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Fluorescence based probes provide a novel way to study the dynamic internalization process of G
protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for
GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the
adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly
potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 ¼ 8.48 ± 0.09) and internali-
zation assays (pEC50 ¼ 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA
was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive
antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-
(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of re-
ceptorearrestin3 complexes and was found to localize with these intracellular complexes. This highly
potent agonist with excellent imaging properties should be a valuable tool to study receptor
internalization.

This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology’.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The nucleoside adenosine exerts its biological function via four
cell surface G protein-coupled receptors (GPCRs); A1, A2A, A2B and
A3 (Fredholm et al., 2001; Hill et al., 2014). These receptors have
been implicated in a wide range of biological processes, including
regulation of the sleepewake cycle (Huang et al., 2007), regulation
of immune cell function (Ohta and Sitkovsky, 2001), locomotion
(Yang et al., 2009) and response to hypoxia (Wan et al., 2008). In
turn, the dysregulation of these processes can lead to a range of
different pathological states such as Parkinson's (Jenner et al.,
2009) and Alzheimer's (Chen et al., 2007) diseases, autoimmune
disorders (Ohta and Sitkovsky, 2001) and tissue damage following
reperfusion injury (Wan et al., 2008). These receptors therefore
represent attractive drug targets (Chen et al., 2013).

A greater understanding of the precise downstream signal
induced by an agonist, and the subsequent regulation of GPCR
.
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function, may allow development of more effective drugs. The
adenosine receptors signal through different G proteins, with the
A1 and A3 receptors (A1R and A3R) predominately coupling to Gi/o
and A2A and A2B receptors (A2AR and A2BR) coupling to Gs. It has also
been shown that different agonists can activate different down-
stream signalling cascades (Verzijl and Ijzerman, 2011). Under-
standing this signalling bias may allow compounds to be developed
that target one signalling pathway over another (Kenakin, 2012).
The four adenosine receptors show marked differences in their
regulation in response to agonist treatment. The A2AR, A2BR and A3R
receptors have all been shown to desensitize rapidly upon agonist
treatment, with A3R desensitization the most rapid (Palmer et al.,
1994; Peters et al., 1998; Trincavelli et al., 2000). A2AR, A2BR and
A3R are phosphorylated by G protein-receptor kinases (GRKs)
which lead to the recruitment of arrestins and subsequent
sequestration from the plasma membrane (Ferguson et al., 2000;
Mundell et al., 1998, 2000). In contrast, the A1R desensitizes
much more slowly and although the agonist stimulated receptor
shows enhanced affinity for GRKs it is unclear if phosphorylation
actually occurs (Nie et al., 1997; Ramkumar et al., 1991). It has long
been thought that internalization of a receptor leads to termination
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of the agonist-induced signalling but recent studies have chal-
lenged this view. It has been shown that some receptors can
continue to signal to the cAMP pathway even after sequestration
from the plasma membrane (Boutin et al., 2012; Mullershausen
et al., 2009; Werthmann et al., 2012). One way to understand the
internalization of a GPCR and the termination of the signal is
through the use of fluorescent ligands.

Fluorescent ligands for GPCRs (Vernall et al., 2014) have become
increasingly used for studying various aspects of receptor phar-
macology (Hill et al., 2014; Stoddart et al., 2013). These ligands
allow the visualization of dynamic processes such as receptor
internalization, trafficking and diffusion characteristics in the cell
membrane (Stoddart et al., 2015, in this issue). Many different
fluorescent ligands for the adenosine receptors have been devel-
oped that retain both affinity for the receptor and their agonist or
antagonist properties (Kozma et al., 2013b). Although the fluores-
cent agonist-based probes that have been previously developed
retained potency and efficacy, their imaging characteristics, such as
the need for wash steps and the level of non-specific binding, limit
their applications in longer-term dynamic studies. It has been
shown for the A2AR and the A3R that fluorescent agonists can
induce clustering of the receptor within the cell but the fluorescent
ligands used in these studies needed to be removed from the cells
prior to visualization (Brand et al., 2008; Kozma et al., 2013a). To
allow the dynamic process of receptor internalization to be fully
studied, a fluorescent agonist that does not need to be removed is
advantageous as this allows the co-localization of the recep-
toreligand complex with various proteins involved in the inter-
nalization process to be studied. The choice of fluorophore used to
label the agonist can influence the ability of the compound to be
visualized in the continued presence of unbound ligand. A red-
emitting BODIPY fluorophore is an ideal candidate for use in fluo-
rescent ligands as it is brighter in non-aqueous environments, such
as the plasma membrane and therefore specific cell surface fluo-
rescence can bemore easily visualized (Baker et al., 2010; May et al.,
2010; May et al., 2011).

The present study aimed to improve the imaging properties of
the existing adenosine receptor agonist ABEA-X-BY630 (Middleton
et al., 2007) to allow its use in long-term imaging studies through
the incorporation of a peptide linker; an approach previously
shown to improve the affinity, subtype selectivity and also reduce
non-specific membrane binding of fluorescent adenosine receptor
antagonists (Vernall et al., 2013). The newly synthesized fluores-
cent agonists developed in this study were functionally charac-
terised at each of the adenosine receptors, as well as for agonist-
induced internalization at the A1R and A3R, and arrestin3 recruit-
ment at the A3R. The data indicated improved properties for
monitoring receptor internalization of untagged adenosine
receptors.

2. Experimental details

2.1. Materials

G418, Lipofectamine and Optimem were obtained from Life Technologies
(Paisley, UK), foetal calf serum (FCS) from PAA Laboratories (Wokingham, UK) and L-
glutamine from Lonza (Basel, Switzerland). NECA [5-(N-ethylcarboxamido)adeno-
sine] andMRS1220 [N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]
benzene acetamide] were purchased from Tocris Bioscience (Bristol, UK). 6-(((4,4-
Difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene-3-yl)styryloxy)acetyl) ami-
nohexanoic acid, succinimidyl ester (BY630-X-SE) was purchased from Molecular
Probes® (Invitrogen, UK). All other chemicals and reagents were obtained from
SigmaeAldrich (Gillingham, UK).

2.2. Synthesis of fluorescent ligands

Detailed experimental procedures and compound characterisation are provided
in the Supplementary data. In brief, the ABEA pharmacophore and the tripeptides
were synthesized independently. The ABEA pharmacophore and the required tri-
peptide were then coupled in solution-phase, the N-terminal peptide protecting
group removed to afford a primary amine and this then coupled to the commercially
available BY630-X-SE. Fluorescent compounds were purified using semi-preparative
high-performance liquid chromatography and purities of all compounds were
determined as being �95%.

2.3. Cell culture

Chinese hamster ovary (CHO) cells stably expressing a cAMP response element-
secreted placental alkaline phosphatase (CRE-SPAP) reporter gene expressing the
human A3R (Vernall et al., 2012) or human A1R (Baker and Hill, 2007) were produced
as previously described. For A2AR and A2BR cells lines, CHO CRE-SPAP cells were
transfected with cDNA encoding the human A2AR or A2BR (Missouri S&T cDNA
Resource Center, MO, USA) using Lipofectamine (Life Technologies, Paisley, UK) ac-
cording to the manufacturer's instructions. Transfected cells were subjected to se-
lective pressure for 2e3 weeks through the addition of 1 mg/mL�1 G418 to the
normal growthmedium. After this time, the cells were dilution-cloned to obtain cell
lines originating from a single cell. To confirm the presence of the receptor, cells
were screened for their response to NECA in the CRE-SPAP gene transcription assay.
CHO cells expressing A3-YFP (Stoddart et al., 2014) and co-expressing A3-vYc and
arrestin3-vYnL (Stoddart et al., 2014) were generated as described previously. The
CHO A1-GFP cell line was a gift from Prof. Nigel Birdsall, National Institute for
Medical Research, London, UK. All cell lines were maintained in Dulbecco's Modified
Eagle Medium:Nutrient Mixture F-12 (DMEM/F12) medium containing 10% FCS and
2 mM L-glutamine at 37 �C in humidified atmosphere of air/CO2 (19:1).

2.4. CRE-SPAP gene transcription assay

CRE-SPAP cells expressing one of the four adenosine receptors (A1R, A3R, A2AR or
A2BR) were grown to confluence in clear 96-well plates. On the day prior to analysis,
normal growth mediumwas removed and replaced with serum-free medium (SFM;
DMEM/F12 supplemented with 2 mM L-glutamine). On the day of the experiment,
fresh SFM was added to the cells with increasing concentrations of the required test
compounds. For the A1R and A3Rs, cells were incubated with the test compounds
(30min, 37 �C/5% CO2) before the addition of 1 mM forskolin (FSK) for A3R expressing
cells and 3 mM FSK for A1R cells. No FSK was added to A2AR or A2BR cells. All cells
were then incubated for 5 h at 37 �C/5% CO2. After the 5 h incubation, all medium
was removed from the cells and replaced with 40 mL of SFM and incubated for a
further 1 h. The plates were then incubated at 65 �C for 30 min to destroy the
endogenous alkaline phosphatases. After cooling the plates to room temperature,
5 mM 4-nitrophenyl phosphate in a diethanolamine-containing buffer (10% (v/v)
diethanolamine, 280 mM NaCl, 500 mM MgCl2, pH 9.85) was added to each well.
Plates were incubated for varying times depending on the cell line (A1R, 20 min/
37 �C; A2AR, 10 min/37 �C; A2BR, overnight/room temperature; A3R, 20 min/37 �C)
and then the absorbance at 405 nmwas measured using a Dynex MRX plate reader
(Chelmsford, MA, USA).

2.5. Automated imaging of receptor internalization

A1-GFP or A3-YFP expressing cells were grown to confluency in 96-well clear-
bottomed, black-walled 96-well plates (mclear base, Greiner Bio One, Stonehouse,
UK). On the day of the experiment, normal growth mediumwas removed and fresh
SFM added to the cells containing increasing concentrations of NECA or BY630-X-
(D)-A-(D)-A-G-ABEA and incubated for 1 h at 37 �C/5% CO2. After 1 h, medium and
compounds were removed and cells were washed once in phosphate buffer saline
(PBS). Cells were then treated with 3% paraformaldehyde solution in PBS for 20 min
at room temperature to fix the cells and then washed twice in PBS. The cell nuclei
were stained by the addition of the cell permeable dye H33342 (2 mg mL�1 in PBS)
for 20 min at room temperature, followed by two final washes in PBS. The images
were obtained on an ImageXpress Ultra confocal plate reader (Molecular Devices,
Sunnyvale, CA, USA). Four central images were obtained per well using a Plan Fluor
40� NA0.6 extra-long working distance objective. GFP and YFP images were ob-
tained by excitation of the fluorescent protein with a 488 nm laser with emission
collected through a 525e550 nm band pass filter and H33342 images by excitation
with a 405 nm laser line and emission collected through a 447e460 nm band pass
filter. The resulting images were subjected to analysis for granules and nuclei using
an algorithmwithin MetaXpress software (Molecular Devices) to generate a granule
count per cell for each image (Kilpatrick et al., 2010). Granules were identified as
having a diameter of between 7 and 15 mmand nuclei as between 6 and 9 mmand the
intensity above background was set for each individual experiment.

2.6. Confocal imaging

A3-YFP, A3R or A3-vYc/arrestin3-vYnL cells were grown to approximately 80%
confluency on 8-well Labtek chambered coverglasses (Nunc Nalgene). Cells were
washed twice in HEPES-buffered saline solution (HBSS; 25 mM HEPES, 10 mM
glucose, 146 mM NaCl, 5 mM KCl, 1 mM MgSO4, 2 mM sodium pyruvate, 1.3 mM
CaCl2, 1 mM NaHCO3, pH 7.4) and then fresh HBSS added for analysis. To prevent
fluorescent ligand binding, cells were incubated with 1 mM MRS1220 for 30 min
prior to the addition of BY630-X-(D)-A-(D)-A-G-ABEA. Images were obtained after
5 min and 60 min incubation with BY630-X-(D)-A-(D)-A-G-ABEA at 37 �C. All im-
aging was performed using a Zeiss LSM710 confocal microscope (Carl Zeiss GmbH,
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Jena, Germany) fitted with a 63x plan-Apochromat NA1.4 Ph3 oil-immersion
objective. For YFP and reconstituted vYFP (BiFC) 488 nm argon laser was used to
excite the fluorophore and the emission was detected using a BP505-530 filter.
BY630-X-(D)-A-(D)-A-G-ABEA was excited using a 633 nm HeNe laser and emission
collected through a LP650 filter. Within each experiment, a pinhole diameter of 1
Airy unit was used and the laser power, gain and offset kept constant for each
experimental set.

2.7. Data analysis

All data were fitted using non-linear regression models within Prism 5
(GraphPad Software, San Diego, CA, USA). A2AR, A2BR and A3R CRE-SPAP data and
internalization data were fitted to the following equation:

Response ¼ Emax � ½A�
½A� þ EC50

where Emax is the maximal response, [A] is the concentration of agonist and the EC50
is themolar concentration of agonist required to generate 50% of the Emax. Due to the
two component nature of the A1R CRE-SPAP data, the following equation was used:

Response ¼ basalþ ðFK � basalÞ
�
1� ½A�

ð½A� þ IC50Þ
�
þ SMAX

� ½A�
ð½A� þ EC50Þ

�

where basal is the response in the absence of agonist, FK is the response to 3 mM FSK
in the absence of agonist, IC50 is the concentration of agonist that inhibits 50% of the
FSK response, SMAX is the maximal stimulation of the second component of the
curve and EC50 is for the second component of the curve and is the concentration of
agonist that gives half the maximal stimulation.

3. Results

Four new fluorescent ABEA derivatives were synthesized in this
study (Fig. 1; refer to Supplementary data for details). Previously,
the adenosine receptor fluorescent agonist, ABEA-X-BY630 had
been developed (Middleton et al., 2007), but this had poor imaging
properties in long term studies due high levels of non-specific
cytoplasmic uptake. In an effort to improve this fluorescent
agonist, we incorporated a peptidic linker as an extra entity be-
tween the pharmacophore and the fluorophore. Glycine (gly) was
selected as the C-terminal amino acid to enable successful race-
mization free segment coupling to the ABEA pharmacophore in
solution-phase. Alanine-alanine (ala-ala) was used to provide a
simple peptidic linker (ala-ala-gly; A-A-G), which also allowed
examination of the importance of stereochemistry in the peptide
linker. To this end, all four possible combinations of L- and D-ala
were used in this ala-ala dipeptide part of the linker (BY630-X-(L)-
A-(L)-A-G-ABEA, BY630-X-(L)-A-(D)-A-G-ABEA, BY630-X-(D)-A-
(L)-A-G-ABEA, BY630-X-(D)-A-(D)-A-G-ABEA).

Using CHO cells lines containing a SPAP reporter gene linked to a
CRE promoter (Baker et al., 2002) and expressing each of the four
adenosine receptor subtypes (A1R, A2AR, A2BR and A3R) the potency
and efficacy of the four fluorescent agonists was examined in
relation to NECA. All four compounds retained a degree of potency
at each of the adenosine receptors (Fig. 2, Table 1). The A2AR and
A2BR are coupled to Gs, therefore an increase in the CRE-SPAP
Fig. 1. Chemical structures of flu
response was observed with agonist treatment. As the A3R is Gi/o
coupled, FSK was added to increase the levels of CRE-SPAP via
activation of adenylate cyclase, and agonist activation of the re-
ceptor resulted in a decrease of the FSK stimulated CRE-SPAP pro-
duction. The A1R also predominantly couples through Gi/o but in
this CRE-SPAP system a biphasic response is observed, with an in-
hibition of FSK stimulated CRE-SPAP at low agonist concentrations
and an increase in signal over the FSK response at higher agonist
concentrations and this has been previously shown to be through
coupling to Gs (Baker and Hill, 2007). At the A3R all four of the
compounds showed an increase in potency in comparison to NECA,
and at A1R all compounds, apart from BY630-X-(L)-A-(L)-A-G-
ABEA, also showed a higher potency than NECA. BY630-X-(D)-A-
(L)-A-G-ABEA was the most potent at both the A3R and A1R
although there was no significant difference in potency in com-
parison to the potency of BY630-X-(D)-A-(D)-A-G-ABEA and
BY630-X-(L)-A-(D)-A-G-ABEA. Whereas, at both A2AR and A2BR, all
four compounds showed reduced potency when compared to
NECA, with BY630-X-(D)-A-(L)-A-G-ABEA being the most potent at
both receptors and BY630-X-(L)-A-(L)-A-G-ABEA showed the
biggest reduction in potency (Fig. 2 and Table 1).

As the CRE-SPAP system is a well-coupled system that displayed
a high degree of amplification, BY630-X-(D)-A-(D)-A-G-ABEA was
selected for further testing in an additional functional assay with
lower levels of receptor reserve. We chose to examine the ability of
BY630-X-(D)-A-(D)-A-G-ABEA to stimulate the internalization of
A1-GFP and A3-YFP using an ImageXpress Ultra confocal plate
reader to automatically acquire the images. Treatment of cells
expressing A1-GFP or A3-YFP with BY630-X-(D)-A-(D)-A-G-ABEA
stimulated the internalization of both receptors as seen by the
presence of intracellular accumulation of the labelled receptor
(Fig. 3). Quantification of the images obtained was performed using
an algorithm to detect granules and it was found that BY630-X-(D)-
A-(D)-A-G-ABEA was more potent than NECA at A3-YFP (NECA
pEC50 ¼ 6.12 ± 0.23, BY630-X-(D)-A-(D)-A-G-ABEA
pEC50 ¼ 7.47 ± 0.11, n ¼ 4). Whereas at A1-GFP, BY630-X-(D)-A-(D)-
A-G-ABEA stimulated receptor internalization with a similar po-
tency to NECA (NECA pEC50 ¼ 5.52 ± 0.10, BY630-X-(D)-A-(D)-A-G-
ABEA pEC50 ¼ 5.57 ± 0.10, n ¼ 3).

As BY630-X-(D)-A-(D)-A-G-ABEA was the most potent at A3R
compared to the other adenosine receptor subtypes in both func-
tional assays, it was selected for imaging studies to investigate its
use as a tool to localize adenosine receptors in living cells. To
confirm that this fluorescent agonist had good imaging properties,
cells stably expressing A3-YFP were treated with 100 nM of BY630-
X-(D)-A-(D)-A-G-ABEA at 37 �C in the presence and absence of a
high concentration on unlabelled antagonist (1 mM MRS1220,
30 min) and imaged after 5 min or 60 min of agonist treatment
(Fig. 4). After 5 min of agonist treatment, the fluorescence corre-
sponding to BY630-X-(D)-A-(D)-A-G-ABEA is mainly localized at
orescent NECA derivatives.



Fig. 2. Pharmacological evaluation of fluorescent ABEA derivatives at the four adenosine receptor subtypes in the CRE-SPAP gene transcription assay. The effect of the BY630-X-(D)-
A-(D)-A-G-ABEA (C), BY630-X-(L)-A-(L)-A-G-ABEA (-), BY630-X-(L)-A-(D)-A-G-ABEA (△) and BY630-X-(D)-A-(L)-A-G-ABEA (7) were assessed in A1R (A), A2AR (B), A2BR (C) and
A3R (D) CRE-SPAP CHO cells. The response to the reference agonist, NECA, is shown as a dotted line. A1R cells and A3R cells were pre-treated with the fluorescent compounds for
30 min prior to the addition of 3 mM FSK for A1R cells and 1 mM FSK for A3R cells for 5 h. Compounds were added directly to A2AR and A2BR cells for 5 h. Data points in A represent
mean ± SEM of one experiment performed in triplicate and is representative of four experiments. Data points in B, C, and D represent mean ± SEM of four experiments performed in
triplicate.

Table 1
Potencies of fluorescent ABEA derivatives at the four adenosine receptor subtypes.

Compound A1R A2AR A2BR A3R

Gi Gs

pEC50 n pEC50 n pEC50 Efficacy n pEC50 Efficacy n pEC50 Efficacy n

NECA 8.31 ± 0.18 4 5.73 ± 0.14 4 7.70 ± 0.23 100 4 7.17 ± 0.11 100 4 7.61 ± 0.16 100 4
BY630-X-(D)-A-(D)-A-G-ABEA 8.77 ± 0.22 4 5.92 ± 0.19 4 6.81 ± 0.17 93.7 ± 7.9 4 6.30 ± 0.11 89.9 ± 11.2 4 8.48 ± 0.09 113.6 ± 3.4 4
BY630-X-(L)-A-(L)-A-G-ABEA 8.16 ± 0.07 4 5.58 ± 0.34 4 6.33 ± 0.28 75.0 ± 3.4 4 5.51 ± 0.14 84.6 ± 10.0 4 7.75 ± 0.14 110.6 ± 4.7 4
BY630-X-(L)-A-(D)-A-G-ABEA 8.89 ± 0.30 4 6.71 ± 0.08 4 7.02 ± 0.14 104.4 ± 10.4 4 6.55 ± 0.12 77.5 ± 5.3 4 9.05 ± 0.12 120.1 ± 6.5 4
BY630-X-(D)-A-(L)-A-G-ABEA 9.00 ± 0.12 4 6.91 ± 0.10 4 7.18 ± 0.08 114.1 ± 5.0 4 6.75 ± 0.09 84.1 ± 4.6 4 9.10 ± 0.19 113.7 ± 7.7 4

The pEC50 values were determined in CHO CRE-SPAP cells expressing A1R, A2AR, A2BR or A3R. Values aremean ± SEM from 4 separate experiments. For A1R values are pIC50 and
pEC50 from the inhibition (Gi) and stimulation (Gs) respectively of FSK-stimulated CRE-SPAP activity. For A2AR and A2BR pEC50 were determined from the direct stimulation of
CRE-SPA P activity and for A3R the pIC50 values were determined from the inhibition of FSK stimulated CRE-SPAP production.
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the surface of the cells with little intracellular fluorescence and this
membrane localization corresponds to the expression of A3R as
visualized by the YFP fluorescence. Treatment with MRS1220
substantially reduces binding of BY630-X-(D)-A-(D)-A-G-ABEA as
seen by a reduction in the membrane BY630 fluorescence and this
antagonist treatment had no effect on the localization of the re-
ceptor as the YFP fluorescence was still predominately membrane
localized. After 60 min of agonist treatment, there was a reduction
in the membrane A3-YFP fluorescence and an increase in the
intracellular fluorescence corresponding to internalized clusters of
receptor. Importantly, there was a high degree of co-localization of
the BY630 fluorescence with the A3-YFP fluorescence indicating
that BY630-X-(D)-A-(D)-A-G-ABEA was internalised with the re-
ceptor. Importantly, even after 60 min of agonist treatment the
presence of an unlabelled antagonist blocked the internalization of
the receptor and the binding of BY630-X-(D)-A-(D)-A-G-ABEA
(Fig. 4). In addition, there were low levels of non-specific cyto-
plasmic fluorescence after 60 min treatment with BY630-X-(D)-A-
(D)-A-G-ABEA in both the presence and absence of MRS1220. It is
also important to note that these experiments were performed in
the continued presence of the fluorescence agonist and there was
no requirement for a wash step to observe specific fluorescence
from the labelled agonist.

Since the labelling of the A3-YFP receptor with BY630-X-(D)-A-
(D)-A-G-ABEA appeared very specific, it was possible to use this
fluorescence ligand to investigate the internalization of unlabelled
receptor using CHO cells stably expressing the wild type human
A3R. After 5 min of exposure to 100 nM BY630-X-(D)-A-(D)-A-G-
ABEA there was predominately cell surface localization of the
BY630 fluorescence and this was abolished by pre-treatment of the
cells with 1 mMMRS1220, indicating that the fluorescence observed
was A3R specific (Fig. 5). After 60 min of agonist treatment, there



Fig. 3. BY630-X-(D)-A-(D)-A-G-ABEA stimulated internalization of A1-GFP and A3-YFP. CHO cells expressing A1-GFP or A3-YFP were stimulated with increasing concentrations of
NECA or BY630-X-(D)-A-(D)-A-G-ABEA for 1 h prior to automated confocal image capture and analysis on the ImageXpress Ultra plate reader. (A) Representative images of un-
treated (left hand panels), 10 mM NECA (middle panels) and 1 mM BY630-X-(D)-A-(D)-A-G-ABEA (right hand panels) treated A3-YFP (top panels) and A1-GFP (bottom panels) cells.
Images are representative of those obtain in four (A3-YFP) and three (A1-GFP) experiments. Concentration dependent increase in granule count in A3-YFP (B) and A1-GFP (C) cells
treated with NECA (open circles) or BY630-X-(D)-A-(D)-A-G-ABEA (squares). The data show represent granule count per cell and are represented as a percentage as the 30 mMNECA
(B) or 100 mM NECA (C) responses. Each data point represents mean ± SEM of four (B) and three (C) experiments performed in triplicate.
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was still some membrane localization of the fluorescence corre-
sponding to BY630-X-(D)-A-(D)-A-G-ABEA, there was also an in-
crease in intracellular BY630 fluorescence with some degree of
clustering of the fluorescence into granules. Again, pre-treatment of
the cells with 1 mM MRS1220 prevented the binding of BY630-X-
(D)-A-(D)-A-G-ABEA (Fig. 5) demonstrating that the intracellular
accumulation of the fluorescent ligand was a result of receptor
internalization.

Receptor internalization in response to agonist treatment is
mediated through the phosphorylation of the receptor by G protein
receptor kinases, the binding of arrestins and the subsequent
removal from the cell membrane via clathrin coated pits. To further
confirm that BY630-X-(D)-A-(D)-A-G-ABEA is mediating the inter-
nalization of the A3R and co-localizing with these internalized re-
ceptor, a bimolecular fluorescence complementation (BiFC)
approach was used. BiFC detects an interaction between two non-
fluorescent fragments of venusYFP (vYFP) which are attached to
A3R and arrestin3, respectively. Interaction of the two labelled
proteins allows recombination of vYFP chromophore from the
fragments and its subsequent visualization. As this is an essentially
irreversible process any vYFP fluorescence detected corresponds to
A3R-arrestin3 complexes. Treatment with BY630-X-(D)-A-(D)-A-G-
ABEA for 5 min in the absence of MRS1220 resulted in plasma
membrane binding of the fluorescent ligand with some small
granules of fluorescence within the cells and this corresponded to a
clustering of the vYFP fluorescence (Fig. 6). Visualization of CHO
cells stably expressing A3-vYc and arrestin3-vYnL with BY630-X-
(D)-A-(D)-A-G-ABEA for 5 min at 37 �C after pre-treatment with
1 mM MRS1220 showed low levels of vYFP fluorescence that were
mainly localized to the plasma membrane, with very little BY630
fluorescence. After 60 min of treatment with the fluorescent
agonist, the BiFC fluorescence is highly concentrated within the
cells with very little vYFP fluorescence at the plasma membrane.
The equivalent images of BY630-X-(D)-A-(D)-A-G-ABEA also
showed a clustering of the fluorescence within the cell and a high
degree of co-localization of this with the vYFP fluorescence. There



Fig. 4. Co-localization of BY630-X-(D)-A-(D)-A-G-ABEA with internalized A3-YFP. Confocal images of cells expressing A3-YFP and incubated with 100 nM BY630-X-(D)-A-(D)-A-G-
ABEA for 5 min (A) and 60 min (B) at 37 �C in the absence (top panels) or presence of 1 mM MRS1220 (bottom panels). Images were obtained in the continued presence of BY630-X-
(D)-A-(D)-A-G-ABEA. Single equatorial images were taken showing the YFP (left hand panels) and BY630 (middle panels). YFP and BY630 images are shown in grayscale to avoid
issues with colour rendering. Images in the right hand panels represent the merge of the YFP and BY630 images. Data shown are representative of images taken in four independent
experiments, with all images within one experiment taken with identical microscope settings.

L.A. Stoddart et al. / Neuropharmacology 98 (2015) 68e77 73
is also some clear residual membrane binding of the BY630-X-(D)-
A-(D)-A-G-ABEA which is likely to be binding to receptor which is
not associatedwith arrestin3. Again, pre-treatment of the cells with
1 mMMRS1220 prior to the 60min incubationwith BY630-X-(D)-A-
(D)-A-G-ABEA prevents the binding of the fluorescent agonist, the
resulting increase in vYFP fluorescence and the redistribution of the
receptor (Fig. 6).

4. Discussion

Fluorescent ligands for GPCRs are valuable tools to study the
localization of receptors in their native environment and to answer
important questions on their pharmacology. To enable their use in
the study of GPCRs, the pharmacological, spectral and imaging
properties of the ligand need to be optimized for specific applica-
tions. In this study, our aim was to generate new fluorescent ago-
nists to study the cellular localization of adenosine receptors. This
was achieved by incorporating peptide linkers into an existing
fluorescent adenosine receptor agonist ABEA-X-BY630 (Middleton
et al., 2007) based on a strategy which has been successfully
employed with adenosine receptor fluorescent antagonists (Vernall
et al., 2013) and which resulted in fluorescent XAC derivatives with
improved imaging properties. In the present study, four different
ala-ala-gly tripeptide linkers were incorporated between the NECA
derivative, ABEA, and the BY630 fluorophore to generate four
fluorescent agonists containing each of the possible combinations



Fig. 5. Visualization of BY630-X-(D)-A-(D)-A-G-ABEA stimulated internalization of A3AR. In each case the left panel shows confocal images, while the middle panel shows the
transmitted light image of the same field of cells. A3R receptor expressing CHO cells were treated with 100 nM BY630-X-(D)-A-(D)-A-G-ABEA at 37 �C for 5 min (A) or 60 min (B) in
the presence (top panels) or absence (bottom panels) of 1 mM MRS1220 prior to the capture of the single equatorial confocal images of the BY630 fluorescence and the transmitted
light images. Images shown are representative of images taken in four independent experiments.
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of amino acid stereochemistry (BY630-X-(D)-A-(D)-A-G-ABEA,
BY630-X-(L)-A-(L)-A-G-ABEA, BY630-X-(L)-A-(D)-A-G-ABEA and
BY630-X-(D)-A-(L)-A-G-ABEA). Although NECA is not selective be-
tween the four adenosine receptor subtypes, the new peptide-
linked fluorescent compounds showed significantly higher po-
tency at the A1R and A3R in comparison to the A2AR and A2BR
indicating that the length and composition of the peptide linker
may play a role in interacting differently with the different receptor
subtypes. This is further confirmed by the differences in the affinity
of the stereoisomers as the rank order of the four fluorescent
compounds was roughly the same at all four adenosine receptors.
The significance of the linker region in generating high affinity and
high potency fluorescent ligands has been previously observed for
the adenosine A1 (Baker et al., 2010) and A3 receptors (Vernall et al.,
2013), the b adrenergic receptors (Baker et al., 2011), the oxytocin
receptor (Karpenko et al., 2014) and the dopamine D2 receptor
(Hounsou et al., 2015) and this present study confirms the impor-
tance of the linker as an integral part in the design of fluorescent
GPCR ligands.

It was also important to consider the imaging properties of the
newly synthesized fluorescent agonist; high affinity or potency
does not necessarily equate to specific cell surface imaging (Rose
et al., 2012). The incorporation of the peptide linkers into these
adenosine receptor fluorescent agonists resulted in ligands that
showed specific membrane binding in cells expressing the A3R. This
specific imaging was seen in the continued presence of the fluo-
rescent agonist which is in contrast to previously described fluo-
rescent agonist for the adenosine receptors. Kozma and co-workers



Fig. 6. Co-localization of BY630-X-(D)-A-(D)-A-G-ABEA with A3/arrestin3 BiFC complexes. CHO cells co-expressing A3-vYc and arrestin3-vYnL were treated with and without 1 mM
MRS1220 for 30 min prior to any agonist treatment. Cell were then treated with 100 nM BY630-X-(D)-A-(D)-A-G-ABEA at 37 �C for 5 min (A) or 60 min (B) in the presence or
absence of 1 mM MRS1220 and confocal images obtained. The left hand panels represent vYFP fluorescence, middle panels BY630 fluorescence and right hand panels the merge of
vYFP and BY630 images. vYFP and BY630 images are shown in grayscale to avoid issues with colour rendering. Images shown are representative of those taken in four independent
experiments.
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used the Cy5 labelled A3R selective agonist, MRS5218 (Tosh et al.,
2009), and showed accumulation of this agonist within A3R
expressing cells which they attributed to receptor internalization,
although they did not block this internalization with unlabelled
ligand and they required the removal of excess fluorescent ligand to
generate confocal images (Kozma et al., 2013a). In addition, it has
been shown for the adenosine A2A receptors that a fluorescent
agonist, Alexa488-APEC, could stimulate the internalization of CFP
tagged receptor and that the fluorescent ligand was co-localized
with this internalized receptor, although these images were ob-
tained after removal of excess fluorescent ligand (Brand et al.,
2008). The ability to measure binding of BY630 labelled com-
pounds in the continued presence of the ligand has been observed
for adenosine receptor antagonists (Baker and Hill, 2007; Stoddart
et al., 2012; Vernall et al., 2012) and agonists (May et al., 2010) and
b2 adrenoceptor antagonists (Baker et al., 2011). The quantum yield
of fluorescent adenosine receptor antagonists containing the BY630
fluorophore have been shown to increase in non-aqueous envi-
ronments (Baker et al., 2010) suggesting that the high levels of
fluorescence observed with BY630-X-(D)-A-(D)-A-G-ABEA indicate
that it is a non-polar environment when bound to the A3R. This
non-polar environment is expected to be the plasma membrane
and modelling studies of A3R fluorescent antagonists supports the
idea that the flurophore is within the lipid bilayer (Vernall et al.,
2013). Fluorescent ligands for the oxytocin receptor using Nile
Red as the fluorophore have recently been developed which also
display high levels of fluorescence in a non-aqueous environment
(Karpenko et al., 2014).
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Using BY630-X-(D)-A-(D)-A-G-ABEA we have shown that the
fluorescent agonist is in close proximity to the receptor upon
sequestration of the receptor from the plasma membrane. Using
fluorescent ligands, it has been suggested that the agonist remains
bound to the adenosine A2A (Brand et al., 2008) and A3 receptors
(Kozma et al., 2013a) upon internalization. Upon activation by
agonist, the A3R receptor has been shown to be phosphorylated at
the C-terminus by GRKs (Ferguson et al., 2000; Palmer and Stiles,
2000) which leads to internalization via clathrin coated pits
(Trincavelli et al., 2000). It is unclear if this clathrin dependent
mechanism of internalization is dependent of arrestin recruitment
as in the rat basophilic leukaemia 2H3 cell line (RBL-2H3) which
endogenously express arrestin2, 3 and the A3R, no recruitment of
arrestin upon agonist stimulation of A3R could be detected (Santini
et al., 2000) and therewas no co-localization of arrestin3 and A3R in
HEK293 cells transiently expressing both proteins (Ferguson et al.,
2002). We have previously shown that A3R can associate with
arrestin3 in a concentration-dependent manner in a BiFC assay
(Stoddart et al., 2014). In the present study, we have additionally
showed that the fluorescent agonist co-localizes with A3R-arrestin3
complexes as visualized by BiFC. This may be due to the fact that
BiFC traps the receptor-b arrestin complex, as the association of the
two halves of venusYFP is essentially irreversible (Morell et al.,
2007). The presence of an agonist-receptor-arrestin complex has
been suggested previously through the presence of high affinity
agonist sites (Gurevich et al., 1997) but we believe this is the first
study to directly visualize this complex through the use of a fluo-
rescent agonist. The ability to image agonist-receptor-arrestin
complex raises the possibility to track agonistereceptor complex
throughout the internalization, degradation and recycling pro-
cesses. Using a biosensor based on a nanobody that only recognises
the active conformation of the b2AR, Irannejad et al. (2013) recently
showed that internalized receptor was still an active confirmation
as seen by continued binding of the antibody. This internalized
receptor could continue to signal through the cAMP pathway,
although they were unable to confirm if the agonist was still bound
to the receptor (Irannejad et al., 2013). By showing that BY630-X-
(D)-A-(D)-A-G-ABEA localizes with a receptorearrestin complex,
this supports the idea that agonists are still bound to the inter-
nalized receptor and sequestration from the plasma membrane
may not lead to the direct termination of agonist-induced signalling
(Calebiro et al., 2010). The use of fluorescent agonists that can be
imaged without wash steps may help to elucidate the precise point
in which the agonist and receptor are no longer bound and
termination of agonist induced signalling occurs.

We have shown that BY630-X-(D)-A-(D)-A-G-ABEA can be used
to visualize the internalization of untagged receptors, and that this
method does not need an further additional chemical modification
of the receptor. The presence of a fluorescent protein or epitope tag
on a receptor expressed in a host cell can bias the selection of cells
that highly express the receptor during generation of the cell line. It
is therefore important to confirm in cell lines where the receptor
expression level is unknown, and only inferred from functional
assays, that receptor internalization can still be visualized with the
fluorescent agonist as a first step towards using this tool in a system
that endogenously expresses adenosine receptors. This has previ-
ously been achieved for the m opioid receptor, through the use of
fluorescently labelled dermorphin, to study internalization of
endogenously expressed receptors in primary neurons
(Arttamangkul et al., 2006). The A3 receptor is present in various
tissues with particularly high levels of expression in various cells of
the immune system, including the microglia and astrocytes
(Bjorklund et al., 2008; Ohsawa et al., 2012; van der Putten et al.,
2009). In addition expression of the A3 receptor has been detec-
ted in various areas of the brain including thalamus, hypothalamus
(Yaar et al., 2002) and at motor nerve terminals (Cinalli et al., 2013).
We have also recently shown, using a fluorescent adenosine re-
ceptor antagonist, that the A3 receptor can be found in discrete
microdomains on human neutrophils which are located at the
bottom of membrane projections (Corriden et al., 2013).

In conclusion, we have demonstrated that BY630-X-(D)-A-(D)-
A-G-ABEA is a highly potent agonist of the A3 receptor which can be
used to visualize the internalization of the receptor. In addition, we
have shown that the fluorescent agonist co-localizes with inter-
nalized receptor-arrestin complexes. The development of this
highly specific fluorescent probe will help to understand the
regulation of the receptor with future studies and to investigate the
role of the receptor in endogenously expressing systems.
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