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Abstract

The Incidence Function Model (IFM) has been put forward as a tool for assess-
ing conservation plans. A key benefit of the IFM is low data requirements:
widely available species occurrence data and information about land cover.
Citizen science is a promising source of such data; however, to use these data
in the IFM there are typically two problems. First, the spatial resolution is
too coarse, but existing approaches to downscaling species data tend not to
extend to patch level (as required by the IFM). Second, widely available cit-
izen science data typically report species’ presences only. We devise ten dif-
ferent downscaling methods based on theoretical ecological relationships (the
species—area relationship and the distance decay of similarity), and test them
against each other. The better performing downscaling methods were based on
patch area, rather than distance from other occupied patches. These methods
allow data at a coarse resolution to be used in the IFM for comparing conser-
vation management and development plans. Further field testing is required
to establish the degree to which results of these new methods can be treated as
definitive spatially-explicit predictions. To address the issue of false absences,
we present a method to estimate the probability that all species have been listed

(and thus that a species” absence from the list represents a true absence), using
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the species-accumulation curve. This measure of confidence in absence helps
both to objectively identify a habitat network for fitting the IFM, and to target
areas for further species recording.

Keywords: citizen science, data quality, downscaling, spatial bias, urban

conservation

1. Introduction

Stochastic patch occupancy models can be useful tools for incorporating
biodiversity conservation into city planning because they allow for spatially
explicit analysis of species’ persistence under habitat fragmentation (Hanski|
1994; Opdam et al., 2002, |2003; [Van Teeffelen et al., |2012). Species occurrence
data at large spatial and temporal extents are necessary for both biodiversity
planning (Williams et al.,[2002)) and for fitting stochastic patch occupancy mod-
els (Hanski, [1999;|Opdam et al., 2003; Etienne et al.},2004). The Incidence Func-
tion Model (IFM) has been identified as particularly suitable for practical bio-
diversity planning (Lindenmayer et al.,|1999; Graham et al., |in press), in part as
a result of its low data requirements: widely available species occurrence data
can be used (Hanski, [1999; |[Etienne et al.,2004). Most studies tend to employ
the IFM in a single-species approach, where the patch occupancies have been
specifically surveyed for the purpose (e.g. Bulman et al.2007; [ MacPherson and
Bright||2011; Heard et al|2013} |Dolrenry et al.|2014). For the IFM to be use-
ful for biodiversity assessment within a conservation or planning framework,
multiple indicator species need to be studied. However, to collect occupancy
data for a suite of species is costly in terms of time and resources and so other
strategies are needed. Our contribution is to provide new strategies to address
this lack of occupancy data.

Volunteer biological recording, or more broadly citizen science, is a useful
source of data for ecological and conservation research over a large spatial ex-
tent (Silvertown), 2009; Devictor et al., 2010; Dickinson et al., 2010, 2012; [Tulloch
et al| 2013} |Graham et al.,[2014). These kinds of data are also regularly used for
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biodiversity planning within UK local authorities (Lott et al., 2006). It allows
large quantities of occurrence data to be collected at larger spatial and temporal
extents than would be feasible through individual field studies. Species-level
data are available from local recording schemes, as well as from large reposi-
tories, examples of which are Global Biodiversity Information Facility globally
(Global Biodiversity Information Facility,2014) and National Biodiversity Net-
work (NBN) Gateway in the UK (National Biodiversity Network,2014). There
are, however, some problems with volunteer-collected data. There are con-
cerns about the quality of data collected by non-specialists (see Bird et al.[2014
and |Isaac et al.||2014 for discussions of these issues and some of the potential
solutions). Specific to the IFM, there are two prevalent issues in data avail-
able from major citizen science schemes. First, the data are typically available
at grid-square level (for example the finest resolution of data available on the
NBN Gateway is 100 x 100m, but a greater coverage of data is available at the 2
km resolution), whereas the IFM requires information about patch-level occu-
pancies (Hanski| [1999). Although some patches may cover a 100 x 100m grid
cell, in a highly fragmented landscape such as an urban or heavily managed
landscape, the patches are likely to be smaller than this. Additionally, even
if the sizes match, the grid cell boundaries are unlikely to be coincident with
the patch boundaries. Secondly, the data tend to be presented as species lists,
which only give information about species’ presences. In a study by Moilanen
(2002), it was found that false absences can bias parameter estimates in all com-
ponents of the model; therefore, the higher the confidence in true absence, the
better fitting the model will be (but see Kéry et al.|[2010). If volunteer-collected
data are to be useful for the IFM, or stochastic patch occupancy models more
widely, methods are needed for downscaling these data to patch level, and
for determining confidence in species” absences. Here we present methods to
address both of these issues.

Current approaches to downscaling atlas data for species tend to fall into
three categories: expert opinion, empirical models and spatial processes (Aratjo

et al., [2005} Keil et al) |2013). The expert opinion approach typically involves
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matching species to suitable land-cover classes. For a wide range of species,
however, the species—habitat relationship is not well known, and so this method
can only be applied to well-studied species (Araujo et al.,2005). This approach
also operates on the assumption that any suitable habitat is occupied by the
species, which is ecologically unrealistic because species range filling is gen-
erally discontinuous (Rapoport, [1982). The empirical approach uses environ-
mental variables such as climate, land-cover classes and normalised vegetation
difference indices to predict species’ occurrences (see|Aratjo et al.|2005|for an
example using general additive modelling and Keil et al.|[2013| for one using
hierarchical Bayesian modelling). These methods are particularly appropriate
for broad-scale species mapping, for example national and continental studies
(Stockwell and Peterson, 2002). The spatial-processes approach divides coarse
grid cells into finer grid cells and uses statistical point-and-cluster processes
to randomly select cells at a fine grain. The environmental attributes from
these finer grid cells are used as predictors for species’ presences and absences.
These methods assume that all fine-grain grid cells within a coarse-grain cell of
known occupancy contain suitable habitat. To overcome this problem, Niamir
et al.| (2011) proposed a method which combines expert knowledge and point
sampling.

The empirical and spatial-processes approaches to downscaling species at-
las data use environmental variables as predictors, drawing from species’ dis-
tribution modelling. The extent and grain of interest for a city-level biodi-
versity plan tend to be much smaller than in studies taking a species’ dis-
tribution modelling approach to downscaling, and the environmental gradi-
ents sampled therefore much narrower but with greater habitat heterogene-
ity. With their very limited variation, environmental factors such as climate
are not useful for predicting species” occurrence at smaller extents. Instead,
land cover tends to be the most reliable predictor, and thus the empirical and
spatial-processes approaches collapse to species-habitat associations at the city
level and individual patch characteristics are likely to become important. The

method we outline below applies a combination of expert knowledge (through
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literature review) and spatial factors. The method involves attributing species’
presence to a suitable habitat patch based on its spatial characteristics and
known ecological patterns (species—area relationships and the distance decay
of community similarity).

To return to the second issue with citizen science data — that they tend to
report presence only, but the IFM parameters are sensitive to false absences —
we show how this can be circumvented. The IFM parameters estimated for a
species can be applied to a different patch network (Hanski et al.||1996)) or those
estimated on a contiguous subset of patches can be applied to the wider land-
scape (Bulman et al.,2007). If a core area can be identified within the landscape,
with a high confidence in the species’ absences, parameters can be estimated
using the data from this subset. Species-accumulation curves are widely used
to estimate species richness in sampled areas (e.g. |Soberén M. and Llorente
B./[1993; |Colwell and Coddington|[1994). This method has also been adapted
to give a measure of how well an area has been surveyed (Hortal et al.,[2004).
Here, we used species accumulation curves to estimate confidence in true ab-
sence, and therefore identify subsets of the landscape for use in parameter es-
timation.

We aim to investigate the extent to which citizen science data are useful
as inputs to the IFM. Firstly, we identified well-sampled grid cells within the
landscape which can be used to parameterise the IFM. Secondly, we tested
several downscaling methods based on spatial characteristics of the landscape
and known ecological patterns to convert the species data to an appropriate
resolution for the IFM. To achieve our aim, we use the study area of the city
of Nottingham, UK and apply the methods to indicator species from the bird,

herptile and mammal groups.



13 2. Methods

us  2.1. Study area

115 The Nottingham City unitary authority was used as a case-study area, with
us a 2km buffer around its boundary to allow for some effect of dispersal from
uz outside. Nottingham is located in the East Midlands, UK and represents a
us typical large-to-medium sized urban area in the UK. The unitary authority
ue boundary was chosen as this is the level at which planning decisions are gen-
120 erally made. The location of the study site and a breakdown of the Land Cover
121 Map 2007 classes (Morton et al., 2011) is given in Appendix A (Figure Ta-
122 ble with details for Nottingham, four nearby cities and the aggregate of
123 ten similar-sized UK cities for comparison. This indicates that Nottingham is

12a  broadly representative of similarly sized UK cities.

w5 2.2. Citizen science species data

126 Data for bird species were provided by Nottinghamshire Birdwatchers. These
1z data comprised 12,110 records of 24 species in 44 2 km grid cells for the years
12 1998-2011. Bat species data were provided by Nottinghamshire Bat Group
120 and further records were downloaded from NBN Gateway. The combined
1o bat datasets, once duplicates had been removed, contained 421 records for 10
11 species in 109 1 km grid cells from 1983-2013. Amphibian and reptile data
12 were downloaded from NBN gateway. There were a total of 1116 records for 11
133 species in 56 2 km grid cells for the period 1984-2012. All downloads from the
s NBN Gateway were performed using the R package ‘rnbn’ (Ball and August,
15 [2013). The full list of data providers is supplied in Supplementary Materials,
s Appendix A (Table[A3).

w7 2.3. Species—habitat associations and dispersal

138 It is common practice to use indicator species in biodiversity assessments
130 (Caro and O’Doherty| 2013) because constraints on time, funding and taxo-

1o nomic knowledge make collection of data on all species unfeasible (Blair| [1999;
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Margules et al.} 2002). We selected indicator species for modelling with the IFM
where sufficient data and information about habitat requirements and disper-
sal were available. We ensured that species with a range of habitat specialisms
and dispersal abilities were chosen, to maximise the species’ validity as indica-
tors.

The bird species chosen for modelling with the IFM included five general-
ists (Turdus merula, Prunella modularis, Carduelis carduelis, Carduelis chloris and
Muscicapa striata), three farmland specialists (Emberiza calandra, Passer mon-
tanus and Emberiza citrinella) and four woodland specialists (Sylvia atricapilla,
Dendrocopos major, Garrulus glandarius and Poecile palustris). E. citrinella also
uses heathland. The amphibian species selected were Rana temporaria and Bufo
bufo. Common names for all species are given in Table[l] The species chosen
for modelling were those which were from well-sampled groups and which
had a high enough prevelence in the landscape. If a species is too rare in the
landscape, there is little information about the effects of area and isolation to
be gained; as such the IFM should only be used if more than around 20% of
patches are occupied (Hanski), 1994).

We created a lookup between species and LCM 2007 land-cover types for
birds based on|Wernham et al.[|(2002) and [Holden and Cleeves|(2006) and am-
phibians based on Beebee and Griffiths| (2000). Minimum area requirements
for most species were taken from [Hinsley et al|(1995), a study based on 151
woods in eastern England, with minimum patch size 0.02 ha. Not all species
were included in|Hinsley et al.[(1995), so minimum area requirements for E. ca-
landra were taken from Meyer et al.|(2007) and P. palustris from Broughton et al.
(2006). Minimum area requirements for the amphibian species were not found
from a review of the literature, so an arbitrary value of 0.02 ha was chosen.

Dispersal distances for birds mainly came from |Paradis et al.|(1998), who
used British Trust for Ornithology (BTO) ringing data to determine mean breed-
ing and natal dispersal distances; We used the natal distances. Dispersal for E.
calandra came from Wernham et al|(2002) and for P. palustris from Broughton

et al|(2010). Dispersal distances for amphibians were taken from |Gilioli et al.
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(2008), a study on amphibian metapopulations, where the figure given was
based on expert opinion. The range of dispersal distances is 700 m (B. bufo) to
41.2 km (S. atricapilla)

Full details of habitat associations, minimum area and dispersal distances

are given in Table

2.4. Habitat data

Land Cover Map 2007 data (LCM 2007, Morton et al[2011) were used to
create maps of suitable habitat for each species. We filtered LCM 2007 data by
land-cover class for each species (classes shown in Table[I). Amphibian species
have the additional requirement of freshwater for breeding. Although R. tem-
poraria will spawn in sites as small as large puddles and ditches, B. bufo requires
the presence of large, permanent water bodies (Beebee and Griffiths,2000). To
account for the presence of such water bodies in the B. bufo habitat model, only
habitat that fell within a buffer of its dispersal distance (700 m) from fresh-
water was considered suitable. We dissolved the artificial boundaries created
by land ownership, demarcations between habitat types, and paths and small
roads (< 3 m in width). Finally, we removed all habitat patches smaller than
the species” minimum area requirement. This process created a map of suitable

habitat patches for each species based on its habitat requirements.

2.5. Quantifying uncertainty in species’ absence

Measures of uncertainty in raw species distribution data should be mapped
and made explicit as part of good practice (Rocchini et al., 2011). Not only
can this provide a spatial account of the potential biases in the data, but it
can also aid predictions of total species richness (Soberén M. and Llorente B.|
1993; (Colwell and Coddington, 1994) or identify well sampled areas for use in
species distribution modelling (Hortal et al.,[2004; |[Hortal and Lobo, 2005). We
applied the following method to attach a confidence of true absences to each
grid cell, and used this information to select areas for fitting the IFM. We fol-

lowed established methods which fit smoothed species-accumulation curves
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to a Clench function, and identified the slope of this curve at the position of the
last record (Soberon M. and Llorente B., 1993} (Colwell and Coddington) [1994;
Hortal et al.,[2004; Hortal and Lobo),2005). This slope gives a measure of rate of
species accumulation with additional sampling effort. We translated this value
to a measure of confidence in species absence, as outlined below.

First, we removed any grid cell with either only one species, or one record
per species. The number of database records (ignoring reported abundance,
because of the heterogeneity of ways in which this is measured) has previ-
ously been used successfully as a surrogate for sampling effort (Lobo, 2008).
Using this approach, the species-accumulation curve was created by plotting
the cumulative number of species against the number of records. This curve
was smoothed by randomising the order of record entry 100 times (sensu |Hor-
tal et al.2004;|Lobo|2008). Each curve was fitted to a Clench function (equation
using non-linear least squares. S, is the number of species added with each
new record, r is the number of records and a2 and b are the parameters of the

function.

ar

= 1
1+0br @

The slope at the point of the last record was calculated using the first-order

Sr

derivative of the Clench function (equation [2).

ds, a

o _ 2

dr (14 br)? @)
The confidence in true species” absences was defined as the proportion 1 —

%. We used a threshold level of 95% confidence as the criterion for selecting
grid cells suitable for model fitting. We calculated slopes for each of the species
groups for each grid cell at the appropriate resolution (2 km for birds, and

amphibians and reptiles, 1 km for bats).

2.6. Downscaling species atlas data
The data detailed in Section [2.2] are available at 2 km level for birds, and
reptiles and amphibians and at 1 km level for bats. To fit the IFM using these
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data, it is necessary to downscale them to patch level. Here, we outline and
demonstrate a method that first identifies a patch-occupancy level within each
grid cell, and then uses a suite of methods based on ecological theory to popu-
late that proportion of patches.

The two specific ecological relationships which informed the downscaling
methods are the species—area relationship, and the distance decay of similar-
ity. Species richness increases with increasing island or habitat fragment area
(Gleason and Jan) [1921). Based on this, and the fact that real assemblages are
typically nested (Wright and Reeves, [1992), larger habitat patches are more
likely to be occupied than smaller patches. Distance decay of community sim-
ilarity follows on from the first law of geography, that "near things are more
related than distant things" (Tobler} [1970). Distance decay of similarity in ecol-
ogy is the negative relationship between geographic distance and community
similarity (Nekola and White, [1999). Thus, it should hold that patches that are
closer to occupied patches are themselves likely to be occupied.

We calculated the required patch characteristics using the R packages 'rgeos’
(Bivand and Rundel, 2013) and 'rgdal” (Bivand et al., 2015). Distance was cal-
culated as the minimum edge-to-edge distance between each patch and the
nearest patch within a different occupied grid cell (using function ‘gDistance’
from ‘rgeos’). The proportion of the patch falling in each grid cell was also cal-
culated (area of patch within the grid cell divided by total area of the patch).
The purpose of the proportion is to ensure that patches which fall in two or
more grid cells are weighted accordingly. Patch area was calculated using the
function ‘gArea’ from ‘rgeos’.

For each grid cell, we assigned species to patches by weighted sampling.
The number of patches sampled from each grid cell was proportional to the
landscape occupancy level. For example if a species is present in 50% of the
well-surveyed (i.e. confidence of completeness above 95%; Figure|l) 2 km cells
at the landscape level, species would be assigned to 50% of the patches inside
the grid cell. The weighting was the proportion of the patch falling in that

particular grid cell multiplied by a weighting based on either area, distance or

10
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both. We tested ten different methods of weighting for the sampling. These
fall into three categories: distance weighting only, area weighting only, and
combined distance and area weighting. Four distance measures were calcu-
lated, where d is distance: based on inverse distance weighting, % and log % ;
for a linear relationship max(d) — d; to account for dispersal e~%?. The last
measure in the list is taken from the incidence function model (see section[2.7).
Two area measures were tested (A represents area): A and log A. log A was
tested because species richness and area are usually linearly related when both
are log-transformed (Gleason and Jan| (1921} |Preston,[1962), and also this allows
for a threshold at which the patch area becomes large enough that the size is no
longer important. Given the likelihood that both the area and distance relation-
ships are important, for three of the distance measures (log %, max(d) —d, e~*)
sampling was further weighted by log A. So that the measures could be used
as probabilities, we standardised these to the range {0, 1}. As a null model, we
employed a downscaling method where the only weighting applied was the
proportion of the patch falling in that particular grid cell. This means that the
probability of a patch being selected depends only on how much of the patch

lies in the grid cell and not on its size or isolation.

2.7. Incidence Function Model

The incidence function model (IFM), a stochastic patch occupancy model
developed by |[Hanski| (1994), allows long-term predictions of metapopulation
persistence in a network of habitat patches to be made through estimation of
colonisation and extinction rates. We followed methods outlined by Oksanen
(2004) which are based on [Hanski|(1994). A full description of the IFM is given
in the Supplementary Material, Appendix B.

The IFM has parameters u, x and y, which are estimated from the data. For
each species, we fitted the presence-absence data resulting from each down-
scaling method for an eight-year period to a logistic regression model (see
Supplementary Material, Appendix B). The following two years of data were

combined and kept to evaluate the performance of each downscaling method.
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We ran 200 replicates of the IFM simulations for 300 time-steps for each
downscaling method. For each replicate, we downscaled the species data as
described above and generated a new set of parameters for each method. The
realistic current occupancy configuration was identified as that at the time step
after a suitable burn-in period. This was chosen as a point where species that

reach a stable value had done so for most downscaling methods.

2.8. Comparing downscaling methods

Data for validation do not exist at patch scale, so we scaled the results from
the IFM for this time step back up to 2 km grid cells; for each replicate, if a
patch contained within a grid cell was occupied, the grid cell for that genera-
tion and replicate was considered occupied. The probability of occurrence was
created by taking the mean of the replicates. Data were available for the two ac-
tual years following those used for fitting the model, so we used these records
for model evaluation. The up-scaled results for each species were filtered to
create a presence dataset containing only grid cells with occurrences recorded
in one or both of the two validation years, and an absence dataset contain-
ing only grid cells where no occurrence was recorded in either year. We used
a Kruskal-Wallis test to determine a significant difference between downscal-
ing methods, and the post-hoc multiple pairwise comparison test outlined by
Siegel and Castellan| (1988) using the R package ‘pgirmess’ (Giraudoux| 2014)
to determine where these differences lay.

Further validation of the model output using an independent source of data
was done for bird species using the 2 km grid data from the BTO Atlas of
Breeding Birds (Gibbons et al.||1993). It should be noted that not all 2 km grid
cells were visited and that the data do not reflect a complete species list, but
instead the species seen in a 1-2 hour visit. We created a subset of the upscaled
model output which included only 2 km cells visited for the BTO data set and
then performed the validation in the same way as described above.

As an additional reality check of the model, we calculated the median pro-

portion of occupied habitat for each downscaling method at 175 time-steps (af-

12



318

319

320

321

322

323

327

328

329

330

331

336

337

338

339

340

341

342

ter the burn-in period) and compared against the national occupancy level (%
of 10 x 10 km grid cells occupied). Specifically, we identified whether nation-
ally abundant species appear locally abundant after downscaling and mod-
elling, and similarly for nationally rare species. We quantified the relationship
between the simulated occupancy proportions and national occupancy pro-
portions by fitting a linear regression model with national proportions as the
dependent variable and simulated proportions as the independent variable.
Although local proportions of species” occupancy do not necessarily reflect na-
tional ones, this test is a useful secondary check used in conjunction with the

above validation.

2.9. Sensitivity analysis of the occupancy assumption

Our downscaling methods assume that the proportion of patches occupied
by a species within each grid cell is the same as the proportion of grid cells
occupied by the species within the full landscape. This is reasonable to the ex-
tent that species often display self-similar (fractal) distributions across adjacent
scales (Ritchie and OIff|1999; [Kunin|1998; but see Halley et al.[2004). However,
because the relationship between scale and occupancy is not always linear (eg.
Barwell et al.,2014), we performed a sensitivity analysis to test how important
this assumption was when fitting the IFM by varying the starting occupancy
proportions. The purpose of the sensitivity analysis was to examine how much
impact a change of 10 percentage points either side of the landscape % occu-
pancy would have on the results. For the area-weighted downscaling method,
we generated 3 sets of 200 starting occupancies. The first set, Landscape (LS)
occupancy, kept to the assumption that species’ distributions are fractal across
adjacent scales; for the high occupancy set we increased the percentage of suit-
able habitat occupied by 10 percentage points (eg. if LS occupancy was 50%,
the high occupancy would be 60%); similarly, for the low occupancy set we
decreased the percentage of suitable habitat occupied by 10 percentage points.
The IFM was parameterised using each of these sets of starting occupancies

and the species’ patch occupancies simulated over 500 generations.
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One of the useful outputs of the IFM is that quantified measures of metapop-
ulation viability can be calculated, such as survival probability, minimum oc-
cupancy and current occupancy (after the burn-in period). We analysed the
sensitivity of the IFM to the occupancy proportion of the starting condition by
testing the sensitivity in these resulting measures. We used post-hoc multiple
pairwise comparison test to determine whether the differences in the measures
were significant by comparing the measures obtained from the LS starting oc-
cupancy to those from both the high and low occupancy starting conditions,
and the measures resulting from the high and low starting occupancies to each

other.

3. Results

3.1. Mapping uncertainty in presence data

After fitting these curves to a Clench function and calculating the slope at
the point of the last record, we identified 36% of cells were well-surveyed birds,
2% for bats and 52% for amphibians and reptiles (Figure ).

To fit the IFM to a subset, that subset must be contiguous (Moilanen2002
found that any missing patches in the network affected parameter estimates),
and also must contain enough patches to fit the logistic regression model. We
therefore selected the largest contiguous block of well-surveyed grid cells for
fitting the IFM for each species group. These are shown in Figure [1|c) and i)
as a bold outline. From our findings, bats are not well surveyed enough to use

this dataset in the IFM.

3.2. Comparison of downscaling methods

We fitted the IFM to eight years of species data. For birds, these were the
first eight years of the dataset: 1998-2005. Although amphibians and reptiles
were well sampled based on records from all years in the dataset, there were
few records for the time period 1998-2005. We therefore fit the IFM to am-
phibian data from 1988-1995. The bird species data for the combined years

14
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2006-2007, and the amphibian species data for 1996-1997 were used for model
evaluation.

Based on the 200 simulations of the IFM for each species and downscaling
method, we set the burn-in period to be 175 time steps (t). Plots showing the
model trajectories are given in Supplementary Materials, Appendix C. These
plots give results for both proportion of habitat patches occupied and propor-
tion of suitable habitat area occupied; because both were qualitatively similar
all following results show the latter which we considered to be the measure
which had most practical value. The model predicted full occupancy within
the first few generations for the longer dispersing species (Carduelis carduelis,
Muscicapa striata, Sylvia atricapilla and Dendrocopos major). These were removed
from further analysis because it is likely these species do not display metapop-
ulation dynamics at the scale of study due to a lack of dispersal limitation.

Figure [2| a) shows, for all remaining species, the predicted probability of
occupancy for each of the downscaling methods for those grid cells in which
the species have been recorded in either of the two years of evaluation data. A
similar analysis broken down by species is shown in the Supplementary Ma-
terials, Appendix D (Figures and [D2). Validation using the independent
(BTO) data gave similar results (see Appendix E in the supplementary materi-
als).

An overall significant difference between model performance based on the
downscaling methods was detected using a Kruskal-Wallis test (Chi-square =
143.52, df =9, P < 0.001). These results show that the area and, to some ex-
tent, log(area) weighted downscaling methods are most reliable in predicting
species’ presence overall.

Figure [2| b) shows the predicted probabilities of occurrence for grid cells
where the species has not been recorded as present. It should be noted that
these should not be considered as confirmed absences due to the ad hoc nature
of citizen science biological recording (see Discussion). The analysis is shown
by species in Supplementary Materials, Appendix D (Figures [D3|and [D4). A

significant difference between model predictions based on starting conditions
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from each of the downscaling methods was detected here also (Chi-square =
53.4, df =9, p < 0.001). Here, however, it is less clear which downscaling
method is best at predicting the presumed absences, but the better methods
for predicting presences are the worst for predicting absences. This suggests
that when parameterising the model based on data downscaled by the area or
log(area) weighted method, the IFM over predicts species’” occupancy.

No downscaling method matched the national proportions closely (Figure
B), though both A and log A are plausible at the finer scale in the study area.
The area-weighted downscaling method best matched national occupancies,
although the R? value was still low (R2 =0.47,F(1,8) =6.99, P = 0.03, residuals
normally distributed). The regression model suggested a close to 1:1 relation-
ship with national proportions (national occupancy proportion = 0.13 + 0.97
x predicted occupancy proportion, intercept not significantly different from 0
and slope not significantly different from 1). P. palustris was often below na-
tional levels for each method, whereas G. glandarius and E. calandra were fre-
quently above (although not for the area-weighted downscaling). P. palustris’s
habitat also includes parks and farmland with woods and coppices (Holden
and Cleeves, |2006), but it is not possible to identify these from the LCM 2007

data and so only broadleaved woodland was included.

3.3. Sensitivity analysis of the occupancy starting condition

We performed a sensitivity analysis to evaluate whether changes in the ini-
tial starting occupancy had an impact on the measures of landscape persistence
derived from the IFM results. A post-hoc multiple comparison test was used
to determine whether the differences in the measure between occupancy start
conditions were significant. Many were significant, but overall a change in
10% of occupancy starting condition resulted in a change of less than 10% in
the resulting metapopulation measure (see Table [2). Minimum occupancy %
seemed to be the measure most sensitive to starting condition, with the largest
differences between the value based on high vs low occupancy being 18.97%

for T. merula and 22.27% for R. temporaria.
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4. Discussion

For the IFM to have wide use in conservation management and planning,
it is important that accessible sources of data are available. Our results show
that citizen science data offer the potential to meet the data requirements of
the IFM, but with some important caveats. Citizen science and collections data
can be beneficial for studies at large spatial and temporal extents but are often
sparse and geographically biased (Funk and Richardson, 2002; Boakes et al.|
2010) or at a coarser spatial resolution than required for planning purposes
(Aragjo et al.,|2005; Keil et al.,2013). The data available for the study area may
not be a complete reflection of species’ occupancies (Figure [I). Despite this,
there are sufficient records for both bird and amphibian species to fit the IFM.

We used a method to quantify uncertainty in species distribution data, which
gives a measure of confidence in true absence, a further issue with presence-
only species lists. This method is useful here to select a core subset of the land-
scape for fitting the IFM with minimal subjectivity. This method also shows
spatially explicit biases in the data, which can be incorporated into any statisti-
cal modelling of the data. These kinds of biases are prevalent in citizen science
data, and methods to identify them are necessary (Bird et al.,[2014). The maps
showing levels of uncertainty in grid cells can be useful for volunteer recorders
to help identify where further recording effort is necessary and also for conser-
vation planners to evaluate areas to target future research effort.

The downscaling method we present herein deals with the issue of the data
being available at a coarser resolution than required. Of the downscaling meth-
ods tested, we found that the methods which involved weighting by A and
log A were both the closest match to the known presences in the evaluation
data set and the national occupancy proportions. Based on the above, weight-
ing by either A or log A would be the most appropriate method for downscal-
ing species’ distribution data for use in the IFM. These results suggest that the
species—area relationship has more influence than the distance decay of simi-

larity at this spatial scale. The shape of the distance decay relationship depends
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on the sampling extent and grain: when sampled at a large extent and grain,
the relationship is usually exponential; whereas when sampled at a small ex-
tent and grain with limited environmental gradient, the distance decay gener-
ally forms a power-law relationship (Nekola and McGill, 2014). Of the remain-
ing methods, the closest to national occupancies was the method weighted by
log % log A, which fits with an exponential relationship for distance decay. It is
possible that for our study area, the slope of the power-law relationship is very
shallow due to the limited environmental gradient, hence why those methods
which weight by patch area alone fit national occupancy levels more closely.

It should be noted that when comparing against the grid cells where the
species had not been recorded as present, the downscaling methods which
weighted by A and log A performed relatively poorly, if we presume these
were actually absences. Well-designed recording would be necessary to under-
stand whether downscaling using these weightings leads to over prediction of
species occupancy when simulating using the IFM, or whether these were in
fact unrecorded presences. It is possible that there are many false absences in
the dataset. For example T. merula was recorded as present in 16 of the 61 2 km
grid cells, however in the 2 km grid data from the fieldwork for the BTO At-
las of Breeding Birds (Gibbons et al.,[1993), T. merula is recorded in 98% of the
grids visited. Similarly, C. chloris was recorded in 18 of the 61 2 km grid cells,
but was present in 89% of the 2 km cells visited for the BTO Atlas. It is possible
that this is a result of bias in recorder motivations away from recording very
common species (Isaac and Pocock] [2015). Validation using the relatively few
BTO cells in our study area gave very similar results (see above and Appendix
E).

Refining species-habitat associations may improve the performance of the
downscaling methods. It is possible that datasets whose land-cover classes are
broad and non-specific (e.g. LCM 2007, as used here) are not entirely sufficient
to identify suitable habitat patches and need to be combined with other data
that offer further description of habitat types (e.g. Ordnance Survey Master

Map for this study area). Species also depend on structure as well as type of
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habitat, for example Broughton et al.[{(2006) found an effect of canopy height on
marsh tit occupancy. Incorporating remotely sensed data will allow for habitat
structure, and perhaps quality, to be considered. We have used LCM 2007 be-
cause of its availability (both to us, and to planners who may wish to use this
method), however remote sensing data are increasing in quantity and quality,
and pushes to make these data open access will mean habitat data are more
accessible and accurate (Sutherland et al., 2014; Turner et al., 2015). For the
marsh tit, which appears to be consistently under-predicted by all methods,
it is possible that improving the habitat association will improve prediction.
It is possible that there are no issues with the habitat association for the corn
bunting and they are more prevalent in Nottingham than nationally. Notting-
ham has quite a high proportion of arable land compared to some other cities
(see Table[AT).

Long-dispersing species were consistently over-predicted and removed from
the final analysis. It may be that these do not exhibit metapopulation dynamics
at the scale we are studying. The metapopulation approach is only applicable
if a species is sufficiently dispersal-limited (Hanski, [1994). Equally, we have
not tested our method for very rare species because this again goes against the
assumptions of the IFM.

We assumed a fractal distribution of the species when setting the initial
proportion of occupied patches to which the downscaling methods allocated
presences. The results of the sensitivity analysis were mixed, suggesting that
the impact of this assumption could be greater for some species — particularly
when using the minimum occupancy measure of metapopulation persistence.
Our results suggest that in most cases, assuming a fractal distribution of species
occupancy is reasonable. However, refining this part of the procedure could
potentially improve the model predictions. Occupancy—area curves are linear
when the species distribution is fractal (Kunin,1998). The relationship between
sampling scale and occupancy has been found to be non-linear in some plant
(Kunin, [1998) and dragonfly species (Barwell et al.}2014). Incorporating tested

estimations of the occupancy-area curve from these methods may improve the
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predictions from the downscaling methods outlined above.

The predicted patch occupancies from the methods presented above would
require rigorous testing with field data before they can be taken as definitive
spatially explicit predictions. For the purposes of fitting the IFM for use in
planning and conservation management scenario comparison, however, ap-
propriately chosen downscaling methods should suffice. This is because the
inherent uncertainty in metapopulation models means estimates derived from
models should be viewed as relative comparisons rather than absolute predic-
tions (Grimm et al.,[2004).

Downscaling species atlas data using a combination of habitat associations
and patch characteristics has the potential to fill a gap in existing downscaling
methods. The method proposed and tested herein is useful for study areas
that are too large for full surveys, but small enough that the environmental
gradients are limited or non-existent, making traditional species distribution

modelling approaches (e.g. |Aratjo et al.[2005; Keil et al.|2013) inappropriate.
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Tables

Table 1: Mean dispersal distance, broad habitat type (based on LCM 2007), and minimum habitat

requirement for each modelled species. LCM classes: 1. Broadleaved Woodland, 2. Coniferous

Woodland, 3. Arable and Horticulture, 4. Improved Grassland, 5. Rough Grassland, 6. Neutral
Grassland, 8. Acid Grassland, 9. Fen, Marsh and Swamp, 10. Heather, 11. Heather Grassland, 16.

Freshwater

Species

Common name

Dispersal (km)

LCM class

Min. area (ha)

Turdus merula
Prunella modularis
Carduelis carduelis
Carduelis chloris
Muscicapa striata
Emberiza calandra
Passer montanus
Emberiza citrinella
Sylvia atricapilla
Dendrocopos major
Garrulus glandarius
Poecile palustris
Rana temporaria
Bufo bufo

Blackbird
Dunnock
Goldfinch
Greenfinch
Spotted flycatcher
Corn bunting
Tree sparrow
Yellowhammer
Blackcap

Great spotted woodpecker
Jay

Marsh tit
Common frog

Common toad

3.3
21
11.1
42
12.8
4

8
8.4
41.2
16.5
3.5
0.885

0.7

1,2,3,4,5,6,7,8
1,2,3,4,5,6,7,8
3,5

1,2,3

1,2

3,4,5,6,8
1,2,3
3,5,10,11

1

1,2

1,2

1
1,2,3,4,5,6,8,9,16
1,2,5,6,8,9,16

0.02
0.02
0.12
0.25

0.1

2.5
0.12
0.03

0.2
0.26
0.32

2.1
0.02
0.02
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Table 2: Sensitivity analysis of the occupancy starting condition. The landscape occupancy

column shows the results from a starting occupancy % equal to that of the % of 2km x 2km

grid cells in which the species is present in the landscape. The high occupancy column shows

the result where an additional 10% of the suitable habitat is assumed to be occupied for the

starting condition; low occupancy is the results from starting with 10% less suitable patches

occupied than landscape occupancy. For the three end columns, an x represents a significant

difference in the measure between starting occupancies based on a post-hoc multiple pairwise

comparison test.

Species Metapopulation measure Landscape occupancy ~ Low occupancy  High occupancy  Low vsLS  HighvsLS  High vs Low
Turdus merula Minimum occupancy % 88.27 85.22 66.25 X X X
Turdus merula Surviving replicates % 100.00 100.00 100.00
Turdus merula Occupancy % after burn-in 96.21 94.74 96.37 X X X
Prunella modularis Minimum occupancy % 64.85 63.17 65.60 X X X
Prunella modularis Surviving replicates % 100.00 100.00 100.00
Prunella modularis Occupancy % after burn-in 81.61 76.21 85.47 X X X
Carduelis chloris Minimum occupancy % 70.86 71.11 70.00
Carduelis chloris Surviving replicates % 100.00 100.00 100.00
Carduelis chloris Occupancy % after burn-in 95.36 93.25 94.82 X X X
Emberiza calandra Minimum occupancy % 40.06 41.00 31.91 X X
Emberiza calandra Surviving replicates % 100.00 100.00 100.00
Emberiza calandra Occupancy % after burn-in 59.24 53.44 61.99 X X
Passer montanus Minimum occupancy % 50.38 49.72 34.17 X X X
Passer montanus Surviving replicates % 100.00 100.00 98.00

Continued on next page
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Table 2: Continued from previous page

Species Metapopulation measure Landscape occupancy ~ Low occupancy  High occupancy  Low vsLS  HighvsLS  High vs Low
Passer montanus Occupancy % after burn-in 91.26 89.77 89.39 X X X
Emberiza citrinella Minimum occupancy % 58.13 56.83 54.90 X X
Emberiza citrinella Surviving replicates % 100.00 99.50 99.00

Emberiza citrinella Occupancy % after burn-in 93.25 91.38 91.49 X X
Garrulus glandarius Minimum occupancy % 42.79 40.44 44.77 X X X
Garrulus glandarius Surviving replicates % 100.00 100.00 100.00

Garrulus glandarius Occupancy % after burn-in 89.89 89.07 91.15 X X X
Poecile palustris Minimum occupancy % 0.84 0.44 041

Poecile palustris Surviving replicates % 22.50 12.50 12.00

Poecile palustris Occupancy % after burn-in 5.81 4.58 4.56

Rana temporaria Minimum occupancy % 56.00 71.53 49.26 X X X
Rana temporaria Surviving replicates % 100.00 100.00 100.00

Rana temporaria Occupancy % after burn-in 80.16 85.09 76.02 X X
Bufo bufo Minimum occupancy % 6.00 4.69 4.71 X X

Bufo bufo Surviving replicates % 70.00 61.50 59.00

Bufo bufo Occupancy % after burn-in 18.29 13.45 17.96 X X
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Figure 1: Species data quality maps. Species richness (a, d, g), number of records (b, e, h) and well sampled grids (c, f, i) shown for the three species datasets.

The slope in ¢, f and i is calculated by creating a species-accumulation curve by plotting the record number against the cummulative number ofspecies;

smoothing this curve by randomising the order of record entry 100 times; fitting to a clench function; and calculating the slope of the curve between the last

two records. A slope of 0.05 represents a 95% confidence that all species have been recorded. Core area for use in model fitting outlined in bold.



Downscaling method

Figure 2: Boxplots showing the probability of occupancy for all species after the burn-in period (t =
175 time steps) for all grid cells recorded as a) present and b) absent in the evaluation data. For each
species, there are n = 200 replicates of IFM simulations. Horizontal lines separate the downscaling
methods into distance only, area only, combined distance and area, null. In the downscaling meth-
ods, d represents the distance between patches, A patch area, and a the species’ dispersal ability.

Different letters indicate that we detected a significant difference between the median occupancy
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Figure 3: Comparison of mean (of n = 200 replicates of IFM simulations) predicted proportion of
occupied habitat after the burn-in period (t = 175 time steps) against the national proportion of
10 km x 10 km grid cells occupied. National data are from the 2nd BTO Atlas (Gibbons et al.,
1993) and Biological Records Centre Reptiles and Amphibians Dataset. Black lines are fitted linear

regression lines, shaded area is +1 SE of the regression line.
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map shows the location of Nottingham within Great Britain. Land-cover classes based on LCM 2007 2011



Table Al: Proportions of the LCM 2007 broad habitat types in Nottingham, three nearby cities

(Birmingham, Leicester and Sheffield) and for similar sized UK cities. *UK Cities is the total pro-

portion for the 5 cities smaller in area, and the 5 cities larger in area than Nottingham (Derby, Hull,

Leicester, Southampton, Dundee, Poole, Southend-on-Sea, Brighton and Hove, Portsmouth and

Plymouth). Boundaries were defined using the Ordnance Survey Boundary Line shapefile 'Dis-

trict Borough Unitary’ and adding a 2km buffer. N.B. Unitary authority boundaries are not strictly

related to the size of the urban area.

Code  Habitat Type Nottingham  Birmingham  Leicester = Sheffield = UK Cities
1  Broadleaved Woodland 4.77 4.66 2.50 9.67 5.03
2 Coniferous Woodland 0.28 0.59 0.04 3.02 0.74
3 Arable and Horticulture  21.66 15.32 23.13 10.02 20.92
4 Improved Grassland 14.63 16.12 18.71 20.66 18.85
5  Rough Grassland 1.86 127 0.74 4.41 2.02
6  Neutral Grassland 1.09 0.35 1.38 0.13 0.74
7 Calcareous Grassland - - - - 0.03
8  Acid Grassland 0.03 0.00 - 4.15 0.03
9 Fen, Marsh and Swamp 0.02 - - 0.00 0.13

10  Heather 0.16 0.30 - 5.87 0.35
11 Heather Grassland 0.09 0.17 - 6.91 0.21
12 Bog - 0.02 - 12.07 -

14  Inland Rock 0.05 0.28 0.39 0.17 0.25
15  Saltwater - - - - 6.94
16 Freshwater 241 0.76 0.87 1.18 0.51
17  Supra-littoral Rock - - - - 0.01
18  Supra-littoral Sediment - - - - 0.39
19  Littoral Rock - - - - 0.26
20  Littoral Sediment - - - - 4.36
21  Saltmarsh - - - - 0.5
22 Urban 8.21 14.15 12.31 6.05 9.11
23 Suburban 44.77 46.01 39.92 15.69 28.62
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Table A2: Distributions of patch sizes for the LCM classes which make up the species’ habitat.

LCM Class Mean area (ha)  Min. area (ha)  Max. area (ha)  # patches
Broadleaved Woodland 3.23 0.00087 87.63 254
Coniferous Woodland 1.68 0.00004 8.08 29
Arable and Horticulture 19.08 0.00175 1015.37 201
Improved Grassland 6.35 0.00047 118.68 392
Rough Grassland 2.52 0.05196 11.00 128
Neutral Grassland 2.52 0.00178 15.97 76
Acid Grassland 1.56 0.73430 2.63

Fen, Marsh and Swamp 1.03 0.61178 1.68

Heather 0.79 0.19012 1.56 28
Heather Grassland 3.15 0.44680 10.10 5
Freshwater 12.07 0.06755 131.07 36

Table A3: Full list of organisations whose data were used. All data accessed from NBN Gateway

except data from Nottinghamshire Birdwatchers.

Data provider Contact name
Amphibian and Reptile Conservation John Wilkinson
Biological Records Centre Dr David Roy
British Trust for Ornithology Peter Lack
Derbyshire Biological Records Centre Kieron Huston

Nottinghamshire Biological and Geological Records Centre ~ Rob Johnson
The Bat Conservation Trust Philip Briggs
Nottinghamshire Birdwatchers Andy Hall
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Appendix B - Additional methods information

The incidence function model (IFM), a stochastic patch occupancy model
developed by |[Hanski| (1994), allows long-term predictions of metapopulation
persistence in a network of habitat patches to be made through estimation of
colonisation and extinction rates. The occupancy of a patch i is given by J;

where J; is a balance of colonisations (C;) and extinctions (E;).

_ Ci
C;+ E; — GiE;
The extinction probability (Equation|B2) is calculated following the assump-

Ji (B1)

tion that the species richness is directly proportional to the area of the patch
they occupy. The species—area relationship is a well established concept, and as
such the assumption can be justified on both empirical and theoretical grounds
(Hanski, [1999). Extinction is affected by population size, so E; can therefore be

expressed as a function of A;:

E; = min L:} 1} (B2)

Here, u and x are species specific parameters, and patch 7 is currently oc-

cupied. The critical patch size, below which a species cannot survive in the

patch, is given by ux (all patches < u* have extinction probability 1). Param-

eter x represents the extent to which a species’ survival is dependent on patch
size (larger x represents weaker dependence).

The colonisation probability (Equation is a function of patch connectiv-

ity S; (Equation . Species-specific parameter y represents the level of con-

nectivity required by a species to achieve colonisation.

G2
— 1
S? 42

(B3)

i
Finally, connectivity (Equation is a function of the distance from patch
i to patch j (d;j), the occupancy and area of patch j (p; and A; respectively) and
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the species’” mean natal dispersal ability, % Mean natal dispersal distance is

derived from the literature.

n
Si=Y e ™ipA; (B4)

Parameters u, x and y are estimated from the data. For each species, we fit-
ted the presence—absence data resulting from each downscaling method for an
eight-year period to a logistic regression model derived from the above equa-
tions (Equation [B5). The following two years of data were combined and kept

to evaluate the performance of each downscaling method.

logit(J;) = Bo+2log S + B1log A (B5)

Here Byp = —log(uy) and By = x. Parameter u is estimated by assuming
that for the smallest of all occupied patches, E; = 1, then solving equation
for u. This value is then substituted into By to solve for y. This follows the

method outlined by Oksanen|(2004).
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Appendix C - IFM outputs

The IFM was used to simulate the patch occupancies for 14 species for each
of the 10 downscaling methods. 100 iterations of 500 timesteps were simulated.
This Appendix gives plots of the model output calculated using the proportion
of the number of suitable patches occupied, and the proportion of the total
suitable area occupied. The 175th timestep was chosen as the burn-in period;

this timestep is shown on each of the plots.

43



47

Null model

o |

log

max(d) - d

% habitat patches occupied

07\ T T 07\ T T T 07\ T T T 07\ T T T 07\ T T T
0 50 150 = 250 0 50 ' 150 ' 250 0 50 150 = 250 0 50 150 = 250 0 50 ' 150 = 250
Null model max(d) — d e(ad)
100 T; 100 1 100 1 100 =
80 ] 80 A 80| 80 ]
T 60 ' sl eodf 60 f .
'S 404! 40 40 i 404
3 201 201 204" 204
(&)
o 01 ; ; 01 ; ; 01 ; ; 01 ; ;
© 0 50 150 = 250 250 0 50 150 = 250 0 50 150 = 250 0 50 ' 150 = 250
o
@© A (max(d) - d)A
-
8 100 { e 100 1 100 { 100  ommnms
S 804 80 80 80
< 60 60| ... 60 .. 60 ..
XX ' i :
o 40 40 A 40 1 : 401 #
20 1 201 201 204
07\ T T 07\ T T T 07\ T T T 07\ T T T 07\ T T T
0 50 150 = 250 0 50 ' 150 ' 250 0 50 150 = 250 0 50 150 = 250 0 50 ' 150 = 250
Timestep

Figure C1: IFM output trajectories for Turdus merula based on all ten downscaling methods. Results given show % of habitat patches occupied and % of total
area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red solid line

represents the end of the burn-in period.
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Figure C2: IFM output trajectories for Prunella modularis based on all ten downscaling methods. Results given show % of habitat patches occupied and %
of total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red

solid line represents the end of the burn-in period.
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Figure C3: IFM output trajectories for Carduelis carduelis based on all ten downscaling methods. Results given show % of habitat patches occupied and %
of total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red

solid line represents the end of the burn-in period.
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Figure C4: IFM output trajectories for Carduelis chloris based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C5: IFM output trajectories for Muscicapa striata based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C6: IFM output trajectories for Emberiza calandra based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C7: IFM output trajectories for Passer montanus based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C8: IFM output trajectories for Emberiza citrinella based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C9: IFM output trajectories for Sylvia atricapilla based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C10: IFM output trajectories for Dendrocopos major based on all ten downscaling methods. Results given show % of habitat patches occupied and %
of total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red

solid line represents the end of the burn-in period.
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Figure C11: IFM output trajectories for Garrulus glandarius based on all ten downscaling methods. Results given show % of habitat patches occupied and %
of total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red

solid line represents the end of the burn-in period.
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Figure C12: IFM output trajectories for Poecile palustris based on all ten downscaling methods. Results given show % of habitat patches occupied and % of

total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C13: IFM output trajectories for Rana temporaria based on all ten downscaling methods. Results given show % of habitat patches occupied and % of
total area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the I[FM. Red

solid line represents the end of the burn-in period.
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Figure C14: IFM output trajectories for Bufo bufo based on all ten downscaling methods. Results given show % of habitat patches occupied and % of total
area occupied. Solid line shows median, shaded area the inter-quartile range, dotted lines the 5 and 95 percentile, n = 200 iterations of the IFM. Red solid line

represents the end of the burn-in period.
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Appendix D - Summary of model and downscaling performance by species

The below boxplots show the predicted probability of occupancy at t=175
for known presences (Figures|D1|and and presumed absences (Figures
and[D4) obtained by running the IFM on starting occupancies based on each of
the ten downscaling methods. Results are separated out by species. Although
the comparison against known presences when broken down by species are
not as clear cut as the combined results shown in Figure 2| (for example no
significant difference is detected between downscaling methods for T. merula,
P. modularis, G. glandarius or B. bufo), running the IFM based on an occupancy
pattern created from the area or log(area) weighted downscaling method still
yields the most reliable predictions of presences. It is possible, however, that
parameterising the IFM with data from the area or log(area) weighted down-

scaling method will cause overpredictions.
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Figure D1: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in
the evaluation data. Vertical lines seperate the downscaling methods into distance only, area only, combined distance and area, null. In the downscaling
methods, d represents the distance between patches, A patch area, and « the species dispersal ability. Different letters indicate that we detected a significant

difference between the median occupancy between methods based on post-hoc tests (P < 0.05).
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Figure D2: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in
the evaluation data. Vertical lines seperate the downscaling methods into distance only, area only, combined distance and area, null. In the downscaling
methods, d represents the distance between patches, A patch area, and « the species dispersal ability. Different letters indicate that we detected a significant

difference between the median occupancy between methods based on post-hoc tests (P < 0.05).
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Figure D3: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in
the evaluation data. Vertical lines seperate the downscaling methods into distance only, area only, combined distance and area, null. In the downscaling
methods, d represents the distance between patches, A patch area, and « the species dispersal ability. Different letters indicate that we detected a significant

difference between the median occupancy between methods based on post-hoc tests (P < 0.05).
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Figure D4: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in
the evaluation data. Vertical lines seperate the downscaling methods into distance only, area only, combined distance and area, null. In the downscaling
methods, d represents the distance between patches, A patch area, and « the species dispersal ability. Different letters indicate that we detected a significant

difference between the median occupancy between methods based on post-hoc tests (P < 0.05).
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Appendix E - Validation with independent data from the British Trust for
Ornithology

Validation against an independent data set — the 2 km data from the field-
work for the 2nd British Trust for Ornithology Atlas (1988-1991, Gibbons et al.
1993) — was performed in the same way as the validation against the Notting-
hamshire Birdwatchers dataset, but limited to only grid cells visited in the BTO
data.
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Figure E1: Boxplots showing the probability of occupancy for all species after the burn-in period
(t = 175 time steps) for all grid cells recorded as present in the independent evaluation data from
the 2nd BTO Atlas (Gibbons et al., [1993). For each species, there are n = 200 replicates of IFM
simulations. Horizontal lines separate the downscaling methods into distance only, area only,
combined distance and area, null. In the downscaling methods, d represents the distance between
patches, A patch area, and « the species’ dispersal ability. Different letters indicate that we detected
a significant difference between the median occupancy between methods based on post-hoc tests

(P < 0.05). Kruskal-Wallis Chi-square = 119.9, df =9, P < 0.001.
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Figure E2: Boxplots showing the probability of occupancy for all species after the burn-in period (t
=175 time steps) for all grid cells which were visited but the species not recorded as present in the
independent evaluation data from the 2nd BTO Atlas (Gibbons et al.}[1993). For each species, there
are n = 200 replicates of IFM simulations. Horizontal lines separate the downscaling methods
into distance only, area only, combined distance and area, null. In the downscaling methods, d
represents the distance between patches, A patch area, and « the species’ dispersal ability. Different
letters indicate that we detected a significant difference between the median occupancy between

methods based on post-hoc tests (P < 0.05). Kruskal-Wallis Chi-square = 40.7, df =9, P < 0.001.
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Figure E3: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in the
independent evaluation data from the 2nd BTO Atlas (Gibbons et al.|[1993). Vertical lines seperate the downscaling methods into distance only, area only,
combined distance and area, null. In the downscaling methods, d represents the distance between patches, A patch area, and « the species dispersal ability.

Different letters indicate that we detected a significant difference between the median occupancy between methods based on post-hoc tests (P < 0.05).



29

Passer montanus

10. abcd abc ac ac d bd abd abc abc C
08 "1 — . ‘
0.6 E—— —_— e
0‘4— =
0.2
0.07 . . . . . . . . .
>, Emberiza citrinella
E 10 abcd abc ac ac d bd abd abc abc C
s L ﬁ
g-' 0.8
o 0.6 \ | | ] \
3 041 === : | !
o 0.2 . | E— —— _—
%‘ 0.0 . . . . . . . . . .
?’3 Garrulus glandarius
8 10 abcd abc ac ac d bd ‘ abd abc abc C
% 0.8
< 0.6
£ 04
% 0.2
et 007 . . . . . . . . .
A~ Poecile palustris
10 abcd abc ac ac d bd abd abc abc C
0.8
0.61
0.4
0.21 ==
0.0+ ; ; ; ‘ ‘ ; : : :
% logl max(d)—d e A log A log L l¢géx (d) — d) lag A log ANull model

Downscaling method

Figure E4: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells recorded as present in the
independent evaluation data from the 2nd BTO Atlas (Gibbons et al.|[1993). Vertical lines seperate the downscaling methods into distance only, area only,
combined distance and area, null. In the downscaling methods, d represents the distance between patches, A patch area, and « the species dispersal ability.

Different letters indicate that we detected a significant difference between the median occupancy between methods based on post-hoc tests (P < 0.05).
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Figure E5: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells which were visited but the

species not recorded as present in the independent evaluation data from the 2nd BTO Atlas (Gibbons et al.||[1993). Vertical lines seperate the downscaling

methods into distance only, area only, combined distance and area, null. In the downscaling methods, d represents the distance between patches, A patch

area, and « the species dispersal ability. Different letters indicate that we detected a significant difference between the median occupancy between methods

based on post-hoc tests (P < 0.05).



69

Passer montanus

10 ab ab ab ab a ab ab ab ab b
0.8
06| — - —
0.4 : . —
0.2 ’ .
0.01 . . . . . . . . .
> Emberiza citrinella
e 10 ab ab ab ab a ab ab ab ab b
s L
£ 081
U | —
g 82 B | =
i 0.21 = T— ]
E 00— . . . . . . . . . .
3 Garrulus glandarius
< ab ab ab ab a ab ab ab ab b
0 1.01 : H : N ‘ ; ; . . .
% 08 : : - , , : i : i
g 0.6 . . .
5 0.41
g 0.2
et 0.0— . . . . . . . . . .
A~ Poecile palustris
10 ab ab ab ab a ab ab ab ab b
0.8
0.61
0.4
0.2
0.04 ‘ ‘ ‘ - : - T ‘ .
% log % max (d) —d e—ud A logA log % 1¢gndx (d) — d) lcng‘ﬁ log ANull model

Downscaling method

Figure E6: Boxplots showing the probability of occupancy for individual species after the burn-in period (t = 175) for all grid cells which were visited but the
species not recorded as present in the independent evaluation data from the 2nd BTO Atlas (Gibbons et al.||[1993). Vertical lines seperate the downscaling
methods into distance only, area only, combined distance and area, null. In the downscaling methods, d represents the distance between patches, A patch
area, and « the species dispersal ability. Different letters indicate that we detected a significant difference between the median occupancy between methods

based on post-hoc tests (P < 0.05).
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