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Abstract 

This paper investigates the cross-sectional pricing ability of the short- and long-run components 

of global foreign exchange (FX) volatility for carry trade returns. We find a negative and 

statistically significant factor risk price for the long-run component, but no significant pricing 

effect due to the short-run volatility component. We also document that the dynamics of the long-

run component of global FX volatility are related to US macroeconomic fundamentals. Our results 

are robust to various parametrizations of the volatility models used to obtain the volatility 

components and they are invariant to alternative asset pricing testing methodologies and sample 

periods.  
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1. Introduction 

The uncovered interest rate parity (UIP) condition postulates that the expected foreign 

exchange (FX) gain between two currencies must be offset by their interest rate differential. 

Assuming that there are no arbitrage opportunities and therefore the interest rate differential 

equals the forward premium, UIP then implies that the expected exchange rate change must 

equal the current forward premium. This condition is routinely assumed in models of 

international macroeconomics and finance. The empirical failure of UIP has been documented 

in a vast literature over the past 40 years (see, among others, Hansen and Hodrick (1980), Fama 

(1984), Engel (1996), Sarno, Valente, and Leon (2006), Burnside (2012), and the references 

therein), and a popular speculative strategy based on the violation of the parity (i.e., FX carry 

trade) has gained much attention in recent academic studies. The strategy involves borrowing 

in low interest rate currencies and investing in high interest rate currencies and over the years 

it has yielded sizable returns. One of the potential rationalizations of this evidence is based on 

a risk argument: currencies with high interest rates are riskier than low interest rate currencies 

and therefore deliver higher expected returns as a compensation for bearing time-varying risk 

(Fama (1984)). Albeit appealing, conventional measures of risk, such as stock market excess 

returns, consumption growth, term premium, and Fama and French (1993) factors have not 

consistently explained carry trade returns (see Burnside, Eichenbaum, Kleshchelski, and 

Rebelo (2011) and the references therein). In a recent study, Menkhoff, Sarno, Schmeling, and 

Schrimpf (2012), adopting a cross-sectional asset pricing framework, show that high returns 

from currency speculation can be understood as compensation for bearing global FX volatility 

risk.1 On the basis of the predictions of the intertemporal capital asset pricing model (ICAPM), 

the authors argue that negative volatility risk premia arise because positive volatility shocks 

worsen the investors’ risk-return tradeoff. Their approach is successful in adequately pricing 

the cross-section of carry trade returns, as their global FX volatility factor dominates other 

relevant risk measures, including FX market liquidity.  

A somehow unrelated literature, concerned with modeling the volatility of asset returns, 

has shown that empirical models containing only one component are often inadequate to 

capture the salient features of asset returns. In fact, empirical observation has shown that the 

                                                           
1 Lustig and Verdelhan (2007) and Lustig, Roussanov, and Verdelhan (2011) are among the first to propose a 

cross-sectional asset pricing framework in the context of FX markets. These studies also record some success in 

explaining the cross-section of carry trade returns by employing currency-based risk factors. See also Burnside, 

Eichenbaum, Kleshchelski, and Rebelo (2011), Burnside, Eichenbaum, and Rebelo (2011), and Mancini, Ranaldo, 

and Wrampelmeyer (2013). 
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volatility of low-frequency returns tends to be more persistent than the volatility of high-

frequency returns (Engle and Lee (1999) and the references therein). As a consequence, models 

comprising one highly persistent and one quickly mean-reverting volatility components have 

been found to systematically outperform one-component specifications (see, among others, 

Chernov, Gallant, Ghysels, and Tauchen (2003), Bollerslev and Zhou (2006), Christoffersen, 

Jacobs, Ornthanalai, and Wang (2008), and the references therein). The two volatility 

components have been rationalized on various grounds: Andersen and Bollerslev (1997) and 

Müller, Dacorogna, Davé, Olsen, Pictet, and Weizsäcker (1997) argue that different degrees of 

persistence of volatility are driven by the heterogeneity of news arrival process or investors’ 

investment horizons. Others suggest that investors’ sensitivity to new information is time-

varying, which leads to a separate source of randomness (Liesenfeld (2001)) and short-run 

volatility effects can be dominating over certain periods of time because of extreme market 

movements, heterogeneous market participants, and transitory market regulations (MacKinlay 

and Park (2004)). The common theme of the findings recorded in these studies is that empirical 

investigations of the asset returns volatility should be carried out using models with multiple 

factors. In line with this prescription, Adrian and Rosenberg (2008) investigate the cross-

sectional pricing ability of volatility risk by decomposing the US equity market volatility into 

short- and long-run components. The authors find that both components are significant priced 

factors and their proposed model compares favourably against existing benchmark models. 

In this paper, we combine these two separate literatures and, building upon Adrian and 

Rosenberg (2008) and Menkhoff, Sarno, Schmeling, and Schrimpf (2012), we explore the asset 

pricing power of the short- and long-run components of global FX volatility in the cross-section 

of carry trade returns. The rationale for this investigation is that investors in FX markets may 

not react in the same way to volatility shocks that are expected to be transitory compared to 

highly persistent ones. Hence, innovations in the short-run component of global FX volatility 

may carry a price of risk significantly different from the one exhibited by the long-run 

component. Put differently, each of the two volatility components may have its own asset 

pricing effect depending on whether it reflects improvements or deteriorations in different 

aspects of the investment opportunity set.  

Another important goal of this paper is to explain FX volatility risk in light of variations 

in macroeconomic conditions. Since the influential paper by Meese and Rogoff (1983), 

researchers have focused their attention towards explaining the missing link between exchange 

rate variations and macroeconomic fundamentals. This link has not been fully recovered 

although recent attempts have recorded some success (see Della Corte, Riddiough, and Sarno 

http://www.sciencedirect.com/science/article/pii/S0927539897000078
http://www.sciencedirect.com/science/article/pii/S0927539897000078
http://www.sciencedirect.com/science/article/pii/S0927539897000078
http://www.sciencedirect.com/science/article/pii/S0927539897000078
http://www.sciencedirect.com/science/article/pii/S0927539897000078
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(2014) and the references therein). The study by Menkhoff, Sarno, Schmeling, and Schrimpf 

(2012) is certainly successful in explaining the cross-section of carry trade returns. However, 

it is silent about any potential links between volatility risk and macroeconomic fundamentals. 

Furthermore, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011) and Burnside (2012) 

show that, in the context of FX markets, proxies for business cycle risk have no significant 

covariation with carry trade payoffs. Given the large body of evidence relating FX movements 

to macroeconomic news (see, among others, Andersen and Bollerslev (1998), Andersen, 

Bollerslev, Diebold, and Vega (2003), Engel, Mark, and West (2008), and Evans and Lyons 

(2008)), it is natural to hypothesize an existing link between global FX volatility and 

macroeconomic fundamentals. Hence, investigating whether fluctuations in macroeconomic 

fundamentals influence the components of global FX volatility can provide new insights into 

this elusive issue.2 

Our empirical analysis uncovers a host of interesting results. First, using a cross-

sectional asset pricing framework, we find that only the long-run component of global FX 

volatility is a significant priced factor in the cross-section of carry trade returns. In fact, the 

short-run component of global FX volatility is not statistically significant in any of the asset 

pricing tests carried out in this paper. This result is robust against different parametrization of 

the volatility models and different methodologies used to compute volatility components. 

Second, we are able to uncover a significant relationship between FX volatility risk and 

macroeconomic fundamentals as long-run global FX volatility dynamics are significantly 

related to US macroeconomic fundamental shocks, especially industrial production and money 

balances. All results are robust against different methodologies used to carry out asset pricing 

tests and across different subperiods of the sample.  

The remainder of the paper is organized as follows. The next section discusses the 

empirical framework used to estimate the components of global FX volatility and carry out 

asset pricing tests. Section 3 describes the data and discusses the descriptive statistics of the 

carry trade portfolios over the sample period. Section 4 reports the main empirical results, while 

Section 5 discusses a battery of the robustness checks of the main empirical findings. Section 

6 explores the relationship between volatility components and macroeconomic fundamentals 

and a final section concludes. 

                                                           
2 It is worthwhile noting that Adrian and Rosenberg (2008) found that the long-run component of US equity 

market volatility relates to business cycle risk. However, to the best of our knowledge similar evidence has not 

been recorded in the context of FX markets. 
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2.  Empirical Framework 

2.1 Global FX Returns 

We first construct a measure to proxy for global FX return on any trading day 𝜏 as the 

average of discrete returns for all currencies available on that trading day in the main sample 

spot FX market. The proxy is thus given by 

 𝑅𝜏 = ∑ [(
𝑆𝜏

𝑘 − 𝑆𝜏−1
𝑘

𝑆𝜏−1
𝑘 ) /𝐾𝜏] ,

𝑘∈𝐾𝜏

                                                                                             (1) 

where 𝑆𝜏
𝑘  and 𝐾𝜏  denote the spot exchange rate of currency 𝑘 and the number of available 

currencies on day 𝜏, respectively. We appeal to this equally weighted measure of global FX 

return on data availability grounds. More specifically, daily data on currency order flows as 

well as the shares of respective currencies in international trade or reserves are publicly 

unavailable for a large section of our sample. This prohibits estimating the weights of the 

constituent currencies in a reasonable way. We consider discrete return for each currency 

instead of log return, which is consistent with the computation of currency excess returns 

described in Section 3.2.3  

2.2 Volatility Component Models 

We model the volatility of global FX returns and identify the short- and long-run 

components by using two empirical models that have been proven successful at capturing the 

salient features of the volatility of daily asset returns.4 The first candidate we consider is the 

component GARCH (CGARCH) model introduced by Engle and Lee (1999) to parametrically 

capture global FX volatility dynamics at different horizons. The model decomposes the 

conditional volatility process into two separate AR components: (1) a time-varying long-run 

trend component; and (2) a short-run transitory component as deviations from the trend. The 

conditional mean and the short- and long-run components are specified as    

𝑅𝜏 = 𝜓1 + 𝜖𝜏 ,    𝜖𝜏 = 𝜎𝜏𝑣𝜏,  𝑣𝜏~𝑖. 𝑖. 𝑑. 𝑁(0,1)                                                                 (2) 

𝜎𝜏
2 − 𝑞𝜏 = 𝜓2(𝜖𝜏−1

2 − 𝑞𝜏−1) + 𝜓3(𝜖𝜏−1
2 − 𝑞𝜏−1)𝑑𝜏−1 + 𝜓4(𝜎𝜏−1

2 − 𝑞𝜏−1)                 (3) 

𝑞𝜏 = 𝜓5 + 𝜓6(𝑞𝜏−1 − 𝜓5) + 𝜓7(𝜖𝜏−1
2 − 𝜎𝜏−1

2 ).                                                                (4) 

                                                           
3 Using log returns instead of discrete returns has an immaterial effect on the subsequent empirical results. 
4  We consider alternative modeling strategies that do not rely on parametric generalized autoregressive 

conditional heteroskedastic (GARCH) models in the robustness Section 5.1.  
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In equation (2), 𝑣𝜏 denotes an independently and identically distributed normal error 

term. We use 𝜎𝜏
2 − 𝑞𝜏  and 𝑞𝜏  to represent the short- and long-run components of the 

conditional variance 𝜎𝜏
2 , respectively. The sum of the parameters 𝜓2  and 𝜓4  measures the 

noisier transitory shock persistence. The parameter 𝜓7 represents the initial effect of a shock 

to the long-run component, while the AR root 𝜓6 measures the shock persistence of the long-

run component. The volatility dynamics for the short-run component require convergence to 

zero at a geometric rate of 𝜓2 + 𝜓4 < 𝜓6. In contrast, the long-run component requires slower 

convergence to its unconditional mean 𝜓5 at a geometric rate of 𝜓6. The individual means of 

the short- and long-run components are not separately identifiable in the model. The two 

components determine the conditional volatility process additively. The model estimates only 

the unconditional mean 𝜓5 of the long-run component. Finally, the volatility decomposition 

model allows for asymmetric effects upon “new information” arrival on the short-run 

component by incorporating a dummy variable 𝑑𝜏−1 in equation (3), that is, 𝑑𝜏−1 takes the 

value 1 if 𝜖𝜏−1 < 0 and zero otherwise.5 

The second candidate we consider, in line with Adrian and Rosenberg (2008), is a 

component exponential GARCH-in-mean (henceforth CEGARCH) model. The model allows 

for a richer parametrization of the conditional variance of returns since an asymmetric 

relationship between global FX returns and both the short- and long-run volatility components 

is explicitly considered. More precisely, the conditional mean and the volatility components 

are given by 

𝑅𝜏 = 𝜃1 + 𝜃2𝑠𝜏−1+𝜃3𝑙𝜏−1+√𝑣𝜏−1𝜀𝜏,   𝑙𝑜𝑔√𝑣𝜏 = 𝑠𝜏 + 𝑙𝜏,    𝜀𝜏~𝑖. 𝑖. 𝑑. 𝑁(0,1)             (5) 

𝑠𝜏 = 𝜃4𝑠𝜏−1 + 𝜃5𝜀𝜏 + 𝜃6 (|𝜀𝜏| − √2 𝜋⁄ )                                                                            (6)  

𝑙𝜏 = 𝜃7 + 𝜃8𝑙𝜏−1 + 𝜃9𝜀𝜏 + 𝜃10 (|𝜀𝜏| − √2 𝜋⁄ ),                                                                (7)  

where 𝜀𝜏 is an independently and identically distributed normal error term with zero mean and 

unit variance, 𝑠𝜏 is the (quickly mean-reverting) short-run component (with 𝜃4 < 𝜃8) , and 𝑙𝜏 

is the (slowly mean-reverting) long-run component. The terms |𝜀𝜏| − √2 𝜋⁄  in equations (6) 

and (7) denote the shocks to the volatility components and their expected values are equal to 

zero under the normality of 𝜀𝜏. Similar to Adrian and Rosenberg (2008), we also normalize the 

                                                           
5 The implementation of the CGARCH model requires parameters to satisfy restrictions of  0 < 𝜓2 + 𝜓4 <

𝜓6 < 1 , 0 < 𝜓7 < 𝜓4 < 𝜓6 < 1 , and 𝜓5, 𝜓2 > 0  in order to: (1) identify individual volatility components 

separately; (2) ensure a positive conditional variance; and (3) attain sufficiency condition for covariance 

stationarity. There is no sign restriction on the coefficient (𝜓3) for the asymmetric effect term. But its statistical 

significance implies the presence of a threshold effect.   
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unconditional mean of 𝑠𝜏 to be zero. The coefficients 𝜃5and 𝜃9 measure the asymmetric effects 

of returns on the short- and long-run components of volatility.   

2.3 Asset Pricing Tests 

 After decomposing the volatility of global FX returns into short- and long-run 

components, we assess their pricing power in the cross-section of carry trade returns. Risk-

based explanations for carry trade returns suggest that in the absence of arbitrage opportunities, 

excess return on each portfolio 𝑖 has a zero price. This implies that excess return to a portfolio 

must satisfy:  

             𝐸𝑡[𝑚𝑡+1𝑧𝑡+1
𝑖 ] = 0,                                                                                                                    (8) 

where 𝐸𝑡 is the expectations operator conditional on information available at the end of period 

𝑡, 𝑧𝑡+1
𝑖  is the excess return on a carry trade portfolio i, and 𝑚𝑡+1 is the stochastic discount factor 

(SDF). Restricting the SDF to be linear in the vector of pricing factors gives 

             𝑚𝑡 = 1 − (ℎ𝑡 − 𝜇)′𝑏,                                                                                                               (9) 

where ℎ𝑡  is a 𝑗 × 1  vector of risk factors,  𝜇 = 𝐸(ℎ𝑡) , and 𝑏 is a 𝑗 × 1  vector of SDF 

parameters. Given equations (8) and (9), there exists a 𝑗 × 1 vector of factor risk prices 𝜆 =

∑ 𝑏ℎ  such that 

             𝐸[𝑧𝑡
𝑖] = 𝛽𝑖

′𝜆,                                                                                                                             (10) 

where ∑ = 𝐸[(ℎ𝑡 − 𝜇)(ℎ𝑡 − 𝜇)′]ℎ  is the factor covariance matrix and 𝛽𝑖  are the population 

coefficients in a regression of 𝑧𝑡
𝑖 on risk factors ℎ𝑡. The beta representation in equation (10) 

states that expected excess returns for portfolio 𝑖 depends on aggregate risk exposure quantities 

(also called factor sensitivities or loadings)  𝛽𝑖  and factor risk prices  𝜆 . Focusing on the 

innovations of the short- and long-run components of global FX volatility (denoted by SRVI 

and LRVI, respectively) in addition to other risk factors found to be successful in pricing the 

cross-section of carry trade returns (denoted by 𝑋), the beta representation of the corresponding 

linear factor pricing model can therefore be written as  

             𝐸[𝑧𝑡
𝑖] = 𝜆𝑋𝛽𝑖,𝑋 + 𝜆𝑆𝑅𝑉𝐼𝛽𝑖,𝑆𝑅𝑉𝐼 + 𝜆𝐿𝑅𝑉𝐼𝛽𝑖,𝐿𝑅𝑉𝐼  

.                                                               (11) 

Fama and MacBeth (1973) show a two-pass ordinary least squares regression procedure 

which we follow to estimate the parameters of equation (11). The first-pass involves time-

series regressions of monthly excess returns for portfolio 𝑖 on a constant 𝛼𝑖 , factor 𝑋, and 

innovations of the short- and long-run components. The regression specification is given by 
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             𝑧𝑡
𝑖 = 𝛼𝑖 + 𝛽𝑖,𝑋 𝑋𝑡 + 𝛽𝑖,𝑆𝑅𝑉𝐼𝑆𝑅𝑉𝐼𝑡 + 𝛽𝑖,𝐿𝑅𝑉𝐼 𝐿𝑅𝑉𝐼𝑡 + 𝑒𝑡

𝑖,                                                 (12) 

where 𝑡 = 1, 2, … … , 𝑇. The obtained betas are then utilized in the second-pass cross-sectional 

regression of average excess returns to get estimated factor risk prices �̂�. The cross-sectional 

regression is expressed as 

             𝑧̅𝑖 = 𝜆𝑋�̂�𝑖,𝑋 + 𝜆𝑆𝑅𝑉𝐼�̂�𝑖,𝑆𝑅𝑉𝐼 + 𝜆𝐿𝑅𝑉𝐼�̂�𝑖,𝐿𝑅𝑉𝐼 + ϛ𝑖 ,                                                            (13) 

where 𝑧̅𝑖 =
1

𝑇
∑ 𝑧𝑡

𝑖𝑇
𝑡=1  and the regression residuals ϛ𝑖  represent the pricing errors. The second-

pass regression is performed without a constant (𝜆0 = 0) since we do not allow mispricing 

common to the cross-section of excess returns for portfolios.6  

The two-pass regressions, however, suffer from an errors-in-variable problem. The 

betas used in the second-pass are estimates of the true unknown betas. To overcome this 

econometric issue, we correct standard errors following Shanken (1992). Jagannathan and 

Wang (1998) point out that the Shanken (1992) correction is inappropriate as well under 

heteroskedastic returns. For this reason, we also carry out a generalized method of moments 

(GMM) procedure advocated by Cochrane (2005).7  

3. Data and Currency Portfolios  

3.1 Data 

The data used in this paper consist of bid, ask, and midpoint quotes for daily spot and 

one-month forward exchange rates against the US dollar (USD) sourced from Barclays Bank 

International and World Markets PLC/Reuters (WMR) via Datastream. We construct the proxy 

for global FX return using the midpoint spot quotes at a daily frequency covering the sample 

period from November 2, 1983 to February 28, 2013. The main sample contains currencies 

from 48 countries: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia, Cyprus, the 

Czech Republic, Denmark, Egypt, Euro area, Finland, France, Germany, Greece, Hong Kong, 

Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, the 

                                                           
6 In the empirical investigation, we use the US dollar risk factor (DOL) suggested by Lustig, Roussanov, and 

Verdelhan (2011) as a proxy for the risk factor 𝑋. The second-pass regression is carried out without an intercept. 

This is due to the fact that the estimated betas for the DOL factor reported in Section 4.2 have little pricing power 

in the cross-section of carry trade returns. The factor itself serves the function of a constant that allows pricing 

errors shared by currency portfolios. See on this issue, Lustig, Roussanov, and Verdelhan (2011), Burnside (2012), 

and Menkhoff, Sarno, Schmeling, and Schrimpf (2012). 
7 We test the null hypothesis that all (estimated) pricing errors are jointly equal to zero with the statistic: 𝐽 =

𝑇ϛ̂′Ω̂ϛ̂
−1ϛ̂, where Ω̂ϛ̂  is a consistent estimator for the asymptotic covariance matrix of √𝑇ϛ̂ . The test statistic 

asymptotically follows the 𝜒𝑃−𝑗
2  distribution. 
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Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia, 

Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, 

Taiwan, Thailand, Ukraine, and the United Kingdom.8 The number of currencies increases as 

data on more currencies, especially from developing countries, become available. The total 

number of currencies varies over the sample period with a minimum of 9 and a maximum of 

37. 

3.2 Carry Trade Portfolios 

At the end of each month 𝑡, currencies are assigned to five portfolios based on their 

forward discounts (𝐹𝑡
𝑘 − 𝑆𝑡

𝑘) 𝑆𝑡
𝑘⁄  observed at the end of month 𝑡. We use 𝑆𝑡

𝑘 and 𝐹𝑡
𝑘 to denote 

the levels of daily spot and one-month forward exchange rates of currency 𝑘 against the USD, 

respectively, at the end of month 𝑡. We rebalance currency portfolios at the end of every month. 

Currencies are ranked in ascending order with respect to their forward discounts or, 

equivalently, to their interest rate differentials. This results in portfolio 1 comprising 20% of 

currencies with the smallest forward discounts (or lowest interest rates), while portfolio 5 

comprising 20% of currencies with the largest forward discounts (or highest interest rates). The 

monthly excess return to an investor buying a foreign currency 𝑘 in the forward exchange 

market and selling back the currency in the spot market next month is estimated as 𝑧𝑡+1
𝑘 =

(𝐹𝑡
𝑘 − 𝑆𝑡+1

𝑘 ) 𝑆𝑡
𝑘⁄ . We compute the excess return  𝑧𝑡+1

𝑖  for currency portfolio 𝑖 = 1, 2, … . , 5 

constructed at the end of month  𝑡 , but realized at the end of month  𝑡 + 1 as the equally 

weighted average of excess returns for the constituent currencies. 

Previous empirical studies (e.g., Burnside, Eichenbaum, and Rebelo (2007), Burnside, 

Eichenbaum, Kleshchelski, and Rebelo (2011), and Lustig, Roussanov, and Verdelhan (2011, 

2014)) on carry trades suggest that transaction costs are quantitatively important, especially for 

developing countries. Acknowledging this possibility, we also compute net excess returns for 

all foreign currencies using the bid-ask quotes as in Menkhoff, Sarno, Schmeling, and Schrimpf 

(2012).9 Following Lustig, Roussanov, and Verdelhan (2011) we also construct two additional 

                                                           
8 We also consider a smaller subsample consisting only of 15 developed countries to further comprehend the 

empirical results obtained for the main sample. The list includes: Australia, Belgium, Canada, Denmark, Euro 

area, France, Germany, Italy, Japan, the Netherlands, New Zealand, Norway, Sweden, Switzerland, and the United 

Kingdom. The currency coverage is as in Lustig, Roussanov, and Verdelhan (2011) and Menkhoff, Sarno, 

Schmeling, and Schrimpf (2012). 
9 The net excess returns estimated using the bid-ask quotes from WMR should be regarded as conservative 

estimates relative to returns if estimated using the effective inter-dealer quotes in FX markets. The quoted bid-ask 

spreads, although indicative of the daily market condition, are roughly twice larger than the effective inter-dealer 

spreads (Lyons (2001)). 
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portfolios both for transaction cost unadjusted and adjusted returns. They are: (1) the average 

portfolio denoted by DOL (i.e., the US dollar risk factor), which is the equally weighted 

average of the five currency portfolios; and (2) the long-short carry trade portfolio denoted by 

HML, which is the combination of a long position in portfolio 5 and a short position in portfolio 

1.  

The summary statistics of the five currency portfolios, the DOL and HML portfolios 

based on the sample of 48 countries are presented in Table 1. Panel A reports results for cost 

unadjusted excess returns, while panel B provides results for excess returns net of transaction 

costs. Both unadjusted and adjusted annualized average excess returns increase monotonically 

when moving from portfolio 1 to portfolio 5 and the HML portfolio. But the payoffs to the 

carry trade portfolios shrink with the bid-ask spreads relative to those of the unadjusted returns. 

We also carry out a formal test for the null of no-increasing monotonicity of portfolio returns 

as in Patton and Timmermann (2010) and find that the null hypothesis is rejected with p-values 

virtually equal to zero. 

The annualized average excess return for the DOL portfolio is 1.91% and this becomes 

1.07% when bid-ask spreads are taken into account. These numbers imply that currency 

speculators with access to forward markets demand a low but positive risk premium for taking 

long position in foreign currency. There is a sizable spread of 7.99% (5.09% net of transaction 

costs) between the annualized excess returns on portfolio 5 and portfolio 1 (i.e., excess return 

for the HML portfolio). The skewness of portfolio excess returns recorded in Table 1 is 

generally consistent with Brunnermeier, Nagel, and Pedersen (2009), who show that currencies 

with high interest rate differentials are related to negative conditional skewness of exchange 

rate movements. The annualized Sharpe ratios increase monotonically as we move from 

currency portfolio 1 to portfolio 5 and the HML carry trade portfolio and, even after controlling 

for bid-ask spreads, the Sharpe ratios for portfolio 5 and the HML portfolio are notable.10 

4. Empirical Results 

4.1 Estimation of the Volatility Components 

In line with the existing literature (see, among others, Merton (1980), Nelson (1992), 

and Andersen, Bollerslev, Diebold, and Labys (2003), and the references therein), we estimate 

                                                           
10 We also compute descriptive statistics for the five carry trade portfolios, the DOL and HML carry trade 

portfolios constructed using the subsample of 15 developed countries. The results reported in Table A1 of the 

Internet Appendix confirms qualitatively and quantitatively the ones reported in Table 1. 
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the volatility component models introduced in Section 2.2 using daily data on global FX return. 

We also apply an ARMA(3,1) filter in the conditional mean of the CGARCH model to remove 

lower order autocorrelation dependencies in the disturbances.  

The results on the estimation of the CGARCH model are reported in Table 2. The short- 

and long-run components of global FX conditional volatility are identified by their relative 

magnitudes of autocorrelation coefficients. In particular, the estimated AR coefficient (𝜓4̂) for 

the short-run component is 0.879, which is relatively smaller than the AR coefficient (𝜓6̂) of 

0.994 for the long-run component.11 Both these coefficient estimates are significantly different 

from zero at the 1% conventional level. Although the long-run component exhibits a highly 

persistent shock process, it is not permanent. We reject the null hypothesis that 𝜓6 = 1 at the 

5% significance level. The AR coefficient 𝜓6̂ exceeds the sum of coefficients 𝜓2̂ and 𝜓4̂ in 

magnitude implying relatively slower mean-reversion process in the long-run. The estimated 

coefficient (𝜓3̂) for the asymmetric effects is negative and significant, which suggests that 

short-run volatility increases more in reaction to unexpected USD appreciation. All other 

coefficients are statistically significant at the 1% or 5% level and have the expected signs.12 

The Ljung and Box (1978) Q-statistics at 10, 20, and 30 lags, respectively, confirm that both 

the standardized and squared standardized residuals are serially uncorrelated.  

We report the results on the estimation of the CEGARCH model in Table 3. The model 

identifies a long-run volatility component whose first-order serial correlation is virtually 

indistinguishable from the one exhibited by the CGARCH model in Table 2 (0.992 vs. 0.994). 

However, the serial correlation of the short-run volatility component is substantially lower. 

Consistent with Adrian and Rosenberg (2008), the estimated parameters 𝜃2̂  and 𝜃3̂  are 

statistically significant and exhibit the same sign pattern recorded for the US equity market 

volatility. However, differently from the US equity market, the asymmetric effect is positive 

and statistically significant only for the short-run component of volatility (i.e., USD 

appreciation increases short-run volatility), in line with the implication of the estimate reported 

in Table 2. Such effect is not present in the long-run volatility component, as the parameter 𝜃9̂ 

                                                           
11 These values are in line with those reported for FX volatility decomposition in the literature (e.g., Maheu 

(2005)). 
12 The conditional variance estimate can be related to the global FX volatility measure of Menkhoff, Sarno, 

Schmeling, and Schrimpf (2012). To show this, we first take the square-root of the time-series on estimated 

conditional variance and average the resultant series over the number of trading days in each month. We then 

construct the Menkhoff, Sarno, Schmeling, and Schrimpf (2012) measure of global FX volatility in each month 𝑡 

as 𝜎𝑡
𝐹𝑋 =

1

𝑇𝑡
∑ [∑ (|

𝑆𝜏
𝑘−𝑆𝜏−1

𝑘

𝑆𝜏−1
𝑘 | 𝐾𝜏⁄ )𝑘∈𝐾𝜏

]𝜏∈𝑇𝑡
, where 𝑇𝑡  denotes the total number of trading days in month 𝑡. The 

correlation between these two versions of global FX volatilities is +79%. 
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is insignificantly positive. These results are generally in line with the findings reported in 

existing studies which consider asymmetric effects only in the short-run component of FX 

volatility (see Byrne and Davis (2005) and the references therein). Furthermore, the Ljung and 

Box (1978) Q-statistics suggest a potential misspecification of the volatility decomposition 

model in the form suggested by Adrian and Rosenberg (2008) when applied to the FX market.  

At face value, the results reported in Tables 2 and 3 suggest that a CGARCH model 

may represent a better parametrization, in comparison with a CEGARCH model, to capture the 

salient features of global FX volatility. We formally evaluate this finding by carrying out a 

battery of additional tests. Conventional likelihood ratio tests are not easily applicable in our 

context because the two volatility models are not nested.13 As an alternative, several studies 

have used out-of-sample tests for model validation (see, among others, Inoue and Kilian (2004, 

2006), Caporin and McAleer (2010), and the references therein). In fact, out-of-sample 

forecasting tests allowed researchers to circumvent the inference problems associated with 

testing non-nested models. Along this line of reasoning, we carry out the testing procedure 

recently proposed by Patton (2011) for testing the null hypothesis of equal predictions 

originating from volatility models even in the presence of imperfect volatility proxies.14  

The results of this exercise are reported in Table 4. The test statistics are computed for 

different functional form of the loss function, as suggested in Patton (2011, pp. 252−253), and 

for global FX volatility forecasts computed both at daily and monthly frequencies. In all cases, 

the null of equality of volatility predictions originating from the CGARCH and CEGARCH 

models cannot be rejected at any conventional level. This suggests that the more parsimonious 

CGARCH model is able to generate forecasts which are not statistically different from the ones 

generated from the richer CEGARCH model. Moreover, the out-of-sample predictions (both 

at daily and monthly frequencies) of the short- and long-run volatilities generated by the 

CGARCH model are highly correlated with those generated by the CEGARCH model. The 

correlation exceeds +80% in all cases.  

In light of these results, and consistent with a parsimony argument, we will use a 

CGARCH model in the subsequent sections of this paper to explore the asset pricing effects of 

FX volatility risk in the cross-section of carry trade returns.15          

                                                           
13 Although some alternative testing procedures have been proposed in the literature to compare the in-sample 

performance of non-nested volatility models (Lee and Brorsen (1997), Kobayashi and Shi (2005), and the 

references therein), they are either unsuitable to our case. 
14 Full details of the out-of-sample volatility testing procedure are reported in the Internet Appendix. 
15 We have also carried out a thorough robustness check on the results of our asset pricing tests using 

alternative frameworks used to decompose global FX volatility, which are not based on GARCH models. The 
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4.2 Asset Pricing Results 

We carry out asset pricing tests by using the innovations in the short- and long-run 

components from the CGARCH model. As the analysis is carried out at the monthly level, for 

consistency with previous studies, we compute monthly short- and long-run components as the 

end-of-month values of the corresponding daily series.16 Figure 1 shows the time-series plots 

of the global FX volatility components at the monthly frequency. Innovations of the short- and 

long-run components are computed as first differences of the estimated monthly volatility 

components.17  

 The results of the asset pricing tests for transaction cost unadjusted currency portfolios 

are reported in Table 5. Panel A reports estimated factor betas from the first-pass time-series 

regressions for five portfolios built using all and developed country samples. Portfolio 1 has a 

positive loading on innovations of the short-run component of global FX volatility, while 

portfolio 5 a negative loading for all countries. The corresponding loadings are both negative 

for the sample of developed countries. The beta estimates for portfolios 2 to 4 are all positive 

except that for portfolio 3 in both samples. The estimated factor loadings �̂�𝑖,𝑆𝑅𝑉𝐼 for all but 

portfolio 3 turn out to be statistically insignificant based on the GMM-HAC standard errors. 

Focusing on the innovations of the long-run component, we find that the loadings are positive 

for portfolio 1 and negative for portfolio 5. That is, excess returns for the portfolio with 

currencies in the lowest forward discount (or, equivalently, interest rate) quintile covary 

positively with innovations in the long-run component of global FX volatility. Conversely, 

excess returns of the portfolio with currencies in the highest forward discount quintile covary 

negatively. The GMM-HAC standard errors suggest that the estimated factor loadings 

�̂�1,𝐿𝑅𝑉𝐼 and �̂�5,𝐿𝑅𝑉𝐼 are significantly different from zero. Besides, a monotonically decreasing 

pattern emerges for the loadings  �̂�𝑖,𝐿𝑅𝑉𝐼 as we move from portfolio 1 to portfolio 5 based on 

the sample of all countries. The beta estimates exhibit a decreasing pattern for developed 

countries. The portfolios load positively on the DOL factor as expected and the betas hover 

                                                           
results, discussed in Section 5.1, confirm our baseline findings and they are reported in Tables IA4−IA6 of the 

Internet Appendix.    
16 The end-of-month estimates of volatility components closely follow their average-of-month counterparts. 

The correlations between the end- and average-of-month series are +93% and +92% for the short- and long-run 

components, respectively. The corresponding correlations increase to +96% and +94% for the sample period 

considered in asset pricing regressions. 
17 Descriptive statistics for both of the innovation series at a monthly frequency are reported in Table A2 of 

the Internet Appendix. We drop first 42 months of data on volatility component innovations (as burn-in period) 

and perform asset pricing analysis covering the period from May 1987 to February 2013.  
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closely around one. The estimated risk quantities  �̂�𝑖,𝐷𝑂𝐿 are highly significant regardless of 

sample currency compositions.   

 Panel B in Table 5 shows estimates of the factor risk prices obtained from the second-

pass cross-sectional regressions. The risk price estimate for the short-run volatility component, 

�̂�𝑆𝑅𝑉𝐼 , is negative but economically negligible. The GMM-HAC and Shanken (1992) corrected 

standard errors also imply that the estimated risk price is statistically insignificant irrespective 

of samples. This is not too surprising since most of the corresponding estimated betas in the 

first-pass regressions are insignificantly different from zero. We find that the risk price estimate 

for the long-run volatility component, �̂�𝐿𝑅𝑉𝐼 , is -0.097 for the all country sample and -0.048 

for the developed country sample. The estimated factor risk prices are also significantly 

different from zero. The negative factor risk price estimate implies that currency portfolios 

whose excess returns covary positively with long-run component innovations earn lower risk 

premia as they provide a hedge against increased volatility risk attributed to the long-run 

component. In contrast, portfolios whose excess returns covary negatively with long-run 

component innovations demand a higher risk premium. Consistent with other studies in this 

strand of literature (e.g., Burnside (2012) and Lustig, Roussanov, and Verdelhan (2011)), the 

estimated risk price on the DOL factor is positive but insignificantly different from zero. This 

implies that the factor explains none of the cross-sectional variation in payoffs to the currency 

speculation strategy. Recall that the estimated betas for DOL are close to one and therefore the 

finding does not come as a surprise. The DOL factor only explains the average level of excess 

returns for currency portfolios. The cross-sectional 𝑅2 is very high at 98% for all and 86% for 

developed country samples. The mean absolute pricing error is reasonably low at 0.02% and 

0.06% for all and developed country samples, respectively. The 𝜒2-statistics based on the 

GMM-HAC and Shanken (1992) suggest that the null hypothesis of no joint pricing errors 

cannot be rejected: all of the p-values exceed 10%. The results of the estimations are 

qualitatively and quantitatively similar when portfolio returns are adjusted for transaction costs 

(see Table IA3 in the Internet Appendix).  

 Overall, our results suggest that the pricing effect of global FX volatility on the cross-

section of carry trade returns recorded in existing studies is due to the pricing effect of the long-

run component of FX volatility. Although, this finding confirms some preliminary evidence 

reported in earlier studies in the context of FX markets, it is different from the results recorded 

in Adrian and Rosenberg (2008), who show that both components of stock market volatility 

exert a pricing effect on the cross-section of US equity returns. The difference between these 
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two results can be rationalized on the ground of different institutional settings characterizing 

FX and US equity markets. In fact, Adrian and Rosenberg (2008, p. 3012) argue that the short-

run component of market volatility is correlated with the tightness of financial constraints and 

price impact of large trades of portfolio managers. It is well-known that FX markets are less 

regulated than equity markets. Hence, it is easier for currency managers to leverage their 

positions (King, Osler, and Rime (2011)). As a consequence, in FX markets financial 

constraints may bind less than in equity markets. In addition, FX markets exhibit smaller price 

impact of trades as the amounts traded are an order of magnitude larger than equity markets 

(Mancini, Ranaldo, and Wrampelmeyer (2013)).18 These differences suggest that, if short-run 

volatility pricing effects are really due to binding financial constraints and to price impact of 

large trades, such effects may exert less power on the cross-section of carry trade returns. 

5. Robustness 

 5.1 Alternative Volatility Decompositions 

The asset pricing tests reported in Section 4 are based on the estimates of the CGARCH 

model discussed in Section 3. In this section, we assess the robustness of our baseline results 

to alternative volatility decomposition methods which do not necessarily rely on GARCH 

model estimations. More specifically, we decompose global FX volatility into transitory/short-

run and persistent/long-run components using the following methodologies: (1) two-factor 

stochastic volatility model of the price range proposed by Alizadeh, Brandt, and Diebold 

(2002); 19  (2) Hodrick and Prescott (1997) filter; and (3) Beveridge and Nelson (1981) 

decomposition. We have selected these three methodologies as: (1) they have been previously 

successfully applied in the context of FX markets (Alizadeh, Brandt, and Diebold (2002)); (2) 

because the estimates of the long-run volatility component are very similar to the ones implied 

by a CEGARCH model, as suggested by Adrian and Rosenberg (2008 p. 3003−3004); and (3) 

or for their easier computational implementation in comparison with fully-fledged parametric 

volatility models.20  

The results of the asset pricing tests using alternative volatility decompositions are 

reported in Tables IA4−IA6 of the Internet Appendix. In all cases and across all model 

                                                           
18 This evidence is also corroborated by the results reported in Wrampelmeyer (2012) showing that volatility 

responses to illiquidity shocks are nearly four time larger in the equity market than the FX market. 
19 See the Internet Appendix for full details of the model. 
20 Permanent-transitory decompositions, generally carried out by variants of the Beveridge and Nelson (1981) 

decompositions, are also routinely employed in empirical studies in international finance (see, among others, 

Corsetti and Konstantinou (2012) and the references therein).  
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specifications, the baseline results discussed in Section 4.2 are confirmed and the parameter 

estimates obtained using alternative volatility decompositions are qualitatively and 

quantitatively similar to the ones reported in Table 5.  

5.2 Country-Level Asset Pricing Results 

 Early studies routinely assume that carrying out asset pricing tests using portfolios 

reduces idiosyncratic risk and provides more precise estimates of factor loadings and risk prices 

(Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)). However, Lo and 

MacKinlay (1990) show that sorting assets into portfolios could potentially lead to data-

snooping biases and Ang, Liu, and Schwarz (2010) argue that the aggregation procedure of 

assets may reduce information by shrinking the dispersion of beta estimates for portfolios and 

therefore leading to larger standard errors for the cross-sectional coefficient estimates. In order 

to take into account these issues, we perform country-level asset pricing analysis by running 

two-pass regressions. The test assets are transaction cost unadjusted excess returns on 

individual currencies. Table 6 presents the estimated factor risk prices from the second-pass 

cross-sectional regressions for the samples of all and developed countries. We compute the 

95% confidence regions for the point estimates using a bootstrap procedure with 10,000 

repetitions. Similar to the portfolio-level analysis, the second-pass regressions do not include 

a constant. We find that the country-level results from the cross-sectional regressions are also 

consistent with those for the portfolio-level. The factor risk price estimate for the long-run 

component of global FX volatility,  �̂�𝐿𝑅𝑉𝐼 , is negative across samples and regression 

specifications. The 95% confidence region for the risk price estimate does not encompass zero. 

But the point estimate shrinks in absolute value (toward zero) for both samples relative to those 

obtained for currency portfolios. Conversely, the 95% confidence region comfortably 

encompasses zero for the short-run volatility component. The risk price estimate of the DOL 

factor is significant for the sample of all countries. This is not unusual since beta estimates for 

the factor have now much more heterogeneity. But the risk price estimate for the factor remains 

insignificant for the developed country sample. The 𝑅2 measure of cross-sectional fit is much 

lower than those found for currency portfolios. This is expected as well since excess returns 

for individual currencies are far noisier than forward discount-sorted portfolio returns. 

However, the 𝑅2 value drops severely and becomes negative for the all country sample when 

the two-pass regression excludes innovations of the long-run component. Summing up, these 

results clearly indicate that innovations in the long-run component of global FX volatility 

explain the cross-section of individual currency excess returns.  
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5.3 Results for Subperiods 

We also conduct time-series and cross-sectional regressions by splitting the full sample 

period into two distinct subperiods: May 1987−March 2000 and April 2000−February 2013. 

The latter subperiod covers both the dot-com bubble and the financial crisis of 2007−2009. The 

results of this exercise, reported in Table IA7 of the internet appendix, confirm qualitatively 

and quantitatively the ones reported in Table 5 of the main text. The estimated factor risk price 

for the short-run component of global FX volatility is insignificantly different from zero 

regardless of subperiods. On the other hand, the risk price estimates for the long-run volatility 

component are -0.076 and -0.103 for the first and second halves of the full sample period, 

respectively. These point estimates are also within the confidence interval around the point 

estimate of the full sample period. But the results are stronger for the second half of the full 

sample period in terms of statistical significance and the 𝑅2 value. Most of the developing 

currencies become available during this subperiod, which therefore contains more data points. 

5.4 Portfolios Based on Volatility Component Betas 

As a further robustness check, we build portfolios of currencies sorted on their exposure 

to innovations in the long-run component of global FX volatility. The notion is that if the long-

run component is a priced risk factor, then these portfolios are likely to generate a significant 

spread in average excess returns. The currency sorting procedure mainly follows Lustig, 

Roussanov, and Verdelhan (2011). First, in each month 𝑡, we obtain the long-run volatility 

component beta for currency 𝑘 by regressing corresponding transaction cost unadjusted excess 

return on a constant and innovations of the long-run component under a 36-month rolling 

window ending in month 𝑡 − 1. For this purpose, we reestimate the CGARCH model each 

month to avoid a look-ahead bias. Next, we allocate currencies available in the underlying 

sample to five portfolios according to their beta estimates for month 𝑡 and repeat the whole 

process every month. Portfolio 1 contains currencies in the lowest long-run volatility 

component beta quintile, while portfolio 5 contains currencies in the highest volatility 

component beta quintile. Furthermore, we consider an analogous set of quintile portfolios but 

with currencies sorted on the short-run volatility component betas.21  

                                                           
21 We do not find any meaningful pattern in annualized mean excess returns or/and forward discounts for 

portfolios and therefore do not report them in the paper. Besides, we abstain from double sorting currencies since 

it yields missing observations in many months, especially for portfolios based on the sample comprising developed 

countries. 
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Table 7 reports the summary statistics for the long-run component innovations exposure 

sorted portfolios based on the samples of all and developed countries. Annualized excess 

returns and forward discounts monotonically decrease when moving from portfolio 1 to 

portfolio 5 based on all country sample. The pattern is decreasing (nearly monotone) for the 

sample of developed countries. The excess return for the HML portfolio (in this case, the excess 

return difference between portfolio 1 and portfolio 5) is about 3% for both samples. Portfolios 

with currencies in relatively low long-run volatility component beta quintile correspond to 

relatively high average excess returns, while those with currencies in high volatility beta 

quintile correspond to low average excess returns. We find variation in skewness for excess 

return distribution compared to those for forward discount-sorted portfolios reported in Tables 

1 and IA1. 

The empirical results presented convey two important messages. First, sorting 

currencies on exposure to innovations in the long-run volatility component is similar to sorting 

based on forward discounts. The currency-based risk factor produces spreads in average excess 

returns across portfolios, a characteristic similar to that of forward discount sorts. Second, the 

long-run volatility component beta-sorted portfolios are largely related, but not identical, to the 

conventional carry trade portfolios. These suggest that the long-run volatility is a key state 

variable driving risk premia in the cross-section of trading currencies confirming the results of 

the asset pricing tests reported in Section 4.2. 

6. FX Volatility Risk and Macroeconomic Fundamentals  

This section extends the evidence provided in the previous sections by investigating the 

empirical relationship between the long-run component of global FX volatility and observable 

macroeconomic fundamentals. Since the influential paper by Meese and Rogoff (1983), studies 

in international finance have focused their attention towards explaining the missing link 

between exchange rate variations and macroeconomic fundamentals. Although a large 

literature has been able to relate FX movements to macroeconomic news (see, among others, 

Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Vega (2003), Engel, 

Mark, and West (2008), and Evans and Lyons (2008)), very little success has been recorded to 

date to link the dynamics of macroeconomic variables to carry trade payoffs (Burnside, 

Eichenbaum, Kleshchelski, and Rebelo (2011), Burnside (2012), and the references therein). It 

is therefore logical to ask whether an existing relationship between the long-run component of 

global FX volatility and macroeconomic variables can be empirically established. Along this 
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line of reasoning, recent studies have shown that the long-run component of stock returns 

volatility is correlated with shocks to macroeconomic fundamentals such as real output, money 

balances, inflation, and interest rates (Adrian and Rosenberg (2008), Engle and Rangel (2008), 

and Engle, Ghysels, and Sohn (2013)). Nonetheless, for the FX market, this evidence is not 

widely present and certainly not conclusive. In fact, a host of new studies have recently tried 

to provide a more exhaustive answer to this question with mixed results (Verdelhan (2013), 

Della Corte, Riddiough, and Sarno (2014), and Lustig, Verdelhan, and Roussanov (2014)). 

We aim at shedding some new light on this important issue in the context of FX market 

by running a three-variable vector autoregression (VAR) system including the long-run 

component of global FX volatility and two US macroeconomic fundamentals. In light of the 

findings of existing studies, we select US industrial production and US money balances as 

suitable macroeconomic fundamentals.22  The impulse response functions (IRFs) from the 

third-order VAR model are reported in Figure 2.23 The response of the long-run component to 

a unit positive shock in the industrial production growth is reported in the upper panel and 

show a negative and significant reaction for a prolonged period (from month 2 to month 13). 

Intuitively, an increase in US output improves expectations of market participants across 

countries, which in turn lowers FX volatility in the long-run.  

The IRF reported in the lower panel of Figure 2 shows that the long-run component is 

also dynamically related to money balances growth. More precisely, an expansionary US 

monetary policy induced by an increase in money supply increases FX volatility for a period 

of time.  

The analysis of the IRFs sheds some light on our earlier findings that currencies with a 

low interest rate covary positively with innovations in the long-run component, while 

currencies with a high interest rate covary negatively. Intuitively, when the long-run 

component of global FX volatility driven by shocks to US macroeconomic fundamentals 

increases, low interest rate currencies provide a hedge but expected to earn lower excess returns 

on average since the risk price is negative. The high interest rates currencies in this case suffer 

and therefore investors require a larger compensation reflected by higher excess returns. In this 

                                                           
22 The seasonally adjusted industrial production data are from the IMF International Financial Statistics. We 

consider monthly growth rate. As a proxy for money balances, we use data on seasonally adjusted M1 stock from 

the Federal Reserve Bank of St. Louis. Similar to industrial production, we consider monthly growth rate of the 

M1 time-series. 
23 We report the estimated IRFs for a unit positive shock with the 95% confidence intervals. The order of the 

VAR is chosen based on the Schwartz Bayesian Information Criterion. 
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regard, our empirical findings suggest that the dynamics of macroeconomic fundamentals 

indirectly influence carry trade returns through the FX volatility risk channel. 

7. Conclusion 

This paper investigates the cross-sectional pricing of volatility risk for carry trade 

returns by decomposing global FX volatility into short- and long-run components. Inspired by 

the recent literature investigating the risk determinants of FX carry trade returns, and in the 

light of the successful results recorded by Menkhoff, Sarno, Schmeling, and Schrimpf (2012), 

we adopt a cross-sectional asset pricing framework to explore whether the pricing power the 

global FX volatility factor originates from the persistent component of the FX volatility or from 

the transitory components or a combination of both. The investigation of this important issue 

follows the mounting empirical evidence documenting that the volatility of asset returns is 

better characterized by two factors, rather than a single one, which affects separate dimensions 

of the return’s frequencies and, most importantly, have different economic rationales. 

The results of our empirical investigation show that the long-run component of global 

FX volatility is an empirically important state variable determining the risk premia in the cross-

section of carry trade returns. Particularly, we find a statistically significant and negative price 

for this currency-based risk factor. Currencies with low interest rates comove positively with 

the long-run volatility component innovations and therefore offer insurance during times of 

unexpected volatility surges. But they earn lower excess returns in good times. In contrast, high 

interest rate currencies comove negatively and demand a higher compensation as they suffer 

during times of heightened market turmoil. Nevertheless, we do not find any significant 

evidence of the cross-sectional pricing ability of the short-run component of global FX 

volatility.  

The findings are robust to a battery of robustness checks including different 

methodologies and parametrizations of the models used to obtain the volatility components, 

different empirical specifications, including country-level asset pricing, different sample 

periods, and portfolios sorted on beta-exposure to innovations in the long-run component. We 

also find that the dynamics of the long-run component of global FX volatility are related to US 

macroeconomic fundamentals, particularly industrial production and money balances, 

suggesting an interesting channel through which macroeconomic fundamentals affect the 

cross-section of carry trade returns. 
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Table 1 

Descriptive Statistics of Currency Portfolios: All Countries 

The table presents annualized mean, median, standard deviation, and Sharpe ratio for excess returns of each 

currency portfolio. The portfolios are constructed using all country sample currencies sorted into five groups at 

the end of each month t based on their one-month forward discounts at the end of month t. Portfolio 1 includes 

20% of currencies with the lowest forward discounts, while portfolio 5 includes 20% of currencies with the highest 

forward discounts. Avg. denotes the average excess return of the five currency portfolios, while HML denotes the 

long-short portfolio (i.e., long in portfolio 5 and short in portfolio 1). The table also reports skewness, kurtosis, 

and first-order autocorrelation coefficient (AC(1)) with associated p-value for each portfolio. Numbers in brackets 

are t-statistics based on the Newey and West (1987) estimator, while numbers in parentheses are bootstrap p-

values for tests of mean excess return (increasing) monotonicity when moving from portfolio 1 to portfolio 5. The 

monotonic relationship (MR) test is based on Patton and Timmermann (2010). The Sharpe ratios are estimated as 

ratios of annualized means to annualized standard deviations. Panels A and B report excess returns without and 

with transaction cost adjustments (with bid-ask spreads), respectively. In panel B, excess returns for portfolio 1 

are adjusted for transaction costs that incur in a short position, while those for portfolios 2 to 5 are adjusted for 

transaction costs that incur in long positions. All excess returns are monthly (%) reported in USD. The sample 

period is from May 1987 to February 2013. 

Panel A: Excess Returns (without bid-ask) 

Portfolio 1 2 3 4 5  Avg. HML    MR 

Mean -2.10 0.06 2.63 3.08 5.89 1.91 7.99   (0.00) 

 [-1.46] [0.04]  [1.49] [1.72] [2.71]     [1.20]    [4.58]  

Median -1.81 2.45 2.58 5.29 9.26 3.35 11.82  

Std. Dev. 6.97 7.73 8.27 8.32 9.06 7.32 7.30  

Skewness -0.15 -0.76 -0.58 -0.82 -1.05 -0.73 -0.93  

Kurtosis 3.68 4.89 4.98 5.19 6.13 4.76 4.95  

Sharpe Ratio -0.30 0.01 0.32 0.37 0.65 0.26 1.09  

AC(1)     0.08    0.06     0.11    0.14   0.22        0.14       0.20  

p-value     0.14    0.27     0.06    0.02   0.00        0.02       0.00  

Panel B: Excess Returns (with bid-ask) 

Portfolio 1 2 3 4 5 Avg. HML  MR 

Mean -1.32 -0.79 1.69 1.96 3.78 1.07 5.09   (0.01) 

 [-0.93] [-0.50] [0.96] [1.09] [1.97] [0.67] [2.95]  

Median -1.05 1.66 1.33 4.36 7.12 2.64 8.93  

Std. Dev. 6.91 7.73 8.27 8.33 9.02 7.31 7.24  

Skewness -0.20 -0.76 -0.58 -0.83 -1.06 -0.74 -0.93  

Kurtosis 3.58 4.89 4.99 5.21 6.13 4.76 5.00  

Sharpe Ratio    -0.19   -0.10     0.20    0.24   0.42        0.15       0.70  

AC(1)     0.08    0.06     0.11    0.15   0.21        0.14       0.20  

p-value     0.16    0.26     0.06    0.01   0.00        0.02       0.00  
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Table 2 

Time-Series Estimation of the Volatility Components 

The table presents the descriptive statistics of the global FX return and the quasi-maximum likelihood estimates 

of the CGARCH model introduced by Engle and Lee (1999). The global FX return at a daily frequency is 

computed as 𝑅𝜏 = ∑ [(
𝑆𝜏

𝑘−𝑆𝜏−1
𝑘

𝑆𝜏−1
𝑘 ) /𝐾𝜏]𝑘∈𝐾𝜏

. The equations of the model are: (i) 𝑅𝜏 = 𝜓1 + 𝜖𝜏 (where𝜖𝜏 = 𝜎𝜏𝑣𝜏) for 

the conditional mean; (ii) 𝜎𝜏
2 − 𝑞𝜏 = 𝜓2(𝜖𝜏−1

2 − 𝑞𝜏−1) + 𝜓3(𝜖𝜏−1
2 − 𝑞𝜏−1)𝑑𝜏−1 + 𝜓4(𝜎𝜏−1

2 − 𝑞𝜏−1) for the short-

run component; and (iii) 𝑞𝜏 = 𝜓5 + 𝜓6(𝑞𝜏−1 − 𝜓5) + 𝜓7(𝜖𝜏−1
2 − 𝜎𝜏−1

2 ) for the long-run component. The table 

also reports the Bollerslev and Wooldridge (1992) robust standard errors with associated p-values for the 

coefficient estimates. Panel D reports diagnostics for the standardized and squared standardized residuals based 

on the Ljung and Box (1978) Q-statistics at 10, 20, and 30 lags, respectively. The sample period is from November 

2, 1983 to February 28, 2013. 

Panel A: Descriptive Statistics of Global FX Return (7,652 Days) 
Mean  Median   Std. Dev.  Skewness          Kurtosis 

0.001 0.000 0.419 -0.086 7.096 

Panel B: Short-Run Component 

                            𝜓2̂ 𝜓3̂ 𝜓4̂  

Coef. 0.020                -0.039 0.879  

Std. Err. 0.008                 0.018 0.096  

p-value 0.012                 0.031 0.000  

Panel C: Long-Run Component 

 𝜓5̂ 𝜓6̂ 𝜓7̂  

Coef. 0.178 0.994 0.041  

Std. Err. 0.040 0.002 0.005  

p-value 0.000 0.000 0.000  

p-value of 𝐻0: 𝜓
6
 = 1 0.023  

Panel D: Diagnostics of the Model 

                10 lags              20 lags               30 lags 

Ljung-Box Q-statistic of 𝑣 11.952 23.164 32.567 

p-value 0.288 0.319 0.342 

Ljung-Box Q-statistic of 𝑣2 13.357 18.927 23.590 

p-value 0.204 0.527 0.790 

Log-likelihood     -3527   
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Table 3 

Time-Series Estimation of the Volatility Components: Adrian and Rosenberg (2008) 

Model 

The table presents the maximum likelihood estimates of the CEGARCH model introduced by Adrian and 

Rosenberg (2008). The global FX return at a daily frequency is obtained as 𝑅𝜏 = ∑ [(
𝑆𝜏

𝑘−𝑆𝜏−1
𝑘

𝑆𝜏−1
𝑘 ) /𝐾𝜏]𝑘∈𝐾𝜏

. The 

equations of the model are: (i) 𝑅𝜏 = 𝜃1 + 𝜃2𝑠𝜏−1+𝜃3𝑙𝜏−1+√𝑣𝜏−1𝜀𝜏 (where 𝑙𝑜𝑔√𝑣𝜏 = 𝑠𝜏 + 𝑙𝜏) for the conditional 

mean; (ii) 𝑠𝜏 = 𝜃4𝑠𝜏−1 + 𝜃5𝜀𝜏 + 𝜃6 (|𝜀𝜏| − √2 𝜋⁄ )  for the short-run component; and (iii) 𝑙𝜏 = 𝜃7 + 𝜃8𝑙𝜏−1 +

𝜃9𝜀𝜏 + 𝜃10 (|𝜀𝜏| − √2 𝜋⁄ ) for the long-run component. Panel D reports diagnostics for the squared standardized 

residuals based on the Ljung and Box (1978) Q-statistics at 10, 20, and 30 lags, respectively. The sample period 

is from November 2, 1983 to February 28, 2013. 

Panel A: Conditional Mean 

 𝜃1̂                                     𝜃2̂           𝜃3̂   

Coef. 0.093                -0.006 0.046  

Std. Err. 0.019                 0.001 0.009  

p-value 0.000                 0.000 0.000  

Panel B: Short-Run Component 

 𝜃4̂                                     𝜃5̂           𝜃6̂   

Coef. 0.466                0.005 0.309  

Std. Err. 0.020                 0.001 0.015  

p-value 0.000                 0.000 0.000  

Panel C: Long-Run Component 

 𝜃7̂                                     𝜃8̂           𝜃9̂       𝜃10̂ 

Coef. -0.049 0.992 0.008 0.063 

Std. Err. 0.011 0.004 0.007 0.010 

p-value 0.000 0.000 0.253 0.000 

p-value of 𝐻0: 𝜃8 = 1 0.047  

Panel D: Diagnostics of the Model 

                10 lags              20 lags               30 lags 

Ljung-Box Q-statistic of 𝜀̂2 109.659 118.853 127.003 

p-value 0.000 0.000 0.000 

Log-likelihood     -2012   
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Table 4 

Comparison of Global FX Volatility Forecasts 

The table reports t-statistics for the tests of equal predictive accuracy of the forecasts from the CGARCH and 

CEGARCH models as in Patton (2011). The tests are performed using both daily and monthly average of daily 

global FX volatility forecasts. The forecast errors are obtained in comparison with global FX daily and monthly 

average squared returns. The loss functions and the values of the loss function parameter 𝑐 are as suggested in 

Patton (2011, p. 252-253). The rejection of the null hypothesis suggests that the baseline CGARCH model 

forecasts generate significantly different average loss than the CEGARCH model forecasts. The out-of-sample 

forecasts for May 1, 1987 to February 28, 2013 are obtained using a 914-day rolling window scheme.  

Loss Function Global FX Daily Squared Return Global FX Monthly Average Squared Return 

𝑐 =1 -1.11                -1.26 

𝑐 = 0 (MSE) -0.81                -0.94 

𝑐 = -1 0.78                0.66 

𝑐 = -2(QLIKE) 1.61                1.57 

𝑐 = -5 0.63                0.71 
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Table 5 

Asset Pricing Results: Short-Run and Long-Run Components of Volatility 

The table presents asset pricing results from the Fama and MacBeth (1973) two-pass regressions for the linear factor model based on the dollar risk factor (DOL), short-run 

volatility component innovations (SRVI), and long-run volatility component innovations (LRVI). The test assets are transaction cost unadjusted (without bid-ask spreads) 

excess returns of five portfolios constructed using currencies from all and developed country samples, respectively. Panel A shows results for the first-pass time-series 

regressions where excess returns are regressed on a constant (α), DOL, SRVI, and LRVI. Panel B reports factor prices (λ) obtained from the second-pass cross-sectional 

regressions without a constant. Numbers in brackets are robust standard errors based on the GMM-HAC procedure, while numbers in parentheses are the Shanken (SH, 1992) 

corrected standard errors. The table also reports 𝑅2, mean absolute pricing error (MAE), and 𝜒2-statistics with associated p-values for tests of pricing errors based on the GMM-

HAC and SH adjustment methods. All excess returns are monthly (%) and the sample period is from May 1987 to February 2013. 

Panel A: Factor Betas 

All Countries (without bid-ask)  Developed Countries (without bid-ask) 

Portfolio             �̂�    DOL   SRVI   LRVI 𝑅2       Portfolio           �̂�    DOL      SRVI   LRVI 𝑅2 

1 -0.308 0.842 1.457 3.151 0.743  1 -0.233 0.859 -0.003 5.592 0.623 

 [0.059] [0.038] [3.723] [1.032]    [0.092] [0.055] [7.014] [3.266]  

2 -0.151 0.983 0.464 1.344 0.849  2 -0.105 1.038 1.937 1.037 0.817 

 [0.051] [0.035] [2.907] [0.918]    [0.068] [0.038] [4.391] [1.288]  

3 0.051 1.058 -5.129 -0.340 0.906  3 0.004 1.006 -4.967 -1.210 0.885 

 [0.042] [0.025] [2.702] [0.744]    [0.051] [0.024] [3.001] [0.951]  

4 0.086 1.066 4.027 -0.677 0.872  4 0.105 1.011 3.733 -2.901 0.818 

 [0.054] [0.036] [3.307] [1.020]    [0.068] [0.037] [4.536] [1.874]  

5 0.322 1.052 -0.819 -3.478 0.767  5 0.229 1.087 -0.700 -2.518 0.739 

 [0.073] [0.044] [4.352] [1.372]    [0.093] [0.053] [6.485] [1.312]  

Panel B: Factor Prices 

All Countries (without bid-ask)  Developed Countries (without bid-ask) 

    DOL  SRVI  LRVI 𝑅2 MAE      DOL  SRVI     LRVI 𝑅2  MAE 

�̂� 0.160 -0.001 -0.097 0.984 0.015  �̂� 0.104 -0.001 -0.048 0.859 0.056 

 [0.120] [0.016] [0.040]     [0.139] [0.014] [0.026]   

 (0.120) (0.012) (0.034)     (0.139) (0.012) (0.021)   

 𝜒𝐺𝑀𝑀−𝐻𝐴𝐶
2  𝜒𝑆𝐻

2       𝜒𝐺𝑀𝑀−𝐻𝐴𝐶
2  𝜒𝑆𝐻

2      

 0.129 0.133      1.195 1.662    
 

p-value 0.938 0.936     p-value 0.550 0.436     
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Table 6 

Country-Level Asset Pricing Results 

The table presents cross-sectional asset pricing results from the Fama and MacBeth (1973) second-pass regressions for the linear factor model based on the dollar risk factor 

(DOL), short-run volatility component innovations (SRVI), and long-run volatility component innovations (LRVI). The test assets are transaction cost unadjusted excess returns 

(without bid-ask spreads) of individual currencies. The second-pass cross-sectional regressions are performed without a constant. Panel A shows the estimated factor prices (λ) 

for the all country sample, while panel B presents factor prices for the developed country sample. Numbers in parentheses are the 95% confidence regions based on a bootstrap 

procedure. See also notes to Table 5.  

 Factor Prices 

Panel A: All Countries (without bid-ask)  Panel B: Developed Countries (without bid-ask) 

 DOL SRVI LRVI 𝑅2      MAE   DOL SRVI LRVI 𝑅2      MAE 

�̂� 0.139 -0.001 -0.033 0.181 0.187  �̂� 0.040 -0.009 -0.024 0.301 0.123 

 (0.064,0.215) (-0.007,0.006) (-0.053,-0.015)     (-0.019,0.112) (-0.019,0.011) (-0.047,-0.005)   

�̂� 0.132 -0.002  -0.014 0.200  �̂� 0.039 -0.005  0.081 0.137 

 (0.055,0.216) (-0.008,0.005)      (-0.021,0.117) (-0.013,0.016)    

�̂� 0.139  -0.034 0.220 0.183  �̂� 0.040  -0.024 0.311 0.113 

 (0.067,0.211)  (-0.052,-0.017)     (-0.017,0.110)  (-0.045,-0.006)   
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Table 7 

Portfolios Sorted on Long-Run Volatility Component Betas 

The table presents annualized mean, standard deviation, and Sharpe ratio for excess returns of each portfolio. The 

portfolios are constructed using currencies sorted into five groups based on their exposure to long-run volatility 

component innovations. The volatility betas for each currency in month t are obtained by regressing respective 

currency’s transaction cost unadjusted (without bid-ask spreads) excess return on a constant and long-run volatility 

component innovations under a 36-month rolling window that ends in month t-1. All portfolios are rebalanced 

every month. The table also reports skewness, kurtosis, and annualized average (%) forward discount [(𝐹 − 𝑆)/𝑆] 
for each portfolio. Numbers in brackets are t-statistics based on the Newey and West (1987) estimator. The Sharpe 

ratios are estimated as ratios of annualized means to annualized standard deviations. Portfolio 1 includes 20% of 

currencies with the lowest long-run volatility component betas, while portfolio 5 includes 20% of currencies with 

the highest long-run volatility component betas. Avg. denotes the average excess return of the five beta-sorted 

portfolios, while HML denotes the long-short portfolio (in this case, long in portfolio 1 and short in portfolio 5). 

Panel A reports results for portfolios constructed using all country sample currencies, while panel B shows results 

for developed country sample. Pre-sorting (Pre-𝛽𝐿𝑅𝑉𝐼) and post-sorting (Post-𝛽𝐿𝑅𝑉𝐼) long-run volatility component 

betas for all and developed country samples are reported in the last two rows of the corresponding panels. All 

excess returns are monthly (%) reported in USD. In each panel, excess returns for the first 36 months are excluded 

to avoid relying on in-sample estimated volatility component betas for this period. The effective sample period is 

from May 1990 to February 2013. 

Panel A: All Countries 

Portfolio 1 2 3 4 5 Avg. HML 

Mean 2.93 2.16 1.12 0.97 -0.33 1.37 3.26 

 [1.34] [1.13] [0.62] [0.53] [-0.19] [0.83] [1.76] 

Std. Dev. 9.54 8.68 8.31 7.53 7.32 6.96 8.82 

Skewness -1.02 -0.62 -0.65 -0.59 -0.07 -0.71 -0.23 

Kurtosis 7.11 5.33 5.53 4.57 3.65 4.78 4.75 

Sharpe Ratio 0.31 0.25 0.14 0.13 -0.04 0.20 0.37 

[(𝐹 − 𝑆)/𝑆] 2.21 1.67 0.91 0.74 -0.19   

Pre-𝛽𝐿𝑅𝑉𝐼  -19.19 -8.02 -3.46 0.92 8.22   

Post-𝛽𝐿𝑅𝑉𝐼  -0.99 -0.09 1.65 0.36 2.37   

Panel B: Developed Countries 

Portfolio 1 2 3 4 5 Avg. HML 

Mean 2.27 1.34 0.76 0.81 -0.78 0.88 3.05 

 [0.98] [0.61] [0.35] [0.36] [-0.42] [0.47] [1.66] 

Std. Dev. 10.61 9.80 10.13 10.05 8.84 8.37 9.42 

Skewness -0.80 -0.53 -0.44 -0.63 -0.22 -0.41 -0.79 

Kurtosis 6.37 5.20 4.08 5.00 4.12 4.09 6.56 

Sharpe Ratio 0.21 0.14 0.07 0.08 -0.09 0.10 0.32 

[(𝐹 − 𝑆)/𝑆] 1.51 1.20 0.50 0.54 -0.04   

Pre-𝛽𝐿𝑅𝑉𝐼  -18.03 -9.57 -3.48 1.10 9.48   

Post-𝛽𝐿𝑅𝑉𝐼  -3.12 -2.44 0.23 -1.20 6.89   
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Figure 1 

Global FX Volatility Components 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

84 86 88 90 92 94 96 98 00 02 04 06 08 10 12

S
h

o
rt

-R
u

n
 C

o
m

p
o

n
en

t

Year  

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

84 86 88 90 92 94 96 98 00 02 04 06 08 10 12

L
o

n
g

-R
u

n
 C

o
m

p
o

n
en

t

Year  

The upper and lower panels of the figure plot the estimated short- and long-run components of global FX volatility 

at a monthly frequency, respectively. The short- and long-run components are from the CGARCH model reported 

in Table 2. Shaded areas represent the National Bureau of Economic Research recessions. The sample period is 

from November 1983 to February 2013. 
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Figure 2 

Impulse Response Functions for Shocks to Macroeconomic Fundamentals 
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The upper panel of the figure plots impulse response function (IRF) for a unit positive shock to industrial 

production growth (IP) with the 95% confidence intervals. The lower panel plots IRF for a unit positive shock to 

money balances growth (MB) with the 95% confidence intervals. The (endogenous) variables of VAR(3) are IP, 

MB, and long-run component (LRV) of global FX volatility. The IRFs are generated through 10,000 Monte Carlo 

random draws from the orthogonalized residuals with the Choleski ordering of MB, IP, LRV. 
 


