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Abstract This paper is concerned with making Bayesian

inference from data that are assumed to be drawn from

a Bingham distribution. A barrier to the Bayesian ap-

proach is the parameter-dependent normalising constant

of the Bingham distribution, which, even when it can

be evaluated or accurately approximated, would have

to be calculated at each iteration of an MCMC scheme,

thereby greatly increasing the computational burden.

We propose a method which enables exact (in Monte

Carlo sense) Bayesian inference for the unknown pa-

rameters of the Bingham distribution by completely

avoiding the need to evaluate this constant. We apply

the method to simulated and real data, and illustrate

that it is simpler to implement, faster, and performs

better than an alternative algorithm that has recently

been proposed in the literature

Keywords

1 Introduction

Observations that inherit a direction occur in many sci-

entific disciplines (see, for example, Mardia and Jupp

2000). For example, directional data arise naturally in

the biomedical field for protein structure (Boomsma
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et al. 2008), cell–cycle (Rueda et al. 2009) and circa-

dian clock experiments (Levine et al. 2002); see also

the references in Ehler and Galanis (2011). A distri-

bution that has proved useful as a model for spherical

data which arise as unsigned directions is the Bingham

distribution (Bingham 1974; Mardia and Jupp 2000).

The Bingham distribution can be constructed by

conditioning a zero-mean multivariate Normal (MVN)

distribution to lie on the sphere Sq−1 of unit radius in

R
q. In particular, for a given matrix A of dimension

q × q, the density with respect to the uniform measure

on Sq−1 is given by

f(x; A) =
exp (−xT Ax)

c(A)
, xT x = 1 and x ∈ R

q, (1)

where c(A) is the corresponding normalising constant.

Having observed some directional data, interest then

lies in inference for the matrix A in (1). The likelihood

of the observed data given the parameters can easily

be written down and at first glance it appears that

maximum likelihood inference for A is straightforward.

However, inferring the matrix A is rather challenging.

That is due to the fact that the likelihood of the ob-

served data given the matrix A involves the parameter-

dependent normalising constant c(A) which, in the gen-

eral case, is not available in closed form. Therefore this

poses significant challenges to undertake statistical in-

ference involving the Bingham distribution either in a

frequentist or Bayesian setting.

Although a maximum likelihood estimator for A can

be derived by iterative techniques which are based on

being able to approximate c(A) (see, for example, Kent

1987; Kume and Wood 2005, 2007; Sei and Kume 2013),
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very little attention has been drawn in the literature

concerning estimation of A within a Bayesian frame-

work. Walker (2013) considered Bayesian inference for

the Bingham distribution which removes the need to

compute the normalising constant, using a (more gen-

eral) method that was developed earlier (Walker 2011)

and cleverly gets around the intractable nature of the

normalising constant. However, it requires the intro-

duction of several latent variables and a Reversible-

Jump Markov Chain Monte Carlo (RJMCMC) sam-

pling scheme.

The main contribution of this paper is to show how

one can draw Bayesian inference for the matrix A, by

exploiting the recent developments in Bayesian compu-

tation for distributions with doubly intractable normal-

ising constants (Møller et al. 2006; Murray et al. 2006).

The main advantage of our approach is that it does not

require any numerical approximation to c(A) and hence

enables exact (in the Monte Carlo sense) Bayesian infer-

ence for A. Our method relies on being able to simulate

exact samples from the Bingham distribution which can

be done by employing an efficient rejection sampling al-

gorithm proposed by Kent et al. (2013).

The rest of the paper is structured as follows. In

Section 2 we introduce the family of Angular Central

Gaussian distributions and illustrate how such distribu-

tions serve as efficient proposal densities to sample from

the Bingham distribution. In Section 3 we describe our

proposed algorithm while in Section 4 we illustrate our

method both using simulated and real directional data

from earthquakes in New Zealand. In Section 5 we dis-

cuss the computational aspects of our method as well

as directions for future research.

2 Rejection Sampling

2.1 Preliminaries

Rejection sampling (Ripley 1987) is a method for draw-

ing independent samples from a distribution with prob-

ability density function f(x) = f∗(x)/Zf assuming that

we can evaluate f∗(x) for any value x, but may not

necessarily know Zf . Suppose that there exists another

distribution, with probability density function g(x) =

g∗(x)/Zg, often termed an envelope density, from which

we can easily draw independent samples and can evalu-

ate g∗(x) at any value x. We further assume that there

exists a constant M∗ for which M∗g∗(x) ≥ f∗(x) ∀x.

We can then draw samples from f(x) as follows:

1. Draw a candidate value y from g(x) and u

from U(0, 1);

2. if u ≤ f∗(y)
M∗g∗(y) accept y; otherwise reject

y and go to step 1.

The set of accepted points provides a sample from

the target density f(x). It can be shown that the num-

ber of trials until a candidate is accepted has a geomet-

ric distribution with mean M , where

M = sup
x∈R

{

f(x)

g(x)

}

< ∞. (2)

Therefore, the algorithm will work efficiently provided

that M is small or, in other words, the probability of

acceptance (1/M) is large. We should note that it is not

necessary to know the normalising constants Zf and

Zg to implement the algorithm; the only requirement

is being able to draw from the envelope density g(x)

and knowledge of M∗ (rather than M which depends

on the normalising constant of the likelihood function

and cannot be computed).

2.2 The Angular Central Gaussian Distribution

The family of the angular central Gaussian(ACG) dis-

tributions is an alternative to the family of the Bingham

distributions for modelling antipodal symmetric direc-

tional data (Tyler 1987). An angular central Gaussian

distribution on the (q − 1)−dimensional sphere Sq−1

can be obtained by projecting a multivariate Gaussian

distribution in R
q, q ≥ 2, with mean zero onto Sq−1

with radius one. In other words, if the vector y has

a multivariate Normal distribution in R
q with mean

0 and variance covariance matrix Ψ , then the vector

x = y/||y|| follows an ACG distribution on Sq−1 with

q × q symmetric positive−definite parameter matrix Ψ

(Mardia and Jupp 2000). The probability density func-

tion of the ACG distribution with respect to the surface

measure on Sq−1 is given by

g(x; Ψ) = w−1
q |Ψ |−1/2

(

xT Ψ−1x
)−q/2

= cACG(Ψ)g∗(x; Ψ)

where the constant wq = 2πq/2/Γ (q/2) represents the

surface area on Sq−1. Denote by cACG(Ψ) = w−1
q |Ψ |−1/2

the normalising constant where Ψ is a q × q symmetric

positive−definite matrix.
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2.3 Rejection Sampling for the Bingham Distribution

Kent et al. (2013) have demonstrated that one can draw

samples from the Bingham distribution using the ACG

distribution as an envelope density within a rejection

sampling framework. In particular, they proposed the

following algorithm to simulate a value from the Bing-

ham distribution with parameter matrix A:

1. Set Ψ−1 = Iq + 2
b A and M∗ ≥ sup

x

{

f∗(x)
g∗(x)

}

;

2. draw u from U(0, 1) and a candidate value y

from the ACG distribution on

the sphere with parameter matrix Ψ;

3. if u < f∗(y;A)
M∗g∗(y;Ψ) accept y; otherwise reject

y and go to Step 1.

Here, f∗(y; A) = exp(−yT Ay) and

g∗(y; Ψ) = (yT Ψ−1y)−
q

2 , the unnormalized Bingham

and ACG densities respectively, and b < q is a tun-

ing constant. We found that setting b = 1 as a default

works well in many situations, but an optimal value

can be found numerically by maximising the acceptance

probability 1/M (see, for example, Ganeiber 2012).

3 Bayesian Inference

3.1 Preliminaries

Consider the probability density function of the Bing-

ham distribution as given in (1). If A = V ΛV T is the

Singular Value Decomposition of A where V is orthog-

onal and Λ = diag(λ1, . . . , λq), then it can be shown

that if x is drawn from a distribution with probabil-

ity density function f(x; A), the corresponding random

vector y = XT V is drawn from a distribution with

density f(x; Λ) (see, for example, Kume and Walker

2006; Kume and Wood 2007). Therefore, without loss

of generality, we assume that A = Λ = diag(λ1, . . . , λq).

Moreover, to ensure identifiability, we assume that λ1 ≥

λ2 ≥ . . . λq = 0 (Kent 1987). We discuss in Section 3.3

how one can draw inference for an arbitrary symmet-

ric matrix A which may not necessarily be diagonal. In

the case where A = Λ the probability density function

becomes

f(x; Λ) =
exp

{

−
∑q−1

i=1 λix
2
i

}

c(Λ)
(3)

with respect to a uniform measure on the sphere and

c(Λ) =

∫

x∈Sq−1

exp

{

−

q−1
∑

i=1

λix
2
i

}

dSq−1(x).

Suppose (x1, x2, . . . , xn) is a sample of unit vectors

in Sq−1 from the Bingham distribution with density

(3). Then the likelihood function is given by

L(Λ) =
1

c(Λ)n
exp







−

q−1
∑

i=1

λi

n
∑

j=1

(

xi
j

)2







=
1

c(Λ)n
exp

{

−n

q−1
∑

i=1

λiτi

}

, (4)

where τi = 1
n

∑n
i=1

(

xi
j

)2
. The data can therefore be

summarised by (n, τ1, . . . , τq−1), and (τ1, . . . , τq−1) are

sufficient statistics for (λ1, . . . , λq−1).

3.2 Bayesian Inference

We are interested in drawing Bayesian inference for the

matrix Λ, or equivalently, for λ = (λ1, . . . , λq−1). The

likelihood function in (4) reveals that the normalising

constant c(Λ) plays a crucial role. The fact that there

does not exist a closed form expression for c(Λ) makes

Bayesian inference for Λ very challenging.

For example, if we assign independent Exponential

prior distributions to the elements of λ with rate µi (i.e.

mean 1/µi) subject to the constraint that λ1 ≥ λ2 ≥

. . . ≥ λq−1 then the density of the posterior distribution

of Λ up to proportionality given the data is as follows:

π(λ|x1, . . . , xn) ∝ L(Λ)

q−1
∏

i=1

exp{−λiµi}

× 1 (λ1 ≥ λ2 ≥ . . . ≥ λq−1)

=
1

c(Λ)n
exp

{

−

q−1
∑

i=1

λi(nτi + µi)

}

× 1 (λ1 ≥ λ2 ≥ . . . ≥ λq−1) . (5)

Consider the following Metropolis-Hastings algorithm

which aims to draw samples from π(λ|x1, . . . , xn):

1. Suppose that the current state of the chain

is λcur;

2. Update λ using, for example, a random walk

Metropolis step by

proposing λcan ∼ Nq−1 (λcur, Σ);

3. Repeat steps 1-2.
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Note that Nq−1 (m, S) denotes the density of a mul-

tivariate Normal distribution with mean vector m and

variance-covariance matrix S. Step 2 of the above algo-

rithm requires the evaluation of the ratio

π (λcan|x1, . . . , xn) /π (λcur|x1, . . . , xn), which in turn

involves evaluation of the ratio c(Λcan)/c(Λcur). There-

fore, implementing the above algorithm requires an ap-

proximation of the normalising constant. In principle,

one can employ one of the proposed methods in the

literature which are based either on asymptotic expan-

sions (Kent 1987), saddlepoint approximations (Kume

and Wood 2005) or holonomic gradient methods (Sei

and Kume 2013). Although such an approach is feasi-

ble, in practice, it can be very computationally costly

since the normalising constant would have to be approx-

imated at every single MCMC iteration. Furthermore,

despite how accurate these approximations may be, the

stationary distribution of such an MCMC algorithm

won’t be the distribution of interest π(λ|x1, . . . , xn),

but an approximation to it.

3.2.1 An Exchange Algorithm

The main contribution of this paper is to demonstrate

that recent developments in Markov Chain Monte Carlo

algorithms for the so-called doubly intractable distribu-

tions enable drawing exact Bayesian inference for the

Bingham distribution without having to resort to any

kind of approximations.

Møller et al. (2006) proposed an auxiliary variable

MCMC algorithm to sample from doubly intractable

distributions by introducing cleverly chosen variables in

to the Metropolis-Hastings (M-H) algorithm such that

the normalising constants cancel in the M-H ratio. Con-

sider augmenting the observed data x with auxiliary

data y, which has the same state space as x, leading to

the joint distribution

π(y, x, λ) = π(y|x, λ)π(x, λ),

where π(x, λ) = f(x|λ)π(λ) ∝ π(λ|x), the target pos-

terior distribution of interest. There is freedom of choice

in the conditional density π(y|x, λ). For example, this

could be the same density as that of the data x, evalu-

ated at some fixed value of λ, λ̂ say. This would require

a good representative value of λ, obtained for exam-

ple from a pseudo-likelihood estimator, for good per-

formance. Note also that it is necessary to store values

of the auxiliary variables from one iteration to the next.

A simpler version that avoids having to specify the

conditional density of the auxiliary variables was pro-

posed in Murray et al. (2006). Although both approaches

rely on being able to simulate realisations from the

Bingham distribution (see Section 2.3), we choose to

adapt to our context the approach presented in Murray

et al. (2006) because it is simple and easy to implement,

since a value of the parameter of interest does not need

to be specified. Proposals λ′ are drawn from a density

h(·|λ), although in general this density does not have to

depend on the current state of λ. For example, random

walk proposals centred at λ or independence sampler

proposals could be used. The algorithm proceeds as fol-

lows:

1. Draw λ′ ∼ h(·|λ);

2. Draw y ∼ f(·|λ′);

3. Accept the move from λ to λ′ with probability

min

(

1,
f∗(x|λ′)π(λ′)h(λ|λ′)f∗(y|λ)

f∗(x|λ)π(λ)h(λ′|λ)f∗(y|λ′)
×

c(Λ)c(Λ′)

c(Λ)c(Λ′)

)

,

where f∗(x; A) = exp(−xT Ax) is the unnormalized

Bingham density as previously and f is the normal-

ized density. Under this scheme, the marginal distribu-

tion of λ is the target posterior distribution of inter-

est, but crucially, note that all intractable normalising

constants cancel above and below the fraction. Hence,

the acceptance probability can be evaluated, unlike in

the case of a standard Metropolis-Hastings scheme. We

are thus able to draw samples from our target posterior

distribution, provided we can simulate exactly from the

Bingham distribution. The exchange move can be inter-

preted as offering the observed data x to the proposed

parameter λ′ and similarly to offer the auxiliary data

y the parameter λ.

This algorithm, due to Murray et al. (2006), is a spe-

cial case of a more general algorithm which draws two

sets of new auxiliary variables y and y′ at each iteration

(Storvik 2011). It is the special case where only propos-

als such that y = y′ have non-zero probability, so that

only one set of auxiliary variables need to be sampled.

In addition to removing the need to store the auxiliary

variables from the previous iteration, this choice also

negates the need to specify π(y|x, λ′), which is needed

in both the algorithm of Møller et al. (2006) and the

general algorithm just mentioned.
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3.3 Bayesian Inference for an Arbitrary Symmetric

Matrix A

Following Walker (2013) we have thus far assumed that

the matrix A in Equation 1 is diagonal. However, when

dealing with real datasets this may not necessarily the

case. Therefore, we now describe how to draw Bayesian

inference for a general symmetric matrix A, given data

x1, . . . , xn which are drawn from the corresponding Bing-

ham distribution.

Denote by aij the elements of (the random) ma-

trix A where aij = aji for i, j = 1, . . . , q. The likelihood

function is given by L(A) = exp (−
∑n

i=1 xT
i Axi)/c(A)n.

We assign independent Normal prior distributions to

each aij for i ≥ j with mean zero and variance v and

hence the posterior distribution has density propor-

tional to

exp
{

−
∑n

i=1 xT
i Axi

}

exp
{

− 1
2v aT a

}

c(A)n
, (6)

where a = (a1, . . . , ana
) is the vector of distinct ele-

ments of A, of which there are na = q +

(

q

2

)

.

To perform inference for A, based on a sample of n

points assumed to be from a Bingham distribution, we

can again apply the exchange algorithm. Suppose the

current value of A is Acur, with elements acur. We first

propose a move to a candidate value of A, Acan (with

elements acan) , drawn from some density h(·|Acur).

We then sample auxiliary data y, by sampling n data

points from the Bingham density (1) with parameter

Acan. In this paper, we use random walk Metropolis

updates for A, by drawing candidate values for the ele-

ments of Acan from a multivariate normal distribution

with mean vector acur and covariance matrix σ2
aI. We

find this satisfactory for our work here, but more elab-

orate proposals could be constructed, such as an inde-

pendence sampler which draws candidate values from a

good approximation to the posterior distribution of A;

we do not consider such proposals further in this paper.

In the general case, we can write A = V ΛV T , where

Λ is the diagonal matrix of parameter values consid-

ered previously, and V is an orthogonal matrix. Thus,

inference for Λ can be performed by decomposing each

sampled value of A in this manner, but we now also

obtain posterior samples for the orthogonal component

V . (Previously, when A was assumed to be diagonal, we

simply had V = I.) Again, for identifiability, we apply

the constraint λ1 ≥ λ2 ≥ . . . ≥ λq = 0.

3.3.1 Example

To illustrate inference for general A, we apply our method

to the data of Bingham (1974). The data consist of

n = 150 measurements of a certain axis of interest re-

lating to calcite grains from the Taconic Mountains of

New York state, and yield a moment of inertia (or sum

of squares and products) matrix

T =
150
∑

i=1

xix
T
i =







76.5575 18.2147 12.2406

18.2147 46.7740 6.8589

12.2406 6.8589 26.6670






.

We used the settings v = 100 and σ2
a = 0.04, and base

inference on a sample of N = 100000 values from the

posterior distribution (6). This value of σ2
a was found

by experimentation to result in good mixing properties

for the chain in this example, and altering σ2
a can affect

the mixing and increase autocorrelation in the chain. As

mentioned previously, more elaborate proposals could

be constructed, but this is not pursued further here. For

the diagonal component Λ, we obtain posterior median

values λ1 = 3.631 and λ2 = 1.963, compared with maxi-

mum likelihood estimates of λ̂1 = 3.518 and λ̂2 = 1.956.

For the orthogonal component of A, we have samples

V1, . . . , VN , obtained from the spectral decomposition

of each sampled matrix Ai, i = 1, . . . , N . To obtain a

summary value, we first form the element-wise sample

mean of V , V̄ = 1
N

N
∑

i=1

Vi. We then decompose this into

V̄ = V̂ K, where K = (V̄ T V̄ )1/2, the positive definite

square root of V̄ T V̄ , and V̂ is an orthogonal matrix

known as the polar part of V̄ (Mardia and Jupp 2000);

V̂ is then our estimate of the orthogonal component V .

We obtain

V̂ =







0.1795 −0.4404 0.8797

0.1394 0.8966 0.4204

−0.9738 0.0472 0.2223






.

The corresponding maximum likelihood estimate is







−0.1723 −0.4439 0.8794

−0.1516 0.8940 0.4216

0.9733 0.0606 0.2213







(Bingham 1974), the columns of which are the eigen-

vectors of T . Again, our estimates agree closely (up to

sign, since we have taken V to have determinant +1).
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4 Applications

4.1 Artificial Data

We illustrate the proposed algorithm to sample from

the posterior distribution of λ using artificial data.

Dataset 1 Consider a sample of n = 100 unit vectors

(x1, . . . , x100) which result in the pair of sufficient statis-

tics (τ1, τ2) = (0.30, 0.32). We assign independent Ex-

ponential prior distributions with rate 0.01 (i.e. mean

100) to the parameters of interest λ1 and λ2 subject to

the constraint that λ1 ≥ λ2; note that we also implic-

itly assume that λ1 ≥ λ2 ≥ λ3 = 0. We implemented

the algorithm which was described in Section 3.2.1. The

parameters were updated in blocks by proposing a can-

didate vector from a bivariate Normal distribution with

mean the current values of the parameters and variance-

covariance matrix σI, where I is the identity matrix and

the samples were thinned, keeping every 10th value.

Convergence was assessed by visual inspection of the

Markov chains and we found that by using σ = 1 the

mixing was good and achieved an acceptance rate be-

tween 25% and 30%. Figure 1 shows a scatter plot of the

sample from the joint posterior distribution (left panel)

whilst the marginal posterior densities for λ1 and λ2 are

shown in the top row of Figure 2. The autocorrelation

function (ACF) plots, shown in the top row of Figure 3,

reveal good mixing properties of the MCMC algorithm

and (by visual inspection) appear to be much better

than those shown in Walker (2013, Figure 1). Mardia

and Zemroch (1977) report maximum likelihood esti-

mates of λ̂1 = 0.588, λ̂2 = 0.421, with which our re-

sults broadly agree. Although in principle one can de-

rive (approximate) confidence intervals based on some

regularity conditions upon which it can be proved that

the MLEs are (asymptotically) Normally distributed,

an advantage of our (Bayesian) approach is that it al-

lows quantification of the uncertainty of the parameters

of interest in a probabilistic manner.

Dataset 2 We now consider an artificial dataset of 100

vectors which result in the pair of sufficient statistics

(τ1, τ2) = (0.02, 0.40) for which the maximum likeli-

hood estimates are λ̂1 = 25.31, λ̂2 = 0.762 as reported

by Mardia and Zemroch (1977). We implement the pro-

posed algorithm by assigning the same prior distribu-

tions to λ1 and λ2 as for Dataset 1. A scatter plot of a

sample from the joint posterior distribution is shown in

Figure 1 (right panel), showing that our approach gives

results which are consistent with the MLEs. Marginal

posterior densities for λ1 and λ2 are shown in the bot-

tom row of Figure 2, and ACF plots are shown in the

bottom row of Figure 3. This example shows that our al-

gorithm performs well when λ1 >> λ2 as well as when

the difference between λ1 and λ2 is much smaller, as

was the case in Dataset 1.

4.2 Earthquake data

As an illustration of an application to real data, we con-

sider an analysis of earthquake data recently analysed

by Arnold and Jupp (2013). An earthquake gives rise

to three orthogonal axes, and geophysicists are inter-

ested in analysing such data in order to compare earth-

quakes at different locations and/or at different times.

An earthquake gives rise to a pair of orthogonal axes,

known as the compressional (P ) and tensional (T ) axes,

from which a third axis, known as the null (B) axis is

obtained via B = P ×T . (Arnold and Jupp (2013) label

this the A axis, but we have used A for the parameter

of the Bingham distribution.) Each of these quantities

are determined only up to sign, and so models for axial

data are appropriate. The data can be treated as or-

thogonal axial 3-frames in R
3 and analysed accordingly,

as in Arnold and Jupp (2013), but we will illustrate our

method using the B axes only. In general, an orthogonal

axial r-frame in R
p, r ≤ p, is an ordered set of r axes,

{±u1, . . . ,±ur}, where u1, . . . , ur are orthonormal vec-

tors in R
p (Arnold and Jupp 2013). The familiar case of

data on the sphere S2 is the special case corresponding

to p = 3, r = 1, which is the case we consider here.

The data consist of three clusters of observations

relating to earthquakes in New Zealand. The first two

clusters each consist of 50 observations near

Christchurch which took place before and after a large

earthquake on 22 February 2011, and we will label these

two clusters CCA and CCB respectively. For these two

clusters, the P and T axes are quite highly concentrated

in the horizontal plane, and as a result the majority of

the B axes are concentrated about the vertical axis. It

is of interest to geophysicists to establish whether there

is a difference between the pattern of earthquakes be-

fore and after the large earthquake. The third cluster

is a more diverse set of 32 observations obtained from

earthquakes in the north of New Zealand’s South Is-

land, and we will label this cluster SI. We will illustrate
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Fig. 1 Sample from the joint posterior distribution of λ1 and λ2 for Dataset 1 (left) and Dataset 2 (right) as described in

Section 4.

our method by fitting Bingham models to the B axes

from each of the individual clusters and considering the

posterior distributions of the parameters of the diago-

nal component of the Bingham parameter matrix. We

will denote these parameters from the CCA, CCB and

SI models as λA
i , λB

i and λS
i respectively, i = 1, 2.

The observations for the two clusters of observa-

tions near Christchurch yield sample data of (τA
1 , τA

2 ) =

(0.1152360, 0.1571938) for CCA and

(τB
1 , τB

2 ) = (0.1127693, 0.1987671) for CCB. The data

for the South Island observations are

(τS
1 , τS

2 ) = (0.2288201, 0.3035098). We fit each dataset

separately by implementing the proposed algorithm.

Exponential prior distributions to all parameters of in-

terest (mean 100) were assigned, subject to the con-

straint that λj
1 ≥ λj

2 for j = A, B, S. Scatter plots from

the joint posterior distributions of the parameters from

each individual analysis are shown in Figure 4. The

plots for CCA and CCB look fairly similar, although

λ2 is a little lower for the CCB cluster. The plot for SI

cluster suggests that these data are somewhat different.

To establish more formally if there is any evidence

of a difference between the two Christchurch clusters,

we consider the bivariate quantity (λA
1 −λB

1 , λA
2 −λB

2 ). If

there is no difference between the two clusters, then this

quantity should be (0, 0). In Figure 5 (left panel), we

show the posterior sample of this quantity, and a 95%

probability region obtained by fitting a bivariate normal

distribution with parameters estimated from this sam-

ple. The origin is contained comfortably within this re-

gion, suggesting there is no real evidence for a difference

between the two clusters. Arnold and Jupp (2013) ob-

tained a p-value of 0.890 from a test of equality for the

two populations based on treating the data as full ax-

ial frames, and our analysis on the B axes alone agrees

with this.

The right panel of Figure 5 shows a similar plot for

the quantity (λA
1 − λS

1 , λA
2 − λS

2 ). Here, the origin lies

outside the 95% probability region, suggesting a dif-

ference between the first Christchurch cluster and the

South Island cluster. Arnold and Jupp (2013) give a

p-value of less than 0.001 for equality of the two popu-
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Fig. 2 Marginal posterior densities for λ1 and λ2 for Dataset 1 (top) and Dataset 2 (bottom) in Section 4.

lations, so again our analysis on the A axes agrees with

this.

4.2.1 Inference for full A

As well as testing for differences between the samples, it

is of interest to determine whether the B axes are verti-

cal, since the observed P and T axes lie approximately

in the horizontal plane. For the CCA cluster, our anal-

ysis yields an estimate of the dominant eigenvector of

A of (−0.0010,−0.0530, 0.9985), suggesting the B axes

are close to vertical, or equivalently that the P and T

axes are confined to the horizontal plane. For the CCB

cluster, the estimate of the dominant eigenvector of A is

(−0.0442,−0.0119, 0.9990), which is again close to the

vertical.
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Fig. 3 ACFs for λ1 and λ2 for Dataset 1 (top) and Dataset 2 (bottom) in Section 4.

5 Discussion

There is a growing area of applications that require in-

ference over doubly intractable distributions including

directional statistics, social networks (Caimo and Friel

2011), latent Markov random fields (Everitt 2012), and

large–scale spatial statistics (Aune et al. 2012) to name

but a few. Most conventional inferential methods for

such problems relied on approximating the normalis-

ing constant and embedded the latter into a standard

MCMC algorithm (e.g. Metropolis-Hastings). Such ap-

proaches are not only approximate in the sense that the

target distribution is an approximation to the true pos-

terior distribution of interest, but they can also suffer

from being very computationally intensive. It is only

until fairly recently that algorithms which avoid the

need of approximating/evaluating the normalising con-
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Fig. 4 Posterior samples for differences in λ1 and λ2 for the two sets of Christchurch data (left) and South Island and

Christchurch data A (right). This shows a clear difference between the South Island and Christchurch data, but suggests no

difference between the two sets of Christchurch data.

−4 −2 0 2 4 6

−
2

−
1

0
1

2
3

4

CCA−CCB

λ1
A − λ1

B

λ 2A
−

λ 2B

−8 −6 −4 −2 0

−
5

−
4

−
3

−
2

−
1

0
1

SI−CCB

λ1
S − λ1

B

λ 2S
−

λ 2B

Fig. 5 Posterior samples for differences in λ1 and λ2 for the two sets of Christchurch data (left) and South Island and
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stant became available; see Møller et al. (2006); Murray

et al. (2006); Walker (2011); Girolami et al. (2013).

In this paper we were concerned with exact Bayesian

inference for the Bingham distribution which has been a

difficult task so far. We proposed an MCMC algorithm

which allows us to draw samples from the posterior dis-

tribution of interest without having to approximate this

constant. We have shown that the MCMC scheme is i)

fairly straightforward to implement, ii) mixes very well

in a relatively short number of sweeps and iii) does not

require the specification of good guesses of the unknown

parameters. We have applied our method to both real

and simulated data, and showed that the results agree

with maximum likelihood estimates for the parameters.

However, we believe that a fully Bayesian approach

has the benefit of providing an honest assessment of

the uncertainty of the parameter estimates and allows

exploration of any non-linear correlations between the

parameters of interest. In comparison to the approach

recently proposed by Walker (2013) (which also avoids

approximating the normalising constant) we argue that

our algorithm is easier to implement, runs faster and the

Markov chains appear to mix better.

In terms of computational aspects, our algorithm is

not computationally intensive and this is particularly

true for the number of dimensions that are commonly

met in practice (e.g. q = 3). For all the results pre-

sented here, we ran our MCMC chains for 106 itera-

tions for each of the simulated and real data examples,

which we found to be sufficient for good mixing in all

cases. Our method was implemented in C++ and each

example took between 20 and 30 seconds on a desktop

PC with 3.1GHz processor1; note, that is considerably

faster than the algorithm proposed by Walker (2013) in

which “running 105 iterations takes a matter of minutes

on a standard laptop”. In general the time taken for our

proposed algorithm will depend on the number of auxil-

iary data points n that need to be simulated, as well as

the efficiency of the underlying rejection algorithm for

the particular parameter values at each iteration. In ad-

dition, the efficiency of the rejection algorithm is likely

to deteriorate as the dimension q increases. In partic-

ular, we found when we varied q from 3 to 7 that the

probability of acceptance in the rejection sampling step

was around 78%, 45%, 30%, 18% and 10% respectively.

These numbers reveal why we found our algorithm to

be very efficient for all our examples and efficient for at

1 Our code is available upon request.

least a moderate number of dimensions. However, we

anticipate that it will become slower (in CPU time) for

q ≥ 7.

In both the simulated and real datasets we chose

the proposal distribution h(λ
′

|λ) to be a multivari-

ate Normal distribution with mean the current value

of the chain and variance covariance matrix equal to

σI. Any drawn values which did not satisfy the con-

straint λ1 > . . . > λq−1 were rejected straight away.

The probability of the constraint being satisfied will

decrease with q and in consequence such a proposal

will become very inefficient for large values of q. There-

fore, we have also implemented an alternative proposal

distribution in which the constraint is implicitly taken

account. Consider for illustration the case where q = 3;

we draw λ
′

2 from a Normal distribution centered at the

current value of λ2 and then we draw λ
′

1 from a (trun-

cated) Normal distribution with mean λ1 subject to the

constraint that λ
′

1 > λ
′

2. It is easy to see how such a pro-

posal can be generalised for q > 3. We have performed

simulation studies (results not shown) and found that

such a proposal distribution is more efficient than the

standard random walk Metropolis when q and/or the

difference between the successive values of the eigen-

value λ, i = 1, . . . , q − 1 is large.

With regards to the choice of prior distributions we

assigned independent Exponential distributions with rate

µ to each λi, i = 1, . . . q − 1 and independent Normal

distributions with mean zero and variance v for the el-

ements of A. We have used largely uninformative prior

distributions in all applications and in particular we

chose µ = 10−2 and v = 102. However, we performed

some prior sensitivity analysis by choosing different val-

ues for both hyperparameters, e.g. 10−3 and 10−1 for

µ and 10 and 103 for v and we found that there no

material change in the inferred posterior distributions.

Statistical inference, in general, is not limited to

parameter estimation. Therefore, a possible direction

for future research within this context is to develop

methodology to enable calculation of the model evi-

dence (marginal likelihood). This quantity is vital in

Bayesian model choice and knowledge of it will allow

a formal comparison between competing models for a

given dataset such as the application presented in Sec-

tion 4.2.
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