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Abstract

Purpose – The purpose of the paper is to introduce the Dynamic Phasor Modelling (DPM) approach

for stability investigation and control design of single-phase Phase Locked Loops PLLs. The aim is to

identify the system instabilities not predicted using the existent analysis and design methods based on

the simplified average model approach.

Design/methodology/approach – This paper starts by investigating the performance of three

commonly used PLL schemes: the Inverse Park-PLL, the SOGI-Frequency-Locked-Loop and the

Enhanced-PLL, designed using the simplified average model and will show that following this

approach, there is a mismatch between their actual and desired transient performance. A new PLL

design method is then proposed based on the DPM approach that allows the development of fourth-

order DPM models. The small-signal eigenvalues analysis of the 4th order DPM models is used to

determine the control gains and the stability limits.

Findings – The DPM approach is proven to be useful for single-phase PLLs stability analysis and

control parameters design. It has been successfully used to design the control parameters and to predict

the PLL stability limits, which have been validated via simulation and experimental tests consisting of

grid voltage sag, phase jump and frequency step change.

Originality/value – this paper has introduced the use of DPM approach for the purpose of single-

phase PLL stability analysis and control design. The approach has enabled accurate control gains

design and stability limits identification of single-phase PLLs.
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1- Introduction

Phase-locked loops (PLLs) are widely used for interfacing power electronic converters to single and

three-phase grids, (Chung, 2000; Golestan et al., 2013; Silva et al., 2004; Velasco et al., 2011). They

are used to extract the information about the fundamental voltage component (phase angle, frequency

and voltage magnitude) under various grid disturbances such as the steady state presence of unbalance

and harmonics or transients: voltage sag, phase-jump and frequency change. The operation of

converters in single phase systems is more challenging because of reduced level of information

available in a single phase voltage compared to multiphase.

There are a few single-phase PLL schemes widely discussed in the literature that differ in their

structure and estimation laws: the Inverse Park-PLL (IP-PLL) (Filho et al., 2008; Rashed et al., 2013),

the Synchronous Reference Frame PLL (SRF-PLL) (Nicastri et al., 2010), the Second-Order

Generalized Integrators (SOGI)-based Frequency-Locked Loop (FLL) (SOGI-FLL) (Rodr’iguez et al.,

2011), the D-filter-based estimation PLL (Shinnaka, 2011), the Enhanced PLL (EPLL) (Karimi-

Ghartemani, 2013; Karimi-Ghartemani et al., 2012) and the Modified Mixer Phase-Detector based

PLL (MMPD-PLL), (Thacker et al., 2011). Some of this research work has been aimed at studying the

design and performance analysis of single-phase PLLs. The design is typically performed using the

simplified average model of the PLL (Karimi-Ghartemani, 2013; Karimi-Ghartemani et al., 2012;

Thacker et al., 201; Freijedo et al., 2009) , which ignores the effect of inherently generated double-

frequency component during transient on PLL stability. In (Karimi-Ghartemani, 2013), a

comprehensive analysis and comparison of many single-phase PLL schemes is carried out using the

simplified average model. The study concluded that the small signal mathematical model and the

performance of the different PLL schemes were fairly similar, a conclusion which this paper will

challenge.

This paper proposes a modelling technique not previously used in PLL stability analysis and design.

The technique is known by Dynamic Phasor Modelling DPM and is suitable to represent and to predict

the single-phase-PLL dynamic and instability modes not seen by the conventional average modelling

technique used in the literature. In the DPM approach, the time-response of the system state variables

is represented by a selective number of relevant frequency components of a Fourier series with slowly
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time-varying coefficients, (Stankovic et al., 1999; Sanders et al., 1991; Emadi, 2004; Caliskan et al.,

1999; Mattavelli et al., 1999). The DPM approach has been successfully applied for modelling and

analysis of single phase induction motors (Stankovic et al., 1999), PWM converters, (Sanders et al.,

1991), diode bridge rectifiers (Emadi, 2004), DC/DC converters, (Caliskan et al., 1999) and thyristor

controlled series capacitor compensators in power systems (Mattavelli et al., 1999).

The DPM approach is also used for the design and stability study of frequency and voltage droop

control of microgrids, (Mariani et al., 2014; Xianwei et al., 2011; De Brabandere et al., 2005; Wang et

al., 2012). The DPM is found effective in predicting system instabilities not seen by the conventional

quasi-steady-state small signal model, (De Brabandere et al., 2005; Wang et al., 2012).

 In this paper, a 4th order DPM is proposed and used for stability analysis, control design and

performance comparison of the three representative single phase PLL schemes: the IP-PLL,

SOGI-FLL and EPLL. The analysis will demonstrate the shortcomings of the conventional

simplified average modelling for determining the stability limits and control gain design of the

single-phase PLLs. The contribution of this paper lies in the following: Introducing the DPM

approach for the purpose of single-phase PLLs stability analysis and control design.

 Accurate stability limits identification and control gains design of single-phase PLLs using

DPM approach.

The paper is organised in five sections. Section 2 gives the basics of the DPM and PLLs. The design

of the three PLL schemes using the simplified average model is presented in section 3. In section 4,

the simulation results of the PLL schemes under investigation are used to show the discrepancy

between their actual dynamic characteristics and the desired performance, and hence the inadequacy of

the simplified average model based design. Section 5 details the proposed 4th-order DPM small-signal

stability analysis, design and comparison of the three PLLs. Large signal disturbance investigation

and performance comparison of the three PLL schemes are presented in section 6 using simulation and

experimental validation. Conclusions are given in section 7.

2. Fundamental Principles of DPM and PLL
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In this section, the fundamentals of the dynamic phasor modelling and the single-phase PLL concepts

will be presented.

2.1 Fundamentals of DPM

In dynamic phasor modelling approach, the Fourier series coefficients of system state-variables are

considered the DPM system-state-variables and the state equations are derived for these Fourier

coefficients. Therefore, a system state variable x() can be represented on the interval   ((t-T), t]

using a Fourier series of the form, (Stankovic et al., 1999):

)ݔ )߬ = ∑ [(ݐ)௞〈ݔ〉] ௝݁௞ఠ ್ఛஶ
௞ୀିஶ (1)

Where, T is the time period for the base frequency, b = 2/T, (ݐ)௞〈ݔ〉 is the kth complex Fourier

coefficient that is varying with time since the interval under consideration slides with time t. The

notation < > denotes the averaging operation that is applied to determine the kth complex Fourier

coefficient at time t. The averaging operation is

(ݐ)௞〈ݔ〉 =
ଵ

்
∫ )ݔ )߬ ௝݁௞ఠ ್ఛ݀ ߬
௧

௧ି ்
(2)

The kth-order DPM state-space differential equation is a state-space equation formed for the kth

frequency-order Fourier series coefficient of the system state variables. The Zero-Order (ZO) DPM

equation is the system state-space equation for the dc coefficients of the Fourier series for the system

state variables. In practice, the ZO-DPM is the simplified average model usually used in the literature

for conventional PLL design.

The derivative of the kth complex Fourier coefficient (2) is given by:

ௗ

ௗ௧
(௞〈ݔ〉) = 〈

ௗ

ௗ௧
−௞〈ݔ ݆݇ ߱௕〈ݔ〉௞ (3)

Also, the kth Fourier coefficient for a nonlinear term (e.g. a product of two state variables x and y) can

be obtained using the convolution property (Sanders et al., 1991) as follows:

௞〈ݕݔ〉 = ∑ ௟〈ݕ〉(௞ି௟)〈ݔ〉
ஶ
௟ୀିஶ (4)

Noting that the phasor ௞ି〈ݔ〉 is the complex conjugate of ௞〈ݔ〉 . The properties in (3) and (4) are

essential for deriving the PLL DPM from the time-domain state space model.

This mathematical approach will be used later to derive the DPM for the PLL schemes under study.

2.2 Fundamentals of PLLs
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The structure of a typical PLL scheme that includes also the single-phase PLLs is originated from the

well-established three-phase SRF-PLL (Chung, 2000). The 3-phase SRF-PLL contains three main

components: the Phase Detector (PD), the filter (which is usually a PI controller), and the Voltage

Controlled Oscillator (VCO). These components aim at synchronising the PLL estimated output

voltage vector with the input voltage vector as represented by the two orthogonal  voltage

components as illustrated in the phasor diagram shown in Fig. 1. The PD generates an error signal

(referred as “adaptive law”) that is proportional to the phase difference between the input and the

estimated output voltage vectors. The error signal is utilised to modify the frequency of the VCO until

the average frequency and the phase angle of the input and the estimated (output) voltage vectors are

equal (Golestan et al., 2013).

In single phase PLLs (e.g. Fig.2), the measured grid voltage is fed as the -axis component of the

input voltage vector while the -axis is substituted by a virtual voltage component. The virtual -axis

voltage component can be constructed by applying a 90o phase shift to the measured -axis voltage

component (Silva et al., 2004; Velasco et al., 2011) or substituted by the estimated -axis component,

(Filho et al., 2008; Rodr’iguez et al., 2011; Karimi-Ghartemani, 2013). The main problem affecting

the performance of a single phase PLL is that any mismatch/error in the virtual -axis component

(during transient or steady state) will produce double-frequency ripple component that adversely

affects the dynamic performance and the stability of the PLL.

The relationships between the input and the estimated output voltage vectors and their phase angles

and rotational speeds are represented and defined by the phasor diagram shown in Fig. 1.
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Fig. 1 Single-phase PLL phasor diagram.

Where u is the measured grid voltage whilst തఈఉݑ = ఈݑ + ఉݑ݆ is the fictious  grid voltage vector. If

Uv is the grid voltage magnitude, then aݑ = ܷ௩cos(ߠ௩) . The estimated (output) voltage vector

ത෠ఈఉݑ = ොఈݑ + ොఉݑ݆ = തௗ௤ݑ has the corresponding ud, uq components in the dq rotating reference frame.

The corresponding angles and the rotational speeds that will be used in the development of the DPM

of the PLL are also shown in Fig. 1. The phase angle  is the phase angle difference between the phase

angle of the input voltage vector, v and the phase angle .෠ߠ

3. Modelling and Control Design of Single-Phase PLLs

In this section, the IP-PLL, (Filho et al., 2008), SOGI-FLL, (Rodr’iguez et al., 2011) and the EPLL

(Karimi-Ghartemani, 2013; Karimi-Ghartemani et al., 2012) single-phase PLL schemes will be

modelled and the phase angle, voltage magnitude and frequency estimation algorithms for the three

PLLs will be established utilising the simplified average model. This will be used in the next sections

to prove that the dynamic performance of the designed PLLs will not match with the design

specification.

The convention used in this paper is that the input of the PLL seen as a control system is the grid

voltage, while the outputs are the estimated grid voltage magnitude, frequency and phase angle, which

are defined as uout, out and out, independent on the estimation method used in each PLL.

θ̂

uudq
ˆ

αû

βû

u
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3.1 The Modelling and Control Design of the Inverse Park PLL

The typical model of the Inverse Park PLL (IP-PLL) expressed in rotating reference frame (Filho et al.,

2008; Karimi-Ghartemani, 2013) is shown in Fig. 2.

Fig. 2 The model of the Inverse Park Phase Locked Loop (IP-PLL)

The state space variable model for the IP-PLL (Fig. 2) in the rotating reference frame dq is given by:

ሶௗݑ = ௩݇߱௡ 0ൣ.5ܷ௩ −(ߜ)ݏܿ݋ ௗݑ0.5 + 0.5ܷ௩ +ߜ)ݏܿ݋ −(ߠ2 ௗݑ0.5 (ߠ2)ݏܿ݋ + ݏ௤݅ݑ0.5 ൧(ߠ2݊) (5a)

ሶ௤ݑ = ௩݇߱௡ 0ൣ.5ܷ௩݅ݏ −(ߜ݊) −௤ݑ0.5 0.5ܷ௩݅ݏ +ߜ݊) (ߠ2 + ݏௗ݅ݑ0.5 (ߠ2݊) + ௤ݑ0.5 ൧(ߠ2)ݏܿ݋ (5b)

߱ሶ௙ = ௜݇�(ߝఏ) (5c)

ߜ̇ = ߱௩− ௣݇ߝఏ− ߱௙− ߱௡ (5d)

Where: ఏߝ is the adaptive law (error signal) given by (6), and ߱௘ = ( ௣݇ߝఏ + ߱௙ + ߱௡), ߜ = −௩ߠ ,ߠ

ௗ

ௗ௧
ߠ = ߱௘,

ௗ

ௗ௧
௩ߠ = ߱௩ and n is angular speed (rad/s) corresponding to the nominal grid frequency

(50Hz).

The adaptive law ఏߝ for IP-PLL phase angle estimation was obtained as in (Filho et al., 2008; Rashed

et al., 2013):

ఏߝ =
௨೜

௨೏
(6)

It should be noted that in the literature, the simplified average model typically used in PLL design

(Filho et al., 2008; Karimi-Ghartemani, 2013; Thacker et al., 2011; Freijedo et al., 2009) is obtained

by ignoring the double-frequency sine and cosine terms in (5a-b).

For the development of the dynamic-phasor differential equations used in the modelling of the PLL

schemes under study in this paper for the purpose of stability analysis and control design, the time

jeje
û

û

s

k nv

s

k nvû
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period T in (1),(2) is set equal to 2/〈߱௘〉଴ and hence ߱௕ in (3) is substituted by 〈߱௘〉଴. Then, the

generalised kth-order dynamic-phasor state-space differential equations for (5) are given by:

ௗ

ௗ௧
௞〈ௗݑ〉 = −݆݇ 〈߱௘〉଴〈ݑௗ〉௞ + ௩݇߱௡〈 ௗ݁〉௞ (7a)

ௗ

ௗ௧
௞〈௤ݑ〉 = −݆݇ 〈߱௘〉଴〈ݑ௤〉௞ + ௩݇߱௡〈 ௤݁〉௞ (7b)

ௗ

ௗ௧
〈߱௙〉௞ = −݆݇ 〈߱௘〉଴〈߱௙〉௞ + ௜݇〈ߝఏ〉௞ (7c)

ௗ

ௗ௧
௞〈ߜ〉 = −݆݇ 〈߱௘〉଴〈ߜ〉௞ − 〈 ௣݇ߝఏ + ߱௙+ ߱௡〉௞ + 〈߱௩〉௞ (7d)

where, ed, eq are

ௗ݁ = 0.5ܷ௩ −(ߜ)ݏܿ݋ ௗݑ0.5 + 0.5ܷ௩ +ߜ)ݏܿ݋ −(ߠ2 ௗݑ0.5 (ߠ2)ݏܿ݋ + ݏ௤݅ݑ0.5 (ߠ2݊) (7e)

௤݁ = 0.5ܷ௩݅ݏ −(ߜ݊) −௤ݑ0.5 0.5ܷ௩݅ݏ +ߜ݊) (ߠ2 + ݏௗ݅ݑ0.5 (ߠ2݊) + ௤ݑ0.5 (ߠ2)ݏܿ݋ (7f)

The DPM of the nonlinear terms such as�ܿ(ߠ2)ݏ݋ , (ߠ2)݊ݏ݅ and (uq/ud) in (7e,f), (6) are obtained as in

Appendix 1. The ZO-DPM that corresponds to k = 0 in (7) is then given by:

଴〈ሶௗݑ〉 = ௩݇߱௡(0.5〈ܷ௩〉଴− (଴〈ௗݑ〉0.5 (8a)

଴〈ሶ௤ݑ〉 = ௩݇߱௡〈0.5ܷ௩ߜ− ௤〉଴ݑ0.5 (8b)

〈߱ሶ௙〉଴ = ௜݇�〈ߝఏ〉଴ (8c)

଴〈ߜ̇〉 = 〈߱௩〉଴− 〈 ௣݇ߝఏ + ߱௙ + ߱௡〉଴ (8d)

and

〈 ௗ݁〉଴ = 0.5〈ܷ௩〉଴− ଴〈ௗݑ〉0.5 (8e)

〈 ௤݁〉଴ = 0.5〈ܷ௩〉଴〈ߜ〉଴− ଴〈௤ݑ〉0.5 (8f)

From now on, unless otherwise mentioned, the averaging operation symbol < >0 will be ignored for

simplicity.

In the following sections, the ZO-DPM such as in (8), which is the simplified average model typically

used in the literature in the PLL design, will be used for the design of the phase angle, voltage

magnitude and frequency estimator to achieve the design specifications set for the small signal closed

loop transfer function (CLTF) of (out/v), (uout/Uv) and (out/v) for all PLL schemes under study.

Afterwards, the actual dynamic performance of the designed PLLs will be proven not to match the

design specifications and hence proving the shortcoming of using the ZO-DPM for single-phase PLL

design.

First, the small signal ZO-DPM for the adaptive law (6) is derived in Laplace form using (8) for the

PLL equilibrium point where [ud uq] = [Uv 0]:
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ఏߝ∆ =
଴.ହ௞ೡఠ ೙

௦ା଴.ହ௞ೡఠ ೙
ߜ∆ (9)

(9) shows that ఏߝ∆ is linearly dependent on  via the transfer function of a LPF. To eliminate the

LPF influence in (9), a new phase angle adaptive law to replace (6) is introduced in this paper:

ఏߝ =
௨೜

௨೏
+ 2ቀ

௘೜

௨೏
ቁ (10)

which results in a small signal ZO-DPM of

ఏߝ∆ = ߜ∆ (11)

identical (for comparison purpose) to the small signal adaptive law model of the other PLL scheme

(EPLL) as it will be shown later. Fig. 3 depicts the resulting small signal ZO-DPM for the IP-PLL

phase angle estimator using the proposed adaptive law in (10),(11).

Fig. 3 Small signal ZO-DPM for the IP-PLL phase angle estimator

In the IP-PLL, the outputs ௢௨௧andߠ uout are set equal to ߠ and ud. Hence, the small signal ZO-DPM

CLTF for the IP-PLL phase angle estimator (from Fig. 3) is given by:

∆ఏ೚ೠ೟
∆ఏೡ

=
∆ఏ

∆ఏೡ
=

௞೛௦ା௞೔

௦మା௞೛௦ା௞೔
(12)

Where kp and ki are the gains of the PI controller.

The small signal CLTF for the output (estimated) voltage magnitude is also derived from (8) and is

equivalent to a first order LPF (13) with a time constant of 2/kvn:

∆௨೚ೠ೟
∆௎ೡ

=
∆௨೏
∆௎ೡ

=
଴.ହ௞ೡఠ೙
௦ା଴.ହ௞ೡఠ ೙

(13)

The gain kv (13) determines the dynamic response of the voltage magnitude estimation. On the other

hand, the kp and ki gains of the PI controller (12) determine the dynamic characteristics for the phase-

angle estimation. The values of kp and ki are chosen to achieve a damping coefficient  = 1 for (12) as

recommended in (Karimi-Ghartemani et al., 2012; Freijedo et al., 2009). In this paper, kp is selected to

be equal to kvn so that the CLTF poles of (12) coincide with the CLTF pole of the voltage magnitude

estimator in (13). And hence, ௜݇= ( ௩݇߱௡ 2⁄ )ଶ. Therefore, the small signal ZO-DPM CLTF poles of

s

1
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the PLL voltage and phase-angle estimators are located on the real axis at (− ௩݇߱௡ 2⁄ ). Then, the

phase-angle estimator small signal CLTF (13) can be expressed as:

∆ఏ೚ೠ೟
∆ఏೡ

=
∆ఏ

∆ఏೡ
=

௞ೡఠ ೙௦ା(଴.ହ௞ೡఠ೙)మ

௦మା௞ೡఠ ೙௦ା(଴.ହ௞ೡఠ೙)మ
(14)

In (Rodr’iguez et al., 2011), the small signal CLTF for the frequency estimator out/v was equivalent

to a first order LPF. In this paper (for comparison purpose) we will also carry out the design to achieve

a LPF behaviour for the CLTF of the frequency estimator. Therefore, out for IP-PLL is proposed here

to be:

߱௢௨௧= ߱௘− 0.5 ௣݇ߝఏ (15)

which yields a LPF small signal ZO-DPM CLTF of;

∆ఠ బೠ೟

∆ఠ ೡ
=

଴.ହ௞ೡఠ ೙

௦ା଴.ହ௞ೡఠ೙
(16)

It should be noted from (13), (14) and (16) that the CLTF poles for the PLL estimators (out, uout and

out) are located at -0.5kvn and kv becomes the only gain that determines the small signal dynamic

response of the PLL estimators. Having only one control gain is deliberate to simplify the comparison

of the PLLs in this paper.

In the next sections, small signal ZO-DPM CLTFs will be derived for the SOGI-FLL and EPLL

estimators to be identical to (13), (14) and (16), which if the ZO-DPM design approach is adequate, it

will result in identical performance matching the design specification.

3.2 The Modelling and Control Design of the SOGI-FLL

The typical implementation of the SOGI-FLL (Rodr’iguez et al., 2011) is shown in Fig. 4. Compared

to the IP-PLL, SOGI-FLL model is implemented in the stationary reference frame. For comparison

purpose, the stationary frame SOGI-FLL model needs to be transformed to the rotating reference

frame.
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Fig. 4 Typical model of the SOGI-FLL

The model for the SOGI-FLL phase detector (Fig.4) as presented in (Rodr’iguez et al., 2011) is

ො̇ఈݑ = −∝ݑ)] (∝ොݑ ௩݇− ොఉݑ ]߱௘ & ො̇ఉݑ = ߱௘ݑො∝ (17)

The transformed SOGI-FLL (Fig. 4) model expressed in the rotating reference frame (assuming slow

varyinge) is:

ሶௗݑ = ௩݇߱௘ 0ൣ.5ܷ௩cos(ߜ)− ௗݑ0.5 + 0.5ܷ௩cos(ߜ+ −(ߠ2 ௗݑ0.5 cos(2ߠ) + ൧(ߠ2)௤sinݑ0.5 (18a)

ሶ௤ݑ = ௩݇߱௘ 0ൣ.5ܷ௩sin(ߜ) − −௤ݑ0.5 0.5ܷ௩sin(ߜ+ (ߠ2 + ௗݑ0.5 sin(2ߠ) + ൧(ߠ2)௤sinݑ0.5 (18b)

߱ሶ௙ = ௜݇�(ߝఠ) (18c)

ߜ̇ = ߱௩− ௣݇ߝఠ − ߱௙− ߱௡ (18d)

where: ఠߝ is the adaptive law and is given by (19), ߱௘ = ( ௣݇ߝఠ + ߱௙ + ߱௡) and ߠ݀ ⁄ݐ݀ = ߱௘.

The model in (18) is quite similar to that of IP-PLL (5). However, the SOGI-FLL is robust to grid

frequency variation since n in (5) is replaced by the estimated value e in (18).

The frequency adaptive law as given in (Rodr’iguez et al., 2011) is:

ఠߝ =
ି௞ೡఠ ೐௘ഀ ௨ෝഁ

௨ෝഀ
మା௨ෝഁ

మ (19)

The small-signal ZO-DPM based transfer function of the adaptive law in (19) around the equilibrium

point (e = n, uq = 0) is:

ఠߝ∆ =
଴.ହ௞ೡఠ೙

௦ା଴.ହ௞ೡఠ ೙
(ߜ̇∆) (20)

Equation (20) shows that contrary to the small signal model given in (Rodr’iguez et al., 2011), the

adaptive law small signal transfer function is equivalent to the transfer function of a first order LPF

and for this reason, a full PI controller is used (see Fig. 4) for frequency estimation rather than an

^
αu

^
βu

^
αu

^
βu
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Integral controller as in (Rodr’iguez et al., 2011). The PI controller gains are set kp = 1 and ki =

0.5kve in order to obtain a small-signal CLTF equivalent to that of the IP-PLL (16). Hence, the small

signal ZO-DPM for the frequency estimator (19)-(20) is represented by the block diagram in Fig. 5.

Fig. 5 Small signal ZO-DPM for the SOGI-FLL frequency estimator

with the small-signal ZO-DPM based CLTF:

∆ఠ ೚ೠ೟

∆ఠ ೡ
=

∆ఠ ೐

∆ఠ ೡ
=

଴.ହ௞ೡఠ೙
௦ା଴.ହ௞ೡఠ ೙

(21)

The SOGI-FLL output phase angle ௢௨௧ߠ is given by, (Rodr’iguez et al., 2011):

=௢௨௧ߠ =෠ߠ ݐܽܽ ݊൬
௨ෝ∝
௨ෝഁ
൰= +ߠ ݐܽܽ ݊ቀ

௨೜

௨೏
ቁ (22)

Then, the small signal ZO-DPM based CLTF for the phase angle estimator is derived using (21), (22)

and (18) at the equilibrium point (e = n, uq = 0) and given by:

∆ఏ೚ೠ೟
∆ఏೡ

=
∆ఏ

∆ఏೡ
=

௞ೡఠ೙௦ା(଴.ହ௞ೡఠ ೙)మ

௦మା௞ೡఠ ೙௦ା(଴.ହ௞ೡఠ ೙)మ
(23)

which is equivalent to (14) for the IP-PLL. Furthermore, the estimated voltage magnitude in SOGI-

FLL is calculated as

=௢௨௧ݑ =ොݑ ටݑௗ
ଶ + ௤ݑ

ଶ (24)

and the small signal ZO-DPM based CLTF for (24) at the equilibrium point (e =n; uq = 0) is

derived and given by:

D௨೚ೠ೟
∆௎ೡ

=
∆௨ෝ

∆௎ೡ
=

଴.ହ௞ೡఠ ೙

௦ା଴.ହ௞ೡఠ ೙
(25)

From (21),(23),(25), the SOGI-FLL is designed to provide identical small signal ZO-DPM CLTF to

that for IP-PLL frequency (16), phase angle (14) and voltage magnitude (13) estimators. This

procedure will be repeated for the EPLL in the next section.

3.3 The Modelling and Control Design of the EPLL

The typical EPLL model (Karimi-Ghartemani, 2013; Karimi-Ghartemani et al., 2012) is represented

by the block diagram given in Fig. 6.

nv

nv

ks

k





5.0

5.0

 s

ks nv )5.0( 
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Fig. 6 Typical model of the EPLL

The EPLL model in the rotating reference frame is:

ሶௗݑ = ௩݇߱௡[0.5ܷ௩cos(ߜ)− ௗݑ0.5 + 0.5ܷ௩cos(ߜ+ −(ߠ2 ௗݑ0.5 cos(2ߠ)] (26a)

߱ሶ௙ = ௜݇�(ߝఏ) (26b)

ߜ̇ = ߱௩− ௣݇ߝఏ− ߱௙− ߱௡ (26c)

௤݁ = [0.5ܷ௩sin(ߜ)− 0.5ܷ௩sin(ߜ+ (ߠ2 + ௗݑ0.5 sin(2ߠ)] (26d)

Where, the adaptive law ఏߝ for phase angle estimation as used in (Karimi-Ghartemani, 2013; Karimi-

Ghartemani et al., 2012) is:

ఏߝ =
ଶ௘೜

௨೏
(27)

The small signal ZO-DPM transfer function for the adaptive law (27) at the equilibrium point (eq = 0)

is:

ఏߝ∆ = ߜ∆ (28)

which is identical to (11) for IP-PLL and hence kp, ki and the ZO-DPM CLTF of the phase angle

estimator for the EPLL are equal to that given in (12) and (14).

In the EPLL, uout = ud and hence the small-signal ZO-DPM CLTF of the voltage magnitude estimator

is derived from (26) and given by:

∆௨೚ೠ೟
∆௎ೡ

=
∆௨೏
∆௎ೡ

=
଴.ହ௞ೡఠ೙
௦ା଴.ହ௞ೡఠ ೙

(29)

Similar to the IP-PLL, the output frequency out for the EPLL is calculated as.

߱௢௨௧= ߱௘− 0.5 ௩݇߱௡ߝఏ (30)

with the small-signal ZO-DPM CLTF of:

∆ఠ ೚ೠ೟

∆ఠ ೡ
=

଴.ହ௞ೡఠ ೙

௦ା଴.ହ௞ೡఠ ೙
(31)

jeje
û

û

s

k nv
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with this, the small signal ZO-DPM CLTFs for phase angle, frequency and voltage magnitude

estimators for all three PLL schemes under study have been designed to be identical and this should

lead to identical dynamic performance. Also, the transfer functions show that the PLLs should remain

stable in a very wide range of kv. In the next section, the performance of the designed PLLs (using the

ZO-DPM) will be investigated using simulations with different values of kv which should help in

validating the ZO-DPM based design approach and identifying the potential differences in actual

dynamic performance.

4. Performance Comparison of PLL Schemes Designed Using the ZO-DPM

The PLL schemes presented in Figs 2, 4 and 6 and using the adaptive laws in (10), (19) and (27) and

having the control gains kp and ki designed to provide identical ZO-DPM based small signal CLTFs

are implemented using Simulink/Matlab. The simulation models are tested for three small step

changes in phase-angle, frequency and voltage magnitude for different values of gain kv. The higher

the value of kv, the faster the expected PLL dynamic response.

Fig. 7 Simulation results: PLLs testing under three small signal step changes for kv = 1. Top subplot: shows
phase angle response to a phase-angle step of 0.01 rad (at t=0.2s), middle subplot: shows frequency response to a
frequency step of 1% (at t=0.4s), bottom subplot: shows voltage magnitude response to a voltage step of 1% (at

t=0.8s). “red” IP-PLL, “cyan” EPLL, “black” SOGI-FLL.

The simulation results from the three tests with kv = 1 is shown in Fig. 7. It is noted that the dynamic

response for all PLLs has a superimposed transient oscillation that decays quickly. The SOGI-FLL and

the EPLL response are visibly identical for all three tests, while the IP-PLL response differs slightly,

0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
-0.012

-0.006

0

0.006

0.012


e

rr
,

ra
d

t ime, s

0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

315.9

317.9


ou

t,
ra

d
/s

t ime, s

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

339.9

341.9

343.9

u ou
t,

V

t ime, s

IP-PLL EPLL SOGI-FLL



15

with the largest mismatch noticed in the frequency step change test. The three tests are repeated for kv

= 2 (faster PLL dynamic performance is expected). The simulation results are shown in Fig. 8. It is

clear that the IP-PLL becomes unstable in all three tests but the SOGI-FLL and the EPLL remain

stable but having slow decaying oscillations, although a higher kv should have resulted in shorter time

response, which contradicts the desired dynamic performance set for the ZO-DPM based design.

Fig. 8 Simulation results: PLLs testing under small signal step changes for kv = 2. Top subplot: shows phase
angle response to a phase-angle step of 0.01 rad (at t=0.2s), middle subplot: shows frequency response to a

frequency step of 1% (at t=0.4s), bottom subplot: shows voltage magnitude response to a voltage step of 1% (at
t=0.8s). “red” IP-PLL, “cyan” EPLL, “black” SOGI-FLL.

From the simulation results for err () in (Fig. 8), the slow dynamic PLL eigenvalue that is responsible

of the slow decaying oscillation can be approximately determined by measuring the ratio magnitude

between two consecutive oscillation peaks A (A=0.005rad, tA=0.221s) and B (B=0.002rad,

tB=0.241s) which results in the position of the eigenvalue on the real axis of –ln(A/B)/(tA-tB)  -

45.8s-1. This results in much slower response in comparison to -314.1 s-1, the desired PLL eigenvalue

as emerged from the ZO-DPM based design (14), for kv=2 (see text above (14)). The problem is that

this slow dynamic eigenvalue which is noted by the simulation results of the actual PLL was not

possible to be predicted by the ZO-DPM and this is why a higher order DPM is proposed to account

for the effect of selected frequency components that might have resulted in such slow dynamic

eigenvalue. The DPM developed in general form in §3 (e.g. for IP-PLL (7)) is customised to 4th-order

DPM and will be used in the design of the three PLL schemes in the next section.

0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
-0.012

-0.006

0

0.006

0.012


e

rr
,

ra
d

t ime, s

0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

315.9

317.9


ou

t,
ra

d
/s

t ime, s

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

339.9

341.9

343.9

u ou
t,

V

t ime, s

IP-PLL EPLL SOGI-FLL

BA



16

5. Fourth-order Dynamical Phasor Model based Stability Analysis of the PLL Schemes

Under Investigation

5.1 Analysis of the 4th-order DPM for IP-PLL

The 4th-order DPM for the IP-PLL is established using (7), (10). The model is linearized and the small

signal eigenvalues are obtained for the equilibrium point uq = 0, ud = Uv. The linearized state space

model is of 36th order (4 states for the zero-order and 8 states for each “complex” order from 1 to 4),

which for the sake of maintaining a reasonable paper length, are not detailed. Only four trajectories

(TA, TB, TC and TD) for the most dominant complex eigenvalues are plotted in Fig. 9 for 0.52< kv <

2.1. Four sets of the eigenvalues are highlighted for kv = 0.52 (blue square), 0.92 (cyan star), 1 (red

diamond) and 1.12 (green circle) as shown in Fig. 9.

Fig. 9 The four most significant eigenvalue trajectories for the IP-PLL 4th order DPM, (0.52< kv < 2.1).

The results show that for kv > 1.74, the eigenvalue TC moves to the right hand plane (instability

region), which is consistent with the simulation results presented in Fig. 8 for kv = 2 and in

contradiction with the ZO-DPM based small-signal analysis that untruly tells that the PLL is stable for

any values of kv. It is also noted that as kv increases from 0.52 to 0.92, the eigenvalues move further

into the left side of the s-plane. The increase of kv beyond 0.92 makes three eigenvalue trajectories

(TA, TB and TC) to reverse direction towards the unstable side of the s-plane one of which (TC) will

tend to cross the stability line first at kv > 1.74. Because the position of one eigenvalue (TD) starts (at
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kv=0.52) significantly on the right side compared to the other three and slowly moves left, whilst the

other three start moving right for kv>0.92, the optimum kv is chosen 1.12 so that the position of all four

eigenvalues are pushed as left as possible with respect to the real axis to maximize the dynamic

response.

5.2 Analysis of the 4th-order DPM for SOGI-FLL

The 4th-order DPM for the SOGI-FLL is derived from (18),(19). The linearized state-space model is

of 36th order (not shown to minimise paper length) and the trajectories (TA, TB, TC and TD) of the

four most dominant complex eigenvalues are plotted in Fig. 10 for 0.92< kv < 3.3. It is found that the

eigenvalues for the SOGI-FLL (Fig. 10) are situated more to the left than the eigenvalues for IP-PLL

(Fig. 9), which means SOGI-FLL will actually provide better dynamic response than the IP-PLL that

contradicts the expected identical dynamic characteristic for all PLLs under study as imposed by the

ZO-DPM based design (§3). In Fig. 10, three sets of eigenvalues are highlighted for kv = 0.92 (blue

square), 1.3 (red diamond), 1.44 (green circle). This stability analysis based on eigenvalues confirms

that the SOGI-FLL is stable for kv < 2.82, which is consistent with the simulation results shown in Fig.

8. Based on the results in Fig. 10, it is recommended that kv < 1.44 to ensure the placement of all the

most dominant eigenvalues is situated as far left as possible into the s-plane. The stability limit is

found at kv = 2.82.

Fig. 10 The four most significant eigenvalue trajectories for the SOGI-FLL 4th order DPM, (0.92 < kv < 3.3).
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5.3 Analysis of the 4th-order DPM for EPLL

The state space model for the EPLL (26), (28) is also used to derive the 4th-order DPM. The linearized

state space model is of 27th order and the trajectories of the four most dominant complex eigenvalues

are plotted in Fig. 11 for 0.92< kv < 3.3. The EPLL eigenvalue trajectories reveal similar trend to that

of the SOGI-FLL. The EPLL is also found unstable for kv > 2.82. Three sets of eigenvalues are

highlighted for kv = 0.92, 1.3, 1.44 as shown in Fig. 11. The trajectories of the EPLL and SOGI-FLL

eigenvalues are almost the same as revealed by comparing Figs 10 and 11. Therefore, the

recommended value for kv is equal to that for SOGI-FLL, i.e. kv < 1.44.

Fig. 11 The four most significant eigenvalue trajectories for the EPLL 4th order DPM, (0.92 < kv < 3.3).

5.4 Validation by Simulation of the 4th-order DPMs

The analysis of the eigenvalues presented in the previous sections can be summarised in Table 1 which

contains the values of kv for operation at stability limit (top), for keeping all of the most dominant

eigenvalues as far left on the s-plane as possible as a design limit (middle) and a set of gains selected

in the paper (bottom) that agree with both previous limitations and were recommended to be used in

the large signal tests.

Table 1: Gain kv design values for the three PLLs under study.
IP-PLL SOGI-FLL EPLL

Stability limit kv < 1.72 kv < 2.82 kv < 2.82
Design limit kv < 1.12 kv < 1.44 kv < 1.44

Recommended in this paper kv =1 kv =1.3 kv =1.3
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The eigenvalues analysis of the 4th-order DPM of the PLL schemes under study is validated by

simulation. Fig. 12 illustrates the simulation results of the three PLL schemes for kv = 2.82 subjected

to small step changes in phase angle, frequency and voltage magnitude. All three tests show that the

IP-PLL is unstable while the SOGI-FLL and the EPLL response were both on the verge of instability.

These findings validate the obtained stability limits from the small signal eigenvalues analysis shown

in Figs 9-11 and hence prove the suitability of the 4th-order DPM for PLL stability analysis and control

design.

Fig. 12 Simulation results: PLLs testing under small signal step changes for kv = 2.82. Top subplot: shows phase
angle response to a phase-angle step of 0.01 rad (at t=0.2s), middle subplot: shows frequency response to a

frequency step of 1% (at t=0.4s), Bottom subplot: shows voltage magnitude response to a voltage step of 1% (at
t=0.8s). “red” IP-PLL, “cyan” EPLL, “black” SOGI-FLL.

In the next section, the three PLL schemes using the recommended design values for kv in Table 1 will

be tested and compared for large signal disturbances.

6. Large Signal Testing and Performance Comparison of the PLL Schemes

The models for the PLL schemes in Fig. 2, 4, 6 using the design adaptive laws derived in (10), (19)

and (27) will be tested by simulation and experimental implementation for large signal disturbances.

The recommended values for kv listed in the last row of Table 1 are used in both simulations and

experiments. The disturbances applied are: phase jump ௩ߠ∆) = ݎ1�ܽ )݀, voltage sag (∆ܷ௩ = 80% of

the nominal value) and frequency step change (∆߱௩ = 10% of the nominal value). Large disturbance
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in grid voltage can cause the PLLs to slip and loose the locking state for one or more cycles. The

locking state is maintained attractive under large disturbance by limiting e to be within a band of ±30%

from the nominal-value such that 0.7n < e < 1.3n. Also, the absolute value of ud is used in the

denominator of the adaptive laws (10) and (27). The simulation models are implemented in

Matlab/Simulink. The models of the three PLL schemes are also implemented on a 32-bit floating

point DSP+FPGA laboratory digital platform equipped with 16 bit A/D converters specially designed

for real time control of power electronic systems. All three PLL schemes were running simultaneously

and independently in the DSP with a sampling time of 100 µs. A programmable electronic AC power

source (Chroma) is used to generate the various types of grid voltage disturbances needed for the

experimental validation such as phase jump, voltage sag and frequency step change tests. Because of

the existence of an LC filter on the output of the electronic power supply, there is a limitation of how

fast/sharp the voltage transients can be replicated and this can explain some of the differences that will

be seen in the next subsections between the simulation and the experimental results.

The DSP control algorithm which is executed every sampling time starts by acquiring the supply

voltage, then independently calculates the state variables for all three PLL schemes; at the end of

every sampling time, all state variables (including the measured supply voltage) are saved into a

memory buffer with a sufficient length to store the full response to the disturbance. The content of this

memory buffer is later transferred to the PC for visualisation. There is no post processing of data.

The simulation and experimental results of the three PLL schemes under investigation will be

compared in the following sections. The simulation results are shown in the left subplots of following

figures while the corresponding experimental results are shown in the right subplots.

6.1 Response Following the Phase Jump Test

The PLLs are tested for large and sudden phase jump of 1 rad. The PLLs with the ±30% e limit are

tested for phase jump response. The results in Fig. 13 show that all three PLL schemes are stable for a

large phase jump disturbance. It is noted that the SOGI-FLL phase tracking is faster simply because

the phase angle is estimated using the “arctangent” function of the estimated voltage vector (22) rather
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than by direct integration of e which is subject to the ±30% limit. On the other hand, the EPLL and

IP-PLL have experienced slow phase-angle tracking responses because of the limits imposed to e that

is fed to the integrator. It is also noted that SOGI-FLL has provided smaller disturbance to the

estimated voltage magnitude (see bottom subplots of Fig. 13) during the phase jump. The results show

that SOGI-FLL could be the most suitable choice for grids that suffer from frequent phase jumps.

Fig. 13 Response of the three PLL schemes to phase jump: (Top subplots) phase angle response, (bottom
subplots) voltage magnitude response. “red” is for IP-PLL, “cyan” is for EPLL and “black” is for SOGI-FLL .

6.2 Response Following the Voltage Sag Test

Modern grid codes require the converters to continue operation even under severe voltage sags to

support the grid recovery by injecting reactive current. This will require PLLs to maintain tracking of

the grid voltage vector trajectory with minimal error in phase angle estimation. Typically, the voltage

sag transient that signals the beginning of a grid fault is the sharpest whilst the grid voltage recovery is

a much slower process (slow ramp). The designed PLLs are tested for a large voltage sag of 80%

applied at the zero crossing of grid voltage (worst case for voltage estimation) and setting the limit for

the estimated angular frequency as 0.7n < e < 1.3n. The simulation and the experimental results

are shown in Fig 14. The voltage tracking of all three PLL schemes is good with no cycle slip. The

EPLL have shown the faster voltage magnitude response to the step voltage change. The phase angle

error for SOGI-PLL was the largest.
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Fig. 14 Response of the three PLL schemes to 80% voltage sag test; (top subplots) voltage magnitude response,
(bottom subplots) phase angle response. “red” is for IP-PLL, “cyan” is for EPLL and “black” is for SOGI-FLL.

6.3 Response Following the Frequency Step Change Test

(a)

(b)
Fig. 15 Response of the three PLL schemes to frequency step change test: a) frequency step increase results, b)

frequency step decrease results. (top subplots) frequency response, (bottom subplots) voltage magnitude
response. “red” is for IP-PLL, “cyan” is for EPLL and “black” is for SOGI-FLL.

The PLL schemes are tested for a sudden change in grid frequency. The frequency is changed by

applying a ±10% step of the nominal value (50Hz). The simulation and the experimental results are

shown in Fig. 15a,b. The results show that all PLL schemes are stable but whilst the EPLL and SOGI-
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FLL have nearly identical response, the IP-PLL has a slightly slower response. The error in the voltage

estimation of the IP-PLL was the smallest.

The conclusion of these tests is that all three PLL schemes perform well under all three large signal

disturbances. The SOGI-FLL was able to maintain its good phase angle dynamic response during the

phase jump test because the output phase angle is calculated directly from the PLL output voltage

vector using arctangent. However, during the voltage sag test which would result in errors in the

estimated voltage, it results in the largest phase angle error. The responses of the three PLL schemes to

a step change in grid frequency were similar, but with slightly slower dynamics for IP-PLL.

7. Conclusion

The use of Dynamic Phasor Modelling DPM is proposed in this paper to improve the modelling for

the purpose of stability analysis and design of three PLL schemes, the single-phase IP-PLL, SOGI-

FLL and EPLL PLL. First, the simplified average model usually used in the literature for single phase

PLL design and stability analysis has been used to design three PLL schemes to achieve identical

dynamic characteristics which when evaluated via simulation, are found to differ significantly.

For this reason, fourth-order DPMs have been developed for the three PLL schemes under study. An

analysis of the most predominant eigenvalues is used to determine the stability limits and the

recommended design gains which are then validated via simulation for small signal disturbances. The

actual small-signal dynamic response of the PLLs was as predicted by the 4th-order DPM eigenvalue

analysis.

The final validation of the 4th-order DPM based design of the PLL schemes is achieved by large signal

disturbance testing (phase jump, voltage sag and frequency step change) implemented both in

simulation and on an experimental digital control platform using (as input) actual voltage disturbances

produced by a programmable electronic AC power supply. The SOGI-FLL is found to be more

suitable for operation under severe phase jump situations. EPLL on the other hand, had the best

response during voltage sag.
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Appendix 1

Dynamic Phasor Modelling of Non-linear State Variables

The DPM of the nonlinear terms such as�ܿ(ߠ2)ݏ݋ and ݏ݅ ,(ߠ2݊) e.g. in (5a,b) are given by:

௞〈(ߠ݉)݊ݏ݅〉 = ቊ
∓
ଵ

ଶ
�݆�… ݇�ݎ݋݂… = ±݉

0 … … … ℎݐ݋… ݓݎ݁ ݏ݅݁
(A1a)

〈 ௞〈(ߠ݉)ݏܿ݋ = ቊ
ଵ

ଶ
… ݇�ݎ݋݂… = ∓݉

0 … … … ℎݐ݋… ݓݎ݁ ݏ݅݁
(A1b)

For the nonlinear cosine and sine terms function of  and  in (5a,b), Taylor expansion method is

applied before using the convolution property (4) to determine the DPM. The Taylor expansion for the

various nonlinear terms in (5a,b) assuming  is small are expressed as:

~(ߜ)ݏܿ݋ 1 ; ߜ~(ߜ)݊ݏ݅

+ߜ)ݏܿ݋ (ߠ2 ~ cos(2ߠ)− (ߠ2)݊ݏ݅ߜ (A2)

ݏ݅ +ߜ݊) (ߠ2 ~ sin(2ߠ) + ߜܿ (ߠ2)ݏ݋

Then, the Fourier coefficients for the nonlinear terms in (A2) are derived by applying rules (4) and

(A1):

〈 ଴〈(ߜ)ݏܿ݋ = 1 ; 〈 ௞ஷ଴〈(ߜ)ݏܿ݋ = 0

௞〈(ߜ)݊ݏ݅〉 = ௞〈ߜ〉

〈 +ߜ)ݏܿ݋ (ߠ2 〉ଶ = 0.5 + 0.5 −଴〈ߜ݆〉 0.5 ସି〈ߜ݆〉 and 〈 +ߜ)ݏܿ݋ (ߠ2 〉௞ஷଶ = 0 (A3)

ݏ݅〉 +ߜ݊) (ߠ2 〉ଶ = − 0.5݆+ 0.5 ଴〈ߜ݆〉 + ସି〈ߜ〉0.5 and ݏ݅〉 +ߜ݊) (ߠ2 〉௞ஷଶ = 0

The nonlinear term (uq/ud) in (e.g. in (10), (27)) is approximated by assuming ud is mainly a dc

quantity with additional small ripple component, (Emadi, 2004) (i.e. ud = (෤ௗݑ+଴〈ௗݑ〉 and hence (using

Taylor expansion method):

௨೜

௨೏
௤ቂݑ�~

ଵ

〈௨೏〉బ
−

௨෥೏
(〈௨೏〉బ)మ

ቃ~ݑ௤ቂ
ଶ

〈௨೏〉బ
−

௨೏
(〈௨೏〉బ)మ

ቃ (A4)

where ෤ௗݑ is the sum of the ripple components and <ud>0 is the DC component of ud. Then, the

convolution property (4) is applied to (A4) to give:

〈
௨೜

௨೏
〉௞~ቂ

ଶ

〈௨೏〉బ
−௞〈௤ݑ〉

ଵ

(〈௨೏〉బ)మ
௞ቃ〈ௗݑ௤ݑ〉 (A5)
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