, each railpad is preloaded by clips that hold
it in place and by the weight of the rail that is supported within one fastener bay (i.e.
0.6 m length of rail). The total initial preload on the railpad was calculated by [12]
to be about 20.36 kN with 60E1 type rail. To account for this initial preload, the
reaction force in the railpad due to external track loads are added to this preload.
Also, it is assumed that the railpad is in static equilibrium at this preload, and all
displacements are taken with reference to this point.

2.2. Dynamic stiffness and damping of railpads
In addition to the dependence of railpad stiffness on preload as outlined in the
previous section, the stiffness is also dependent on frequency. Some data of dynamic
stiffness obtained from laboratory measurements have been presented by [4, 5, 7]
for studded rubber railpads that are commonly used in European railways. In [5], the
dynamic stiffness values are given for five preload levels: 20, 30, 40, 60, and 80 kN,
over a frequency range of 40–1000 Hz. Using this data, approximations of the
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Figure 1. Static load-deflection and load-stiffness plots for Pandrol 10 mm studded rubber railpad. – ⋅ – : linear, 
——: nonlinear, °: data points from [5]
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dynamic stiffness as a function of preload and loading rate are derived using
nonlinear curve fitting.

Figure 2 shows a Poynting-Thompson railpad model subjected to a force, p, with
a corresponding displacement, u. The P-T model is analysed in two parts: the
frequency independent spring part and the Maxwell part consisting of the spring and
dashpot in series. The series arrangement of the the Maxwell part means that the
reaction force, pm, in the spring and dashpot is the same, but the total displacement,
um, is the sum of the displacements experienced by the two components. Thus

(2a)

(2b)

where the subscripts ‘sp’ and ‘dp’ represent ‘spring’ and ‘dashpot’ respectively.
In order to obtain one governing equation relating pm and um, it is necessary to

differentiate equations (2a) and (2b) with respect to time, and substitute for u
.
spand

u
.
dp from equation (2a). This results in

(3)

Considering the parallel arrangement of the frequency independent spring and
the Maxwell part, the displacement is the same for the two parts, but the total force
is the sum of the individual forces in the two parts. Thus

(4a)

(4b)

where the force pt is a nonlinear function of the static part of the total displacement u.
Again, to obtain one differential equation for the whole P-T model, equation (4a)

is differentiated with respect to time as

(5)

and by substituting for pm and p
.
m from equation (4a) and equation (5) respectively

into equation (3), one obtains

(6)

Equation (6) is the differential equation that describes the dynamic behaviour of
the P-T model and can be seen to contain a loading rate term that captures the
frequency dependent behaviour of the railpad.

Consider that the force, p, is composed of a static preload, p0, and a dynamic
load, pdyn. The resulting tangent stiffness due to the preload is kt = dpt/du0, due to the
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Figure 2. Poynting-Thomson model for a railpad with nonlinear elastic spring of stiffness kt in parallel with a series
combination of spring of stiffness km and dashpot of damping factor cm



nonlinear p0 - u0 relationship. Assuming that the dynamic displacement of the
railpad is in linear relation with the dynamic load acting on it, the dynamic part of
pt is then ktudyn, where udyn is the dynamic displacement. Now, if pdyn varies
harmonically, then the resulting dynamic stiffness of the railpad can be shown to be

(7)

where t = cm/km is the relaxation time of the railpad. The parameters km and cm are
obtained from nonlinear curve fitting. The values obtained for km and cm from the
optimisation show some preload dependence, in accordance with the following
equations

(8a)

(8b)

where km0 and cm0 are the respective values of km and cm at a reference preload value,
pc; km0 = 60.33 × 106 N/m and cm0 = 22.5 × 104 N.s/m; b is a ratio of the preload
increment relative to pc, i.e. b = (p - pc)/pc. r and s are the exponential preload
influences and are almost identical (r = 1.9954 and s = 2.07), but for simplicity a
value of 2 is used for both of them. The reference preload is taken as 20.36 kN, i.e.
the initial preload.

Approximations of kdyn in equation (7) for the P-T model, together with the
optimised parameters, are plotted in Figure 3 against frequency for five preload
levels. It can be seen in Figure 3 that there is a good agreement between equation (7)
and the experimental data. Although experimental data is not available between
0–40 Hz, it is assumed for the P-T model that the dynamic stiffness increases
gradually from a value of kt at 0 Hz to its value at 40 Hz, disregarding any resonance
that may be present within this range.

In the next section, the P-T railpad model is incorporated into a model of a
railway track to study its effect on railway track dynamics.

3. MODELLING OF TRACK DYNAMICS
In this section, two models of a railway track are presented. The first, described in
Section 3.1, is a time domain model of a discretely supported rail, formulated using
the Finite Element Method (FEM). This model is used to study the effect of
nonlinear railpad properties on track dynamics. The second model is presented in
Section 3.2 and is solved using the Fourier Transformation Method (FTM). 
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Figure 3. Approximated railpad dynamic stiffness plotted against frequency for five preload levels (lines) compared
with data points from [5] (markers). ——, °: 20; – – –, �: 30; – ⋅ –, *: 40; ....., ×: 60 and
....., +: 80 kN
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This model uses linear railpad properties and is used to validate the FEM for linear
parameters.

3.1. Nonlinear time domain track model
The P-T railpad model formulated in Section 2 will be used in a finite element (FE)
based model of a railway track in order to investigate the effects of preload and
frequency dependence of railpads on the dynamic behaviour of a railway track. The
model description and formulation of the equations of motion as well as the solution
method will be discussed in the following sections.

3.1.1. Model description
Figure 4 shows a model of a railway track. The rail is modelled as an Euler-
Bernoulli beam with bending stiffness, EI, and mass per unit length, m,
discretelysupported on railpads at regular intervals, d, and is simply supported at its
ends. The railpads are modelled using the three parameter P-T model discussed in
the previous section. For the purpose of studying only the effects of railpad
properties on the dynamic behaviour of the track, it is assumed that the forces
transmitted through the railpads are mainly controlled by the rail-railpad system, for
cases where the railpad supporting structure is much stiffer than the railpad, and can
therefore be considered rigid.

3.1.2. Discretisation of the beam and system matrices
The rail is discretised into N finite elements, each having two nodes and four degrees-
of-freedom (DOF), i.e. vertical translation and rotation at each node. The length of
each of these elements, L, is chosen such that d/L = q, where q is a positive integer.
Let the number of railpad bays in the track model be n, so that the number of railpads,
NR = n + 1. The total number of elements in the track structure is therefore N = n × q,
the number of nodes is N + 1 and the total number of DOF ND = 2(N + 1).

The stiffness and consistent mass matrices and the external nodal force vector for
the ith beam element are denoted by KB,i, Mi and Pi respectively. Expressions for
these are readily available in the literature, e.g. [22]. The global stiffness and mass
matrices of the rail, KB and M respectively, are assembled using compatibility
conditions at the nodes, i.e. displacement, slope and bending moments are
continuous. In this way, the local matrix and vector components corresponding to
the mutual nodes between two consecutive elements are overlapped.

In addition to the global mass and stiffness matrices for the rail/beam, global
stiffness and damping matrices for the railpads should be formed and coupled to the
beam in order to obtain global matrices of the track structure. Coupling of the beam
to the railpads and formulation of the equation of motion for the entire track
structure are carried out in the next section.

3.1.3. Coupled equation of motion of the track
The coupling of a continuous rail/beam to equally spaced railpads is shown in Figure
5. The beam is acted upon by external nodal forces contained in the vector, P,
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Figure 4. Rail discretely supported on a three parameter P-T elastic foundation and subjected to combined static and
dynamic load.



resulting in inertial and reaction forces due to its mass and bending stiffness, i.e. Mü
and KBu respectively. Consider that additional reaction forces, Fi, for i = 1, …, ND, are
present in the coupled structure due to the presence of the railpads. These forces,
which are contained in a global force vector, F, are non-zeros only at the vertical
DOF of the nodes at which the railpads are located.

The differential equations of motion of the beam and the railpads are given by

(9a)

(9b)

where uP and FP are NR × 1 vectors that contain the vertical displacements and
reaction forces of the nodes at which the railpads are located, therefore they are
subsets of the global beam displacement and reaction force vectors, u and F
respectively. KM and KT are NR × NR diagonal matrices containing the kmj and ktj
values of the railpads respectively, for j = 1, …, NR. The relaxation time 
t = cm0/km0, since the preload influence for both the stiffness and damping of the
Maxwell branch is the same.

The presence of the load rate, F
.
P, in equation (9b) prevents a simple substitution

of the railpad matrices into the beam matrices. Therefore, the coupling is sought by
making FP part of the global unknown vector of the track system. By assembling
equations (9a) and (9b) into matrix form, the coupled system equation can be
formed as follows

(10)

The coupled system in equation (10) has the same number of DOF, ND, but the
number of unknowns is ND + NR. The sub matrices are defined as follows: A and B
are NR × ND matrix with non-zero elements Aj, 2q(j - 1) + 1 = KMj,j

+ KTj,j
, and

Bj, 2q(j - 1) + 1 = KTj,j
. J is a ND × NR matrix that contains unit values only at the DOF

corresponding to the positions of the railpads, i.e. J2q(j - 1) + 1,j = 1, and I is an identity
matrix of size NR × NR.

3.1.4. Solution of the equation of motion of the track
Solution of the differential equations of motion for the FE model is a two stage
process. First, the preloads, and hence the preloaded stiffnesses of the railpads are
calculated based on the static p0 - u0 relationship and according to the magnitude of
the static load. These are then used as input to study the dynamic behaviour of the
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Figure 5. Coupling of the beam to the P-T railpad models.



track. The first part will depend on whether the load is stationary or moving and will
therefore be discussed later in Section 4.

Once the preloaded stiffnesses have been obtained, the differential equation is
solved only for the dynamic loading, with the complete solution being a sum of the
static and dynamic parts. The solution is obtained using a two sub-step implicit time
integration scheme [23].

3.2. Solution by the Fourier Transformation Method
The model described in Section 3.1 can also be solved, for the linear case, using the
FTM in the wavenumber-frequency domain. For simplicity, consider an infinite rail
continuously supported on a P-T railpad model with distributed stiffness,
and , and damping . The rail is subjected to an oscillating
load, P1e

iw0t, moving at speed v, such that it arrives at position x = 0 at time t = 0.
The partial differential equation of motion governing the dynamic behaviour of

the rail is

(11)

and that for the railpad is

(12)

where u(x, t) is the displacement of the rail at any point, x, at an instant, t, and  
F(x, t) is distributed reaction force in the railpad.

The solution of equations (11) and (12) is obtained using the FTM. For a function
in the space-time domain, g(x, t), the Double Fourier transform pair relating it to its
counterpart in the wavenumber-frequency domain, g~(x, w), can be given as

(13)

where x and w are the wavenumber and angular frequency of each harmonic
component of g.

Applying equation (13) on equations (11)-(12) from the x - t domain to the 
x - w domain, results in

(14)

and

(15)

Substituting for F
~

(x, w) from equation (15) into equation (14) gives the solution
of the rail displacement in the x - w domain as

(16)

The response in the space-time domain can be obtained, using the inverse double
Fourier transformation, as

(17)

and can be computed numerically.
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4. APPLICATIONS
In this section, the dynamic behaviour of the FE track model will be investigated under
the action of combined static and dynamic loading. The case of a stationary harmonic
load is described in Section 4.1 whilst Section 4.2 focuses on the moving load case.

4.1. Stationary harmonic load
The track is subjected to a non-moving load, Ptot(t) placed at a fixed point, a distance
of x0 from the left end of the track. The load consists of a static component, P0, and
a dynamic component, P(t), where P(t) is defined as a harmonic function with
amplitude, P1, and angular frequency, w0 = 2pf0, f0 being the excitation frequency.
Hence, the load on the track can be described by

(18)

where x0 = NL/2 corresponds to the middle node of the beam, directly on a railpad.
Now Ptot(t) is placed in the global force vector, P, at the corresponding vertical DOF
of the middle node.

As mentioned earlier, the solution of this problem requires that the preloads, and
hence the preloaded stiffnesses are first calculated before the dynamic behaviour
can be investigated. To obtain the preloaded stiffnesses of the railpads under the
effect of the static load, the following nonlinear static equation needs to be solved

(19)

where F(u0) is the nonlinear reaction force vector; i.e. F(u0) = K(u0)u0, with K(u0)
being the nonlinear static stiffness as a function of the static displacements u0. P0 is
the external nodal force vector consisting of P0 as the only non-zero element, at the
corresponding DOF where the external load is applied.

A Newton-Raphson iterative procedure is adopted to obtain the static
displacements of the pads, and hence the preloaded stiffnesses. This procedure is
summarised as

(20)

where K(i - 1) and F(i - 1) are respectively the consistent tangent stiffness matrix and
reaction force vector computed at the configuration corresponding to the static
displacement, u0

(i - 1), for i being the number of iterations. Convergence of equation
(20) is achieved by satisfying a predefined convergence criterion that guarantees the
degree of accuracy required for the solution.

Table 1 contains the static preloads for the case when a static load is positioned
directly over a railpad. Due to symmetry, only the railpads on one side of the load
have been presented.

It can be seen from Table 1 that when there is no load on the track, all pad
preloads are equal to the initial value of 20.36 kN. They then increase for higher
levels of static load and beyond a distance of about 3– 4 m from the load, the pads
are almost insensitive to load and remain fairly unloaded.

4.2. Moving harmonic load
Consider the FE track model is subjected to the same load combination as in 
Section 4.1, moving along the length of the beam with speed, v, in the positive 
x-direction. It is assumed that the track section considered (i.e. 0 £ x £ NL) is
initially at rest up to the arrival of the load at x = 0 at time t = 0 and that it returns
back to rest after the load leaves the track section for x > NL. The total load moving
on the track, Ptot(x, t), can be described by

(21)

where x = vt corresponds to the position of the load at any instant, t. Now Ptot(x, t)
is converted into equivalent nodal forces of the element on which it acts using the
Hermitian interpolation functions, see [24].
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Under the action of the moving load, the static part of the load induces a loaded
stiffness variation that changes with the position of the load. Thus, the preloaded
stiffness distribution is time dependent and should be calculated with the history of
the load’s position taken into account. The stiffness distribution, as well as its rate
of change, are dependent on the speed of the load. As a result, the use of 
the equilibrium conditions described by equation (19) may be restricted, since the
quasi-static behaviour, which becomes increasingly significant as the speed of the
load increases, should be considered. However, the lack of experimental data to
describe the responses of railpads under quasi-static loading conditions presents a
difficulty in obtaining the necessary parameters for characterising the dynamic (or
quasi-dynamic) stiffness of the pad due to this loading condition. Therefore, two
fundamental assumptions are adopted when considering moving loads on the
nonlinear track model. These are:

1. For slowly moving loads relative to the critical velocity of the track, it can be
assumed that the response of each railpad is static, therefore the static load-
deflection relationship remains valid. This assumption holds since the rate of
loading and unloading of each railpad, as the load approaches and departs
from its location, is not very rapid. Hence the static response of the pads due
to a moving load is used to obtain the preloaded stiffnesses without including
inertia or damping effects.

2. The effects of the static and dynamic loads can be separated from one another.
This means that, at each time step, and hence each position of the load, the
static load induces the preloaded stiffness variation of the railpads based on
their static displacements, from which the dynamic stiffness parameters can
be calculated. The dynamic load is then applied to the track to study the
dynamic response.

In order to check the validity of the the first assumption, the following equation
is used to calculate the quasi-static displacements of the track

(22)

which are used to obtain the preloaded stiffnesses, where the subscript “Q”
represents the quasi-static part of the track response. These are then compared with
those obtained from equation (19) for various load speeds. Equation (22) is solved
using the composite implicit time integration scheme [23].

Table 2 shows the preloaded stiffness distributions of the railpads in the vicinity
of a load moving at v = 0, 50 and 250 ms-1. For this case, the railpads’ positions have
been measured such that the one at x = NL/2 is considered to be the origin, and is

 +t t tMu K u u P( ) ( , ) ( ) =Q Q Q 0
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Table 1.
Preloads (in kN) on the railpads in the vicinity of the static load

Pad position Static Load (kN)
from load (m) 0.00 25.00 50.00 75.00 100.00 125.00
0.00 20.36 28.47 37.26 48.24 62.57 79.40

0.60 20.36 26.26 32.09 37.41 41.75 45.29

1.20 20.36 23.08 25.56 27.50 28.73 29.49

1.80 20.36 21.04 21.62 22.03 22.24 22.34

2.40 20.36 20.18 20.00 19.83 19.69 19.58

3.00 20.36 20.02 19.70 19.45 19.28 19.16

3.60 20.36 20.12 19.91 19.74 19.63 19.56

. . . . . . .

∞ initial preload of 20.36



also the position where the load acts for the stationary load case. The variations are
snapshots taken at the time when the moving load is directly at this origin. Note that
due to convection of the load, the symmetry is altered and therefore railpads on
either side of the load have been presented.

It can be seen that the stiffness distribution of the railpads does not drastically
change for the range of load speeds shown, changing only by 3.96% up to 50 ms-1

and by 14.41% for speeds up to 250 ms-1. The length of the loaded zone, and hence
extent of the loaded stiffnesses, remain fairly constant at around 4.5 – 6 m.

Due to the bending stiffness of the rail, there is some negative deflection of the
railpad relative to the equilibrium position induced by the fastener clips. This
negative deflection leads to a reduction in the pad preload, but the railpad does not
become fully unloaded since these displacements are small. Also, from Figure 1, it
can be seen that the stiffness is constant up to about 20 kN, so that this reduction in
preload below that applied by the clips does not lead to a reduction in the pad
stiffness.

The model presented in Sections 3.1 and 4 will be validated, for linear
parameters, using the solution obtained by the FTM.

5. RESULTS AND DISCUSSION
In this section, results will be presented for the FE track model subjected to stationary
and moving harmonic loads. The effects of accounting for the preload and frequency
dependence is studied using the P-T railpad model. Results for the stationary case are
presented in Section 5.1, and the moving load results are dealt with in Section 5.2.

The following parameters are used in the numerical examples presented in this
section: mass of rail, m = 60.21 kg/m, bending stiffness of rail, EI = 6.4 MN m2,
unloaded railpad stiffness, k1 = 20 MN/m, railpad spacing for the discretely
supported case, d = 0.6 m.

5.1. Results for the stationary load
The validity of the FEM is first checked against the FTM in Section 5.1.1 using
linear parameters. In Section 5.1.2, results for the nonlinear FEM are presented to
demonstrate the effects of preload on railway track dynamics.
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Table 2.
Preloaded stiffnesses (in MN/m) of the railpads in the vicinity of the static load of 75 kN moving at 0, 50 and 

250 ms-1

Pad position Load speed (ms-1)
from load (m) 0 50 250

-∞ unloaded stiffness of 20.00

. . . .

-2.40 20.00 20.00 20.00

-1.80 20.08 20.11 20.08

-1.20 21.37 21.56 21.68

-0.60 28.80 29.94 32.23

0.00 53.56 53.59 61.28

0.60 28.80 27.84 27.99

1.20 21.37 21.19 20.95

1.80 20.08 20.06 20.00

2.40 20.00 20.00 20.00

. . . .

∞ unloaded stiffness of 20.00



5.1.1. Validation of the FE model for linear parameters
The FTM is used to validate the results obtained from the FEM for the linear case,
which is achieved by setting P0 = 0 in the latter. In the FEM, 320 elements of length
0.3 m are used with a time step of T/50, where T is the period of oscillation. In the FTM,
on the other hand, 2048 wavenumber samples are used to compute equation (17), with
x = 0 and v = 0.

Figure 6 shows the dynamic displacement and reaction force amplitudes and
phase plotted as a function of excitation frequency for a point that is directly under
the load. It is apparent that the two models are in good agreement. In Fig. 6(a), the
displacement can be seen to reduce by as much as 7.5 dB from its value at 0 Hz up
to a frequency of 80-100 Hz. At this stage the dynamic stiffness of the railpad
increases sharply, at a higher rate than the dynamic reaction force on the railpad,
causing a reduction in the response. This can also be observed on the phase plot in
Fig. 6(b). However, as the frequency increases, the inertial force from the rail
becomes increasingly dominant, leading to an increase in the response up until the
cut-on frequency, before gradually decaying beyond this point. The cut-on
frequency occurs at Hz. The corresponding
amplitude and phase angle of the reaction force in the railpad are plotted against
frequency in Figs. 6(c) and 6(d). It shows an increase in the force with frequency up
until the cut-on frequency, before gradually reducing beyond this point.

5.1.2. Effect of preload
Results are now presented for the nonlinear FE model subjected to stationary load
in order to study the effects of preload and frequency on railway track dynamics.
Five levels of static load are considered: 0, 25, 50, 75 and 100 kN. Superimposed
on each of these is a unit amplitude dynamic load. The preloaded stiffness
distribution is calculated using equation (20) and then used as input to study the
dynamic response.

Figure 7 shows the dynamic displacement and reaction force amplitudes and
phase plotted as a function of excitation frequency for a point that is directly under
the load. Comparison for various preload levels is shown. In Fig. 7(a), the response

π≈ + ≈f k k md(1 / 2 ) ( ) / 237co t m
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Figure 6. Steady-state magnitude and phase of (a-b) the displacement, (c-d) the reaction force, at a point under the
load plotted against excitation frequency. Comparison between the FTM (——) and FEM (°) for
linear parameters.
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amplitudes decrease with increase in preload due to the resulting higher tangent
stiffness of the railpads in the vicinity of the load. It can be seen that, for some
frequencies, there is a difference of up to 20 dB between the linear case of 0 kN
preload and the strongly nonlinear case of 100 kN. The increased stiffness also leads
to increase in cut-on frequency from 237 Hz to 440 Hz between these preload levels.
For the reaction force in Fig. 7(c), as the preload increases, the proportion of the
static load that goes into the railpad directly underneath it increases from about 32%
at 25 kN to 42% at 100 kN (see Table 1 for details). Although the maximum reaction
forces at resonance remain fairly constant, the dynamic amplification reduces as
preload increases. The dynamic amplification is the ratio of the peak reaction force
amplitude at any given frequency to that at 0 Hz. Here also, the disparities between
0 kN and 100 kN loads reach up to 20 dB at some frequencies.

5.2. Results for the moving load
Results will now be presented for the case of a moving harmonic load on the track
model. For the following results, the FE model consisted of 80 fastener bays with
four 0.15 m long elements per fastener bay. The time it takes the load to traverse the
length of one element is Tl = L/v, thus the total time for the load to move over the
entire track length is T = NTl. The time step used in the computation of the track
responses, Dt = Tl /k, where k is a positive integer, the value of which is chosen
depending on the excitation frequency.

Similar to the stationary load case, the FEM will now be validated against the
FTM for the moving load problem using linear parameters. Figure 8 shows the
displacements of the rail due to a load moving at v = 250 kmh-1 and oscillating at
20 Hz. Comparison is done between the FEM and FTM for both fixed point
displacement-time history as in Fig. 8(a) and for that under the moving load as in
Fig. 8(b). In both cases the results are in excellent agreement.

Figure 9 shows the static and dynamic displacements of the rail due to a load
moving at v = 72 kmh-1. The load consists of a static part of 75 kN and a unit
amplitude dynamic part oscillating at 10 Hz. Comparison is done between the linear
and nonlinear cases. The static displacements shown in Fig 9(a) clearly illustrate the
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Figure 7. Steady-state magnitude and phase of (a-b) the displacement, (c-d) the reaction force, at a point under the
load plotted against excitation frequency, for five preload levels. ——: 0 kN, – – –: 25 kN, 
– ⋅ –: 50 kN, ....... : 75 kN and ....: 100 kN.



effect of varying track stiffness caused by the discrete railpad supports. The load
exhibits a periodic oscillation with spatial period that is equal to the railpad spacing,
d, with troughs at the railpad positions (marked by �) where the stiffness is greatest
and peaks at midspan where it is lowest.

In the nonlinear case, since the static load results in a higher loaded stiffness of
the pads close to it, the resulting dynamic displacement in Fig. 9(b) has a much
smaller amplitude than that of the linear case. There is also a phase difference
between the two responses and this is due to the aforementioned phase difference
between the dynamic reaction forces and stiffnesses of the railpads at low
frequencies.

In Fig. 9(c) and 9(d), the static and dynamic displacements of the midspan of the
track are shown. For the dynamic displacement shown in Fig. 9(d), the effect of
accounting for the load rate results in a distortion of the point response, as there is
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Figure 8. Displacement of the rail due to a load moving at v = 250 kmh-1 and oscillating at 20 Hz, (a) at the midpoint
and (b) under the load. Comparison between FEM (——) and FTM (°).
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Figure 9. Static and the dynamic displacements of the rail due to a load moving at v = 72 kmh-1 , with the dynamic
part oscillating at 10 Hz. (a) and (b): displacements under the load, (c) and (d): displacements
at x = NL/2. Comparison between linear (——) and nonlinear (........). �: railpad position.



no symmetry in the response. Because of the Doppler effect, the point at midspan
experiences the load, is oscillating with a higher frequency when approaching its
position and a lower frequency when departing.

The effect of magnitude of the static load will now be discussed. Figure 10(a)
shows the dynamic displacement under a load moving at v = 180 kmh-1 and
oscillating at f0 = 20 Hz. The results are plotted for static loads of 40, 75 and 
125 kN, corresponding to light and heavy passenger trains and a freight train
respectively. Generally, increasing the static load on the track increases the forces on
the railpads and consequently their static stiffnesses. For a stationary static load, the
effect of this increase in the stiffness is mainly a reduction in response of the track,
since the stiffness distribution under the static load does not change. However, for the
case of a moving load, the effects of the change of stiffness from unloaded to loaded
and vice versa depends on the level of the static load and the speed at which the load
is moving. It should be noted that the length of the loaded zone (i.e. limited to about
8-12 faster bays) does not significantly change with load. Therefore, for a given load
speed, the time it takes a railpad to become loaded and unloaded remains fairly
constant. For higher preloads, however, the loaded and unloaded displacements vary
widely and therefore it changes at a much faster rate than for lower loads. A
consequence of this is nonlinear oscillations of the track as demonstrated by the
higher static loads. This effect can be accentuated by loads moving with high speeds.

In order to study the frequency content of the dynamic response of the track, the
Fourier magnitude spectrum is also presented in Figure 10(b) for all the cases in 
Fig. 10(a). The spectrum is computed using the Fast Fourier Transform (FFT)
procedure.

For all three cases, the main peaks in the response amplitude occur at the
excitation frequency of 20 Hz, with smaller peaks occurring at other frequencies.
When a static load moves on a discretely supported track, it excites the fastener
passing frequency, ffp = v/d ≈ 83 Hz for the current parameters. For an oscillating
moving load, on the other hand, two distinct frequencies are excited (due to Doppler
effect), these are: ffp - f0 and ffp + f0, which results in 63 and 103 Hz, as shown in
Fig. 10(b). The severity of these two peaks becomes more pronounced as the
preload increases. This is in contrast to what happens at the excitation frequency,
where the higher railpad stiffness results in lower response magnitude.

Figure 11 shows the peak (a) displacement and (b) reaction force for the middle
railpad, plotted against frequency of oscillation of a load moving at 72 kmh-1. In
Fig. 11(a), similar behaviour observed for the non-moving load case can also be
seen here. This suggests that the effect of convection of the load, at this speed, does
not significantly affect the dynamic behaviour. Because of the influence of the
moving load, however, the cut-on frequencies are shifted to slightly lower values for
all levels of static load.
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6. CONCLUSIONS
In this paper, the effects of preload and frequency dependent railpad properties on
the dynamic behaviour of a railway track have been investigated. A nonlinear
railpad model has been developed based on the Poynting-Thomson visco elastic
model. This model was then included into a discretely supported track model to
study the influence of the railpad model on the track dynamics. The track model,
which is formulated using the finite element method, is subjected to combined static
and dynamic load and is solved in the time domain using numerical integration. The
model is validated, for the linear case, using the Fourier transformation method to
the wavenumber-frequency domain.

The key conclusions are summarised as follows:

1. The static preload induces a loaded stiffness distribution of the railpads in its
vicinity, due to the nonlinear load-displacement relationship. Depending on 
its magnitude, the railpads close to the load can become much stiffer, whereas
those about 3~4 m from the load remain unloaded with linear parameters.

2. As the preload increases, the dynamic stiffness increases, resulting in lower
displacement amplitudes. For static loads of up to 100 kN, the use of a
constant linear parameter railpad model results in an overestimation of the
track dynamic response amplitudes by up to 20 dB for some frequencies,
compared to the nonlinear model. The opposite effect happens for the reaction
forces, which increase with increasing preload.
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