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Abstract 

Global demand for minerals and metals is increasing. It has been established that the 

impact of mining and mineral processing operations must be reduced to sustainably 

meet the demands of a low grade future. Successful incorporation of ore sorting in 

flow sheets has the potential to improve energy efficiency by rejecting non-economic 

material before grinding.  Microwave heating combined with infra-red temperature 

measurement has been shown to distinguish low and high grade ore fragments from 

each other.  In this work, experimentally validated 2-D finite difference models of a 

theoretical two phase ore, representing typical fragment textures and grades, are 

constructed.  Microwave heating is applied at economically viable energy inputs and 

the resultant surface thermal profiles analysed up to 2 minutes after microwave 

heating.  It is shown that the size and location of grains can dramatically alter surface 

temperature rise at short thermal measurement delay times and that the range of 

temperatures increases with increasing fragment grade.  For the first time, it is 

suggested that increasing the delay time between microwave heating and thermal 
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measurement can reduce the variation seen for fragments of the same grade but 

different textures, improving overall differentiation between high and low grade 

fragments.  
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1 Introduction 

The mineral processing industry’s current ability to meet the demands of a low grade 

future has prompted discussion about a required step change (Bearman, 2013).   

Current flow sheets are highly energy intensive; estimates suggest that comminution 

alone accounts for around 2% of worldwide electricity demand (Napier-Munn, 2014).  

With global concerns surrounding climate change, the mining industry is under 

pressure to improve environmental sustainability by reducing energy, greenhouse 

gas and water footprints (Pearce et al., 2011), whilst meeting increasing demands for 

minerals and metals (Fu, 2012), as ore grades are falling (USGS, 2012).  

For both existing and new mineral processing operations, early rejection of gangue 

via sorting (at fragment sizes typically found in primary and secondary crusher 

products) has significant potential to reduce grinding energy. Non-economic material 

can be removed from the comminution process before significant energy costs are 

incurred through the grinding stages (Pokrajcic, 2010).  Whilst a number of ore 

sorting technologies are available and have been demonstrated at industrially 

relevant scales for commodities such as diamonds (Riedel and Dehler, 2010), 

limestone and industrial minerals (Sivamohan and Forssberg, 1991), none have been 
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proven to give the required discrimination for the low grade porphyry copper ores that 

account for around 60% of future global copper resources (BGS, 2007).  

Microwave (MW) energy has been shown to have benefits across a range of mineral 

processing applications including microwave assisted comminution of ores (Kingman 

et al., 2004, Jones et al., 2005), enhanced magnetic separation (Kingman and 

Rowson, 2000), leaching (Al-Harahsheh and Kingman, 2004) (Al-Harahsheh, 2005) 

and exfoliation of vermiculite (Folorunso et al., 2012).  MW energy provides selective 

and volumetric heating; semi-conductive sulphide minerals such as pyrite and 

chalcopyrite have been shown to heat significantly more than rock forming minerals 

such as quartz and feldspar (Walkiewicz, 1988). 

Low power microwave attenuation has been successfully used to sort diamond 

bearing kimberlite from gabbro in a process developed by De Beers (Sivamohan and 

Forssberg, 1991, Salter and Nordin, 1993).  A 100mW 10.535 GHz microwave signal 

was applied to ore fragments; the level of attenuation of the signal was used to either 

accept or reject each fragment.  The technology was successfully scaled to a 100 

tonne per hour prototype by replacing the scintillation counter of an M17 radiometric 

sorting unit with the microwave attenuation system.  

The earliest attempt to use microwave heating to discriminate between ore fragments 

was by Berglund and Forssberg, who investigated microwave sorting of a Zinkgruvan 

sulphide ore (Berglund and Forssberg, 1980). Ore fragments were heated in a 

multimode microwave cavity and the temperature rise of each fragment measured. 

No information is  available on the sorting criteria, however it was stated that losses 

of 20% Pb and 25% Zn to the reject fraction were considered too high to warrant 

further investigation (Sivamohan and Forssberg, 1991).  
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Microwave heating combined with temperature measurement was studied in further 

detail by Van Weert and Kondos (2007).  The exploratory study on high sulphide and 

carbonaceous rocks aimed to reject the highly carbonaceous fragments responsible 

for preg-robbing in cyanide leaching of gold.  Test fragments were placed around the 

edge of the turntable in a 1.1kW multimode MW cavity operating at 2.45 GHz for 20s.  

Fragments were removed from the cavity and the maximum temperature measured 

using an infra-red (IR) gun, and classified as either hot, medium or cold. Sulphidic 

and carbonaceous fragments were concentrated in the hot class, however it was not 

possible to distinguish between sulphidic and carbonaceous fragments based on the 

maximum temperature measured.  Additionally, the orientation of fragments during 

microwave treatment affected the measured temperature.  Although the results were 

promising in terms of sortability, no attempt was made to quantify the microwave 

energy input and therefore the economic viability of the process.  

A subsequent study by Van Weert et al. (2009) aimed to establish potential 

conditions for MW-IR sorting of a range of molybdenum and copper sulphide ores.  

This work established that significant upgrades in valuable mineral content were 

achievable using the technique. However, as the tests were not carried out in a 

consistent manner, with different treatment times used for each ore; microwave 

energy inputs were not quantified, making comparison between different samples 

very difficult.  Furthermore, with maximum surface temperatures of over 100°C, 

selectively heated mineral phases are likely to have reached much higher 

temperatures, possibly leading to surface oxidation or even melting of sulphides.  As 

noted in early microwave comminution work by Kingman et al. (2000), such mineral 

alterations can have negative impacts on downstream flotation processes, due to 

changes in mineral surface chemistry. 
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Van Weert et al. (2011) subsequently conducted a study into the microwave heating 

rates of a range of sulphide minerals.  All minerals were crushed to produce two size 

fractions (approximately 2000 µm and -74 µm).  The coarser size fraction was tested 

as both separated grains and touching (heaped).  Higher heating rates were reported 

when grains were touching, whilst slower microwave heating rates were measured 

for the finer size fraction. These observations maybe due to increased loss of heating 

to the surrounding due to increased surface area to volume ratio. The conductivity 

and resulting skin depth of the minerals is also likely to have influenced heating rates, 

however these were not considered in the investigation.  

Recently, MW-IR sorting has been applied to the gradation of iron ores (Ghosh et al., 

2013, Ghosh et al., 2014). 30 fragments of approximately 10mm were randomly 

selected from larger samples (mass unknown).  Specimens were arranged in a 

rectangular array on the turntable of a 1.25 kW multimode cavity and heated for 10s 

(the time for one revolution).  Fragments were then removed from the cavity and 

imaged using an IR-camera.  Tests were repeated 5 times with the same fragment 

placement and results reported as repeatable, however no attempt was made to 

place fragments in different positions on the turntable and it was assumed that each 

fragment received the same cumulative microwave energy dose.  In reality this is 

unlikely, due to the relatively small size of the fragments and the standing wave 

patterns inherent in domestic multimode microwave cavities. 

Following Labview analysis, fragments were classified as either high grade (70% 

fragment surface at or above 50°C) or low grade (40% fragment surface below 

50°C).  Subsequent chemical assay indicated concentration of iron in the high grade 

class (67.3%) compared to the low grade class (54.4%).  Although the sorting 
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correlation was good, the use of MW-IR sorting for iron ore on a fragment by 

fragment basis may not be economically viable, due to the relatively high grade of all 

fragments; again microwave energy input was not quantified. 

Recently, a method has been proposed for studying the microwave heating of ores 

with controlled mineralogies, by using synthetic samples (Rizmanoski and Jokovic, 

2015).  This is achieved by embedding sulphide mineral grains within a microwave 

transparent gangue matrix.  Previous attempts using a cement or plaster matrix were 

unsuccessful; larger sulphide grains settled at the bottom of synthetic ore fragments 

and fragments were too brittle for repeated testing (Van Weert and Kondos, 2008, 

Rizmanoski and Jokovic, 2015).  Rizmanoski developed a fabrication method using 

poly methyl methacrylate (PMMA) to bind pulverised quartz, creating a hardwearing 

matrix with dielectric properties similar to those of quartz. 

The objective of the paper is to determine the potential for microwave-infrared sorting 

of ores in multimode cavities with power densities in the order of 1x108 W/m3.  Finite 

difference modelling will be used to determine the microwave heating behaviour of 

binary ore fragments at a quantified and economically feasible microwave energy 

input of 0.5 kWh/tonne of ore. Three broad textural aspects will be considered; grain 

location, grain dissemination and grain size. Synthetic fragments are fabricated using 

the method developed by Rizmanoski (2015), with textures matching those modelled. 

Synthetic fragments are treated in a multimode cavity at 2.45 GHz and an equivalent 

microwave energy dose. Comparison of the modelled and experimental surface 

temperature rise allows validation of the numerical models. Subsequently, a range of 

discrete grades representative of fragments in low grade porphyritic ores will be 

modelled, specifically 0%, 0.10%, 0.25%, 0.35%, 0.55%, 0.65%, 0.85%, 1.00% and 
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2.00% copper content. The influence of fragment texture and grade on the sorting 

process will be discussed with respect to potential pilot scale MW-IR ore sorting 

processes. 

2 Materials and methods 

Previous experimental work has shown that microwave heating combined with infra-

red thermal measurement of fragments’ surfaces (MW-IR sorting) can be used to 

broadly differentiate between high grade and low grade ore fragments based on 

temperature rise (Van Weert et al., 2009) However, the effect of ore fragment texture, 

and the response of different textures at different fragment grades commonly seen in 

porphyry copper ore sorting feed stocks at economically viable microwave energy 

inputs have not yet been investigated.   

In this paper, numerical modelling is used to determine the likely microwave heating 

response of binary fragments with different textures and grades, to determine the 

suitability of MW-IR for sorting ore feeds comprising fragments of differing textures. 

In this work, binary refers to an ore consisting of two minerals only. To validate these 

models, synthetic fragments of corresponding size, texture and similar microwave 

heating characteristics are heated in a microwave cavity.  The thermal response of 

these fragments is measured and the results used to validate the representation of 

binary ore heating and surface thermal profile development. An additional set of 

binary models are used to determine the range of thermal responses exhibited by 

fragments of different textures, at grades commonly seen in porphyry copper ores.  

Finally, the conclusions drawn from the modelling results and their implications for 

microwave-IR sorting of ores at an industrial scale are discussed. 



 

8 

 

2.1 Numerical modelling of the microwave heating of binary ore fragments  

Numerical modelling was undertaken using a 2-D finite difference geotechnical 

software package, FLAC Version 6.0 (ITASCA, 2008). Binary ore fragment models 

were constructed to investigate the heating of chalcopyrite grains within a quartz 

matrix.  The selection was based on chalcopyrite being one of the most common 

copper sulphide minerals in porphyry copper ores, and quartz being one of the most 

common rock forming minerals (USGS, 2008).  Chalcopyrite has been previously 

shown to be a strong microwave absorber (Cumbane, 2003), whilst quartz is 

effectively transparent in the microwave region (Church et al., 1988). The thermal 

and mechanical properties of both minerals are also well defined.  Whilst a binary ore 

model is a drastically simplified system compared to real ore fragments, it was 

considered necessary to construct models in this way to assist experimental 

validation and to determine the effects of different textures on the surface thermal 

profiles of fragments. This approach has been also previously shown to be 

successful in modelling microwave assisted breakage of ores (Jones et al., 2005).  

The aim of the investigation is therefore to use FLAC (Fast Lagrangian Analysis of 

Continua) to model binary ore fragments with heated phase grain size and 

dissemination patterns akin to those found in real ore fragments. 

Three textural factors will be considered, specifically grain location, grain size and 

grain dissemination.  Simulated microwave heating will be applied to the chalcopyrite 

phase at power densities and treatment times similar to those in the microwave 

cavity used for synthetic fragment testing. A ‘cooling’ period will be added to 

represent the thermal measure delay time inherent in a proposed pilot scale sorting 

system, between microwave heating and thermal imaging.   
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The thermal imaging of modelled fragments will be approximated by measuring the 

temperature rise at predefined points around the binary fragments edges.  The data 

from these thermal profiles can be used as a basis for comparison for experimental 

testing of the synthetic fragments. 

2.1.1 Geometrical construction 

The construction of the model ore was carried out by randomly disseminating grains 

of microwave absorbing chalcopyrite in a microwave transparent quartz matrix.  The 

total fragment sized was fixed as a circle of 40mm diameter. This is within the range 

of ore fragment sizes typically found in primary and secondary crusher products that 

would be the target for fragment by fragment ore sorting applications.  

Based on the accuracy required, the computing power available for this work and the 

solving time, a balance was struck for the size and number of zones.  For finer 

chalcopyrite grains, the resolution was increased to ensure that temperature 

gradients around grains could be accurately captured by the model.  Initial scoping 

studies showed no significant change in modelling results when manually placing 

grains (of equivalent area and in equivalent locations) in the finest and coarsest 

grids. To simplify the random dissemination of grains using FLAC’s built in 

programming language, FISH (short for FLACish), it was decided to make the size of 

each zone the same as the size of grains to be disseminated. 

Table 1: Model geometry for 40mm binary fragments 

Chalcopyrite grain size µm Grid size (zones) Total zones 

50 800x800 640000 
150 268x268 71824 

300 134x134 17956 
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Initial models were run for fragments of constant grade to allow direct comparison of 

thermal data.  Binary ores were assigned a composition of 1% by mass of 

chalcopyrite (equivalent to 0.35% Cu, a typical lower threshold for ore classified as 

low grade) and 99% by mass of quartz.  To understand the effect of mineralisation 

location, the position of 50 µm grains disseminated in 5% of fragment area was 

varied from the centre to the edge of the fragment.  

To examine the effect of grain size, dissemination was kept constant, whilst grains of 

50, 150 or 300 µm were randomly disseminated at 1% total content in 100% area of 

the modelled ore fragment.  These three grain sizes were chosen to represent those 

typically found in copper porphyry ores.  

Finally, to examine the effect of dissemination, 50 µm chalcopyrite grains were 

randomly disseminated in 3 fixed areas of 10, 50 and 100% of the total ore fragment.  

Figure 1 represents the different textures considered in FLAC models; the red 

dashed regions denote the dissemination volumes of chalcopyrite grains within each 

quartz fragment.   
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Figure 1: Chalcopyrite grain dissemination areas for simulated quartz ore fragments 

 

2.1.2 Modelling of microwave heating 

The power absorption density in a material due to dielectric heating is a function of 

internal electric field strength within the material, the frequency of the microwave 

radiation and the dielectric properties of the material.  For a uniform electric field, this 

is given by Equation 1. 

𝑃𝑑 = 2𝜋𝑓𝜀0𝜀"𝐸𝑜
2 (1) 

Where 𝑃𝑑   is the power dissipation density (W/m3); 𝑓 is the frequency of the 

microwave radiation (Hz); 𝜀0 is the permittivity of free space (8.854x10-12 F/m); 𝜀"is 

the material’s dielectric loss factor; 𝐸𝑜
2 is the magnitude of the electric field portion of 

the microwave energy within the material (V/m) (Metaxas and Meredith, 1983). 
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In this work it is assumed that 𝑃𝑑 is constant in the absorbing chalcopyrite phase and 

zero in the transparent phase, and that chalcopyrite heats volumetrically.  Quartz and 

other rock forming minerals are very poor absorbers of microwave energy and thus 

do not contribute to fragment heating.  Although simplistic, previous work on 

modelling microwave heating of binary ores have shown these assumptions to be 

realistic (Jones et al., 2005, Ali and Bradshaw, 2009).   

An appreciation of possible mineral skin depths is required to justify using volumetric 

heating within chalcopyrite grains, as opposed to modelling heating at skin depth. 

Table 2 gives minimum and maximum literature conductivities for a range of common 

ore minerals (Pridmore and Shuey, 1976, Shuey, 1975, Harvey, 1928, Telkes, 1950, 

Domenicali, 1950, Theodossiou, 1965, Slichter and Telkes, 1942, Sleight and 

Gillson, 1973, Mansfield and Salam, 1953).  Corresponding skin depths are 

calculated according to Equation 2:  

𝛿𝑠 = (
2

𝜎𝜔𝜇𝑎
)

1
2
 

(2) 

Where S is the skin depth (m);  is the electrical conductivity of the material (S/m); 

 is the  angular frequency (2f rad/s); 0 is the permeability of free space (4 x10-7 

m.kg/C²). 

 

The skin depth of chalcopyrite at 2.45 GHz is between 25 and 1800 µm based on 

literature values for conductivity (see Table 2). Given that grains will heat to skin 

depth around their perimeter, skin depths of 150 µm are required to heat the largest 

300 µm grains studied; this is a fair assumption based on the literature range for 

chalcopyrite conductivity.  
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Table 2: Conductivities and skin depths of minerals at 2.45 GHz 

Mineral 
Conductivity Skin depth 

σ S/m δ µm 

Chalcopyrite 
min 2.00E+00 1802 

max 1.00E+04 25 

Pyrite 
min 1.00E+00 2549 

max 1.00E+05 8 

Bornite 
min 3.33E+02 140 

max 5.00E+04 11 

Chalcocite 
min 2.38E+01 522 

max 2.00E+04 18 

Magnetite 
min 5.00E+03 36 

max 9.09E+03 27 

Pyrrhotite 
min 6.25E+03 32 

max 5.00E+05 4 

Galena 
min 1.72E+00 1943 

max 3.33E+05 4 

Ilmenite 
min 5.00E-01 3604 

max 1.00E+02 255 

Cubanite 
min 1.00E+00 2549 

max 1.00E+00 2549 

Arsenopyrite 
min 1.43E+02 213 

max 6.67E+04 10 

Molybdenite 
min 1.00E-06 2548749 

max 4.17E+02 125 

 

A power density value in the chalcopyrite of 3.6x108 W/m3 was selected. This is 

based on previous electromagnetic modelling of a potential pilot scale microwave 

sorter conducted at the University of Nottingham (Dimitrakis, 2010). Two seconds of 

heating is applied to the chalcopyrite phase; this is equivalent to 0.5 kWh applied 

microwave energy per tonne of ore, which is deemed to be an economically viable 

microwave energy input for the pre-concentration of low grade copper ores.  

2.1.3  Modelling of heat transfer 

FLAC allows the transient heat conduction in materials to be simulated; the 

differential expression of the energy balance has the form: 
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−𝑞𝑖,𝑖 + 𝑞𝑣 = 𝜌𝐶𝑝

𝛿𝑇

𝛿𝑡
 

(3) 

where 𝑞𝑖𝑖 is the heat flux vector which is governed by the Fourier's law (W/m3); 𝑞𝑣 is 

the volumetric heat intensity (W/m3) which is equated to the power density inside the 

material; ρ is the density of the material (kg/m3); 𝐶𝑝  is the specific heat capacity 

(J/kg.K). 

2.1.4 Material properties data 

The densities of minerals were obtained from Mindat (2014), specific heat capacities 

at room temperature from taken from Knacke et al (1991), thermal conductivities at 

room temperature from Horai and Simmons (1969), thermal expansion coefficients 

from Clark (1966) and elastic properties from Bass (1995). It is assumed that thermal 

and mechanical properties of constituent minerals used are typical of those minerals. 

Table 3 gives the values for material properties used in the FLAC models.  

Thermal properties are known to vary with temperature, however, as only relatively 

low temperature rise values (20-80°C) were studied in this modelling, a single value 

for each parameter was chosen. It is appreciated that this is a simplified approach 

however in reality the changes seen in the fragment thermal profiles when using 

slightly different thermal properties would be insignificant compared to the differences 

in thermal profiles of fragments with different grades. It should also be noted that 

typically, only single values for thermal and mechanical properties are quoted in 

literature for the temperatures targeted in this modelling work, further suggesting only 

small variations within this range. 
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Table 3: Thermal and mechanical properties of minerals 

Property Unit Quartz Chalcopyrite 

Density kg/m3 2650 4200 
Specific heat capacity kJ/kg.K 0.74 0.54 
Thermal conductivity W/m.K 7.0 30.0 

Thermal expansion coefficient K-1 3.3x10-7 1.7x10-5 

Bulk modulus Pa 3.64x1010 1.40x1011 

Shear modulus Pa 3.114x1010 4.47x1010 

 

2.1.5 Data extraction 

To monitor the surface temperature of the modelled fragments, history points were 

positioned every 10° around the fragment circumference.  The temperature at these 

points was recorded (at a rate of 2 measurements per second) for the 2 seconds of 

applied microwave heating and for 120 seconds after, to monitor the evolution of 

surface temperature with time.  

2.1.6 Modelling assumptions and justifications 

It is assumed that the square grid used in FLAC provides a suitable approximation for 

the range of grain geometries found in real ores.  FLAC has previously been used to 

successfully model microwave heating and thermal stress development in binary 

ores at grain sizes similar to those studied here (Jones et al., 2005, Whittles et al., 

2003).  

Real ores naturally contain micro scale flaws between grains whereas in FLAC 

models there are no discontinuities between quartz and chalcopyrite grain phases, It 

is assumed that this will not significantly alter the overall heating profiles compared to 

real fragments as discontinuities in real ores are very small compared to the overall 

fragment size (µm compared to cm). 
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Measuring modelled fragment temperature at 36 points around the circumference 

and then averaging can be approximated to average surface temperature for real 

microwave heated ore fragments. Thermal temperature measurement of real ore 

fragments is achieved by imaging a fragment surface and averaging the temperature 

measured at each pixel to give a single temperature. Thus both methods are 

averages of multiple point temperatures, though with different numbers of points. 

3 Experimental validation of synthetic fragment modelling 

3.1 Heated phase characterisation 

The heated phase selected for this investigation was a copper concentrate sample 

originating from a North American mine. To ensure that the fraction of microwave 

heating minerals was correct in each synthetic fragment and for each size class, 

mounts were prepared for scanning electron microscope mineral liberation analysis. 

(SEM-MLA). The copper concentrate sample was wet sieved and then dry sieved 

using a root 2 sieve series to give clear separation of the different size fractions. 

Statistically representative samples prepared from the sieved fractions of the copper 

concentrate were split with a small box riffle and Quantachrome Microriffler to obtain 

sub- samples of 1-5-2.0g.  This sub-sample was cold mounted in epoxy resin and left 

to cure overnight. The cured samples underwent grinding and polishing using a 

Struers Rotopol polisher. To prevent charging of the mounts when presented to the 

SEM, the mounts were carbon coated applying a thin film (~30 nm) of carbon to each 

mount using a JEOL JEE-420 carbon coater.  

For each of the size classes tested, between 1 and 6 mounts were prepared for 

microanalysis; these were the number of mounts required to meet the 25000 particle 

count required for robust results in the analysis of each size class.  Mineralogical 
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characterisation was undertaken using the FEI Quanta 600i SEM. The mineralogical 

and textural information was extracted using the MLA version 3 software designed by 

FEI Company (FEI, 2013) The measurement mode of the software was the 

‘Extended backscatter’ (XBSE) mode, which segments minerals based on their 

backscatter (greyscale) differences. Subsequently an X-ray is collected on a centroid 

spot on each different mineral phase delineated by the greyscale differences. The X-

ray spectra profile is used to identify the mineral phase using the EDAX Genesis 

4000 energy dispersive (EDS) software. The EDS classification involves matching 

collected spectra to a spectra database. The surface area of the various classified 

particles is computed to generate the weight % composition of minerals. The results 

of this analysis are presented in Figure 2.   

SEM-MLA analysis indicated that the copper concentrate was composed 

predominantly of chalcopyrite (50-65 wt%), and also included notable quantities of 

pyrite, bornite and molybdenite.  A number of other microwave susceptible metal 

sulphide and oxide minerals (chalcocite, galena, enargite and ilmenite) were also 

present in minor quantities.  The copper concentrate also contained minor amounts 

of non-heating rock forming minerals, such as quartz, biotite and muscovite.  The 

overall quantities of chalcopyrite (the principal heated phase) reduce with increasing 

size class; this is expected as the number of fully liberating grains will be higher at 

small grain sizes’ whilst larger grains may still be attached to small amounts of 

gangue.   

Overall, the total proportion of microwave heating sulphide and oxide minerals versus 

non-heating rock forming minerals was at least 80% in each size class.  Masses of 

concentrate for each synthetic fragment fabricated were scaled to ensure the same 
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fraction of heating minerals in each size class used.  It was assumed that each 

heating mineral within the concentrate would exhibit similar heating rates at 2.45 

GHz, as indicated previously by the dielectric properties of minerals measured by 

Genn (2013) and would thus provide a suitable representation for the chalcopyrite 

used in the FLAC models with respect to individual grain heating and thermal profile 

development. 

 

Figure 2: Copper concentrate major mineralogy by size class 

3.2 Synthetic fragment fabrication 

The method used to fabricate the matrix for synthetic fragments is covered in detail 

elsewhere (Rizmanoski and Jokovic, 2015).  The synthetic fragments were fabricated 

in 40mm half-sphere silicon moulds to provide samples of the same size used in 

FLAC modelling and to remove any heating effects due to fragment geometry.  The 

‘transparent gangue’ matrix was created from pulverised quartz sand and bound 

together with Lecoset 100, a polymethyl methacrylate (PMMA) 2-part powder/liquid 
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mix, commonly used for making mounts for microanalysis (LECO, 2014). Lecoset 

binder was chosen to give thermal and mechanical properties similar to that of real 

ores (when used as a binder for quartz/silica) and also for its low dielectric loss, so it 

would not contribute to microwave heating.   

3.3 Microwave heating testing methodology 

Fragments were tested individually in a 3.3kW multimode cavity at 2.45 GHz, 

equipped with a mode stirrer.  Incident microwave power was set to 1.1kW and 

fragments were placed in the centre of the cavity on the turntable.  Microwave power 

was applied for 12s, the time for one revolution. As each fragment had the same 

mass and was placed in the same position within the microwave applicator, it was 

assumed that they were all exposed to the same amount of microwave energy.  In 

reality, the different textures could lead to slightly different mode patterns within the 

applicator, meaning that microwave treatments could be subtly different. However by 

using a multimode applicator significantly large in size than the fragments, together 

with the mode stirrer, any differences in microwave treatment were minimised.  

After microwave heating, each fragment was then removed and placed under an 

NEC H2640 640x480 pixel resolution thermal imaging camera for 60s to provide 

comparative thermal data to FLAC models.  In FLAC, thermal data was averaged for 

all history points around the 2D model circumference.  To get comparative thermal 

images, fragments were heated and imaged in four different orientations. Average 

and maximum temperature rise values were averaged for each orientation and also 

for duplicate texture fragment. Thermal images were recorded and analysed via 

Radiometric Complete Online, a commercial program suitable for the online and 

offline analysis of thermal images (Radiometric Infrared Solutions, 2011). Thermal 
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images were analysed to extract the maximum and average temperature for each 

fragment tested, before and after treatment.  Average temperature rise was used as 

the basis of comparison with FLAC data as maximum temperature rise only 

corresponds to the hottest pixel measured.   

4 Results and Discussion 

4.1 Numerical modelling results 

4.1.1 Effect of grain location on fragment surface thermal profiles 

Fragments were modelled with 1% 50 µm chalcopyrite grains disseminated in 5% of 

total ore volume (see Figure 1).  Figure 3 shows the average and maximum 

temperature rise values for the three different mineralisation locations, after a 60s 

thermal measurement delay time (2s heating, 58s cooling).  Figure 3 indicates that 

the average surface temperature rise after 60s varied from 2.2 to 3.8°C according to 

mineralisation.  As expected, the highest average and maximum temperatures 

occurred for the fragment with mineralisation closest to the surface, with the 

centralised mineralisation giving the smallest temperature rise.  For this fragment 

there is little difference between average and maximum temperatures as the length 

of the thermal conduction path from the centre to edge of the fragment is virtually 

identical.  
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Figure 3: Average and maximum temperature rise around modelled fragment 

circumference, 1% 50 µm chalcopyrite, varied location, 60 second delay time 

To determine how temperature rise for the different textures varies with time, Figure 

4 plots the temperature recorded at each data history point for each of the three 

mineralisation locations over a 120s period (2s heating, 118s cooling).  There are 

clear differences in the range of surface temperatures after 120s cooling, however 

the lower temperature for each fragment is very similar, around 22°C.  It should be 

noted that the peak surface temperature for each fragment occurs at significantly 

different times, around 8 seconds for the edge mineralisation, 20s for midway and 

40s for the centralised grains. 
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Figure 4 Surface Heating and Cooling Profile for 1% 50 µm chalcopyrite with varying 

mineralisation grain location 

4.1.2 Effect of dissemination on fragment surface thermal profiles 

Fragments were modelled with 1% 50 µm chalcopyrite grains disseminated in 10, 50 

and 100% of the ore fragment volume (see Figure 1).  Figure 5 shows the average 

and maximum temperature rise values for the three dissemination levels at 60s 

thermal measurement delay time.  The lowest temperature rise values are for the 

10% and 100% fragments, with average temperature rise values of 2.3 and 2.8°C 

respectively.  The 100 % dissemination level exhibits significantly higher average and 

maximum temperature rise values; these are likely to be heavily influence by certain 

heated grains being closer to the surface than others.  For the 10% case, the rate of 

heat conduction to the fragment surfaces leads to low overall temperature rise.  For 

the 50% case, although some chalcopyrite grains are nearer the fragment surface, 
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they are more widely spread and thus heat is radiated to the surroundings (air) more 

rapidly. 

 

Figure 5 Average and maximum temperature rise around modelled fragment 

circumference, 1% 50 µm chalcopyrite, variable dissemination, 60 second delay time 

Figure 6 plots the temperature at each data history point over 120s.  For the 100% 

dissemination case, a sharp spike in temperature can be seen for one of the history 

points; this indicates proximity to a heated grain or possibly a small cluster caused by 

the random dissemination code utilised.     
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Figure 6 Surface Heating and Cooling Profile for 1% 50 µm chalcopyrite with varying 

dissemination levels 

There are differences in the delay time to maximum measured surface temperature; 

however by 30s the 10 and 50% dissemination models show similar thermal profiles. 

The 100% case exhibits very different behaviour in the range of surface temperatures 

measured, even after 2 minutes.  To better understand these differences, Figures 7 

to 10 present thermal images of the 100% dissemination model exported from FLAC 

during modelling at 1,5,10 and 30s delay times. Areas of the same colour in each 

image represent areas of the fragment within the same temperature band.  The initial 

image at 1s delay time (during microwave heating) highlights the random but uneven 

distribution of chalcopyrite grains with the entire fragment volume, including a 

number of grains at or close to the fragment surface, which cause a peak in fragment 

surface temperature at 5 seconds.  As heat is conducted from high to low (grid) 

zones, a complex heating pattern develops which eventually progresses to a banded 

thermal profile with the upper right quadrant of the fragment hottest.  This accounts 
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for the large range of temperatures recorded at each history point around the 

fragment surface. 

 

Figure 7 Thermal profile evolution, 1% 50 µm chalcopyrite, 100% dissemination, 1s 

delay time, temperature °C 
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Figure 8 Thermal profile evolution, 1% 50 µm chalcopyrite, 100% dissemination, 5s 

delay time, temperature °C 

 

Figure 9 Thermal profile evolution, 1% 50 µm chalcopyrite, 100% dissemination, 10s 

delay time, temperature °C 
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Figure 10 Thermal profile evolution, 1% 50 µm chalcopyrite, 100% dissemination, 

30s delay time, temperature °C 

4.1.3 Effect of grain size on fragment surface thermal profiles 

Fragments were modelled with 1% chalcopyrite grains disseminated in 100% of the 

total ore fragment volume (see Figure 1). Chalcopyrite grains modelled were 50, 150 

and 300µm. Figure 11 shows the average and maximum temperature rise values for 

the three different grain sizes, after a 60s thermal measurement delay time.  Figure 3 

indicates that the average surface temperature rise after 60s varied from 2.2 to 3.8°C 

according to mineralisation.  Average and maximum temperature rise increases with 

decreasing grain size, with the 50 µm grains showing the highest temperature rise.  

This is due to the increased surface area available for conduction of heat into the 

quartz matrix.  At longer thermal measurement delay times (2 minutes) the average 

temperature for the different grain size fragments was almost identical. 
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Figure 11 Average and maximum temperature rise around modelled fragment 

circumference, 1% chalcopyrite, 50/150/300 µm, 100% dissemination, 60 second 

delay time 

4.2 Experimental validation of modelling  

Figure 12 presents a direct comparison of FLAC and microwave test results on 

synthetic fragments at a 60s measurement delay time. Generally there is good 

agreement between modelled and the microwave heated fragments, with the 

exception of the 100% dissemination case where significant clustering of grains in 

the FLAC model led to increased average surface temperatures, as previously shown 

in figures 7 to 10.  Overall, the temperature rise values are lower in the synthetic 

fragments than in the FLAC models, although some heating (0.3°C) was observed in 

the blank synthetic fragment.  
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Temperature was measured at fixed history points around the circumference of the 

FLAC fragments and then averaged. Thermal images of synthetic fragments were 

averages of the entire surface presented to the IR-camera, in four different fragment 

orientations. 

 

Figure 12 Comparison of FLAC and synthetic fragment average temperature rise, 

60s delay time 

The differences between FLAC model and synthetic fragment results may be 

attributed to a number of factors. In FLAC, fragments are modelled in two dimensions 

(as an infinite cylinder) whilst synthetic fragments produced were three dimensional 

spheres.  This will lead to some differences in thermal conduction; however as both 

cases are based on radial conduction and surface temperature measurement the 

overall trends are comparable. 

The 0.3°C temperature rise in the barren synthetic fragment also point to differences 

between simulated and real microwave heating.  Whilst it was assumed that the 
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power density in the gangue phase was zero for FLAC modelling, it is clear that 

some power was absorbed in the gangue. This would in turn lead to a different power 

density in the heated phase. The gangue phase comprised a quartz PMMA mix; 

whilst this was chosen to have similar thermal and dielectric properties to pure 

quartz, any differences in these properties could lead to changes in thermal profiles. 

The position of heated grains was also different in synthetic fragments compared to 

FLAC; whilst equivalent dissemination volumes were used for both cases, within 

these volume grains were positioned randomly. 

FLAC models consisted of chalcopyrite grains of a single size.  Obtaining copper 

concentrate grains off a single size was not feasible for the fabrication of synthetic 

fragments, so single size classes were used.  Variability in grain size in synthetic 

fragments is likely to have caused minor differences in the rate of heat transfer from 

heated grains to the gangue matrix, as demonstrated by the increasing maximum 

and average surface temperature rise values for the smallest grain sizes in both 

FLAC and synthetic fragments.  

It is also assumed that 100% of power is absorbed in the FLAC model, whereas in 

multimode experimental treatments power absorption is likely to have been lower. 

Finally, any discontinuities in contact between copper concentrate grains and the 

gangue matrix would reduce the rate of heat transfer; this was not incorporated into 

the FLAC models. 

Differences between FLAC and synthetic fragments results suggest that whilst there 

is good correlation between the trends for binary fragments, further development of 

the model is required to provide a robust tool that accurately predicts the average 

thermal profiles of fragments of different textures. 
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4.3 Variation of fragment average temperature rise with copper grade 

Additional FLAC models were run, representing the same three texture variations 

modelled previously, but at a wider range of chalcopyrite (copper) contents.  These 

were chosen to cover the range of grades typically seen in fragments of the size 

suitable for fragment by fragment sorting.  The precise copper grades selected reflect 

assumed cut-off grades for different ore designations.  For each model, surface 

temperatures were recorded at 18 history points around the fragment circumference 

rather than the previous 36 to reduce computation time and the quantity of data 

produced.  Although this reduced the detail of thermal data, the average temperature 

rise could still be calculated with reasonable accuracy.  Models were run to 60s (2 

seconds heating plus 58 seconds cooling); the frequency of thermal data acquisition 

was also reduced to once per second as the additional points were not required for 

comparison between different fragment grades.  

Figure 13 shows the average temperature rise for modelled fragments after 60s.  As 

fragment grade increases, the variation in thermal profiles for different textures 

increases. At two percent copper content, individual fragment temperature rise 

ranges from 4.5 to 12°C.  This increase in spread is due to the increase in the 

number of grains; the more grains in a fragment, the greater the potential clustering 

of grains, leading to a wider range of fragment thermal profiles.  

There is slight deviation in the trends for each individual texture type; specifically the 

order of fragments (of the same grade but different texture) from hottest to coldest 

changes between different grades.  This is due to the random dissemination of grains 

in a portion of each of the models. Grain location within the dissemination areas 

could not be kept consistent due to the differing number of grains in each modelled 
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fragment.  As such any ‘bias’ in grain distribution would lead to increased 

temperature rise on one of two areas of the fragment, thus deviating the overall trend 

for that texture type.  Edge grains located directly on the surface of fragments rather 

than just below can lose heat more rapidly early in the ‘cooling’ process. By 60 

seconds the average surface temperature can be less than that of a centre grained 

texture, as in the centre and edge grain fragments modelled at 0.85% copper.   

  

Figure 13 Average temperature rise at 60s measurement delay time for FLAC 

modelled binary quartz and chalcopyrite ore fragments 

Variables not included in this study could lead to more complex thermal profiles than 

those studied here.  The modelled fragments were two dimensional and circular; 

more complex 3D geometries could lead to increased temperature rise differentials, 

particularly where mineralisation is located at or near the surface.  This is likely in 

real ore fragments as the crushing and screening process to produce feeds (with a 
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fragment size distribution suitable for sorting on a fragment by fragment basis) often 

results in breakage along existing fractures, exposing mineralisation on the surface. 

In assessing the implications of these results on an EM-IR sorting process, it should 

be reiterated that the purpose of ore sorting is not to gain a linear correlation between 

temperature rise and copper content, but to identify fragments that are economically 

barren.  In Figure 13, at 0.10% copper content, no fragments have temperatures 

greater than (or equal to) any fragments of higher copper content.  This is of course a 

simplified case in which only a heated valuable phase (entirely within the gangue) 

and a transparent matrix are present.  Furthermore, the copper contents modelled 

are discrete values; it is likely that had fragments with copper content between 0.10 

and 0.25% been modelled in FLAC, some could have temperature rise values similar 

to fragments at 0.10%, making textural variation more significant at lower copper 

content than perhaps this data shows.  Industrially, this would mean optimising cut-

off temperatures to either reject all lower grade fragments or accept all higher grade 

fragments, depending on the particular mine site.  

5 Conclusions 

FLAC modelling has been shown to be a useful tool for predicting trends in thermal 

profiles in fragments of binary mineralogy, having been experimentally validated via 

multimode microwave treatment of synthetic particles of corresponding texture.  The 

following conclusions can be drawn that have implications for microwave-IR ore 

sorting processes:   

 The size of microwave susceptible grains can affect the surface temperature 

rise, particularly at short thermal measurement delay times ~10 seconds.  

Smaller grain sizes at identical mass percentages result in a higher 
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temperature rise at short delay times due to the increased surface area for 

heat transfer. 

 The location of mineralisation can be significant at short measurement delay 

times, with surfaces near heated grains having a higher average temperature 

rise.  This effect was seen in both simulation and synthetic fragments where 

mineralisation was in one location, and also to a lesser degree when randomly 

disseminated grains were clustered. This is an important consideration for a 

belt based IR sorting system, where only one fragment orientation is imaged. 

 Thermal measurement delay time has been shown to be important in thermal 

profiling of binary fragments; increasing the time reduces the difference in 

average surface temperature of fragments of different textures but with 

identical grade.  At 10 seconds, 1% chalcopyrite fragments with grains in 

either centre, edge or midway locations had temperature differentials of 

around 25°C.  At 60 and 120 seconds, this differential was reduced to 7°C and 

4°C respectively. 

 As the grade of fragments increases, so does variation in thermal profiles. For 

upgrade sorting processes applied to low/marginal grade ores, variation in 

high grade fragment temperature rise values should not be detrimental to 

recovery; providing that a suitable temperature threshold is set for 

accepting/rejecting fragments, all valuable fragments will still be classified as 

hot.   

 At a fragment grade of 0.35% Cu, the temperature differential is ~1°C for the 

textures modelled. Assuming that variability in conditioned feed temperature 
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before the sorting process of ~1°C is achievable, texture can be seen as non-

critical in the differentiation process below this grade.  

This work has not investigated whether variations in texture and changing mineral 

associations have an impact on the actual electromagnetic heating of ores.  Future 

development of FLAC ore fragment heating models could include additional mineral 

phases (gangue and sulphide minerals), more complex textures, angular geometries 

akin to those of real ore fragments, heating in the gangue phases, skin depth heating 

in sulphide minerals and non-perfect contact between different mineral phases.   

Overall this work suggests that for copper ores of simple mineralogy, microwave-IR 

sorting at economically viable microwave energy inputs is indeed viable, providing 

that suitable systems can be designed for microwave power application, 

electromagnetic safety and compliance and materials handling, and that pre-sorter 

feed conditioning  and post microwave IR imaging at suitable delay times can be 

achieved. 
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