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Abstract— Routine monitoring of the wire bonding process
requires real-time evaluation and control of wire bond quality.
In this paper, we present a nondestructive technique for detecting
bond quality by the application of a semisupervised classification
algorithm to process the signals obtained from an ultrasonic gen-
erator. Experimental tests verified that the classification method
is capable of accurately predicting bond quality, indicated by
bonded area measured by X-ray tomography. Samples classified
during bonding were subjected to temperature cycling between
−55 °C and +125 °C, and the distribution of bond life amongst
the different classes was analyzed. It is demonstrated that the
as-bonded quality classification is closely correlated with thermal
cycling life and can, therefore, be used as a nondestructive tool
for monitoring bond quality and predicting useful service life.

Index Terms— Heavy wire bonding, power electronic,
reliability, ultrasonic signal, X-ray tomography.

I. INTRODUCTION

IN POWER electronic modules, various components of
different materials with different thermal expansion coeffi-

cients (CTE) are connected together. The main components are
copper base plate, ceramic substrate, conductors, semiconduc-
tors, and wire bonds. The entire module is encapsulated with
silicone gel, closed with a lid and finally screwed down onto
a heat sink. For better thermal transfer from the module to the
heat sink, a thin layer of thermal interface material is used
(see Fig. 1). The manufacturing line of power electronic mod-
ules requires different assembly processes, such as soldering,
ultrasonic wire bonding, direct diffusion bonding of copper,
and pressure contacts.

Under operation conditions, power electronic modules dis-
sipate heat. Differences in CTEs cause the materials expand
and contract at different rates as the temperature fluctuates [1].
These thermomechanical load cycles can lead to degradation
and failure of material in the interconnections and finally
the whole module. For a high service life, therefore, the
connections within the modules must be robust and reliable.
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Fig. 1. Cross section view of power Insulated Gate Bipolar Transistor (IGBT)
module package.

Therefore, it is important for power electronic packaging
manufacturers to address the reliability issues at the design
stage and on the manufacturing line [2].

Among the most lifetimes, limiting factors in power elec-
tronic module reliability are wire bond liftoff and bond heel
cracking. Consequently, online evaluation of bond quality and
early detection of defects have been a concern for many
years. In general, the need for extracting reliable real-time
information and analysis during the wire bonding process can
be summarized as follows.

1) It can be used as a pretreatment method in the start-up
of production, so that faults or abnormalities in the wire
bonding process can be detected at the onset.

2) The production line can be optimized through online
analysis. If the wire bonding system makes weak bonds
continuously then the operator can detect the abnormal-
ity and stop the production.

3) Production processes can be streamlined by this method-
ology to identify varying bond quality to efficiently
allocate modules to suitable applications.

II. EVALUATION OF BOND QUALITY

There are a number of issues with traditional wire bond
quality evaluation methods, such as shear and pull tests. Apart
from the fact that they involve the destruction of the bonds
under evaluation and thus those bonds cannot be monitored

2156-3950 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY

Fig. 2. Driving mechanism of ultrasonic wire bonder.

over their lifetime, they can also be more of an indication
of the wire’s mechanical properties, rather than the integrity
of the interconnection itself. Unsurprisingly, there have been
several efforts in the literature looking at ways of obtaining
bond quality information without specimen sacrifice, with
varying degrees of success. These include characterization of
electrical impedance and output vibrations from the trans-
ducer [3]–[6]. Others have looked at the current envelope of
the ultrasonic signals [3], [7]–[9]. Although a number of these
methodologies are successfully able to discriminate between
extremes of bond quality (i.e., good and bad bonds) [9], [10],
none have demonstrated the ability to resolve subtle quality
differences, as might occur within one production batch as a
result of gradual tool wear, for example. More importantly,
the influence of such slight changes in quality on the spread
in predicted lifetimes has not been characterized.

In our previous work [11], we demonstrated a clear link
between differences in bond quality arising from the changes
in wire bonding parameters and the characteristics of the
current envelope of the ultrasonic signals obtained from the
transducer. In this paper, we examine whether the above
method can be used to discriminate subtle quality differ-
ences arising from bonds made from the same parameters
(e.g., as on a typical manufacturing line). A machine-learning
algorithm is employed, and 3-D X-ray tomography is used as
a nondestructive tool to evaluate the initial bond quality and
its through-life degradation.

III. PRINCIPLES OF SIGNAL DETECTION

In this paper, an F&K Delvotec semiautomatic wire bonder
was used. This wire bonder operates at a signal frequency of
approximately 58 kHz. It consists of an ultrasonic generator
and a bond-head. The main constituents of the bond-head are a
transducer (piezoelectric driver), which converts the ultrasonic
signals into mechanical oscillation, a voice coil motor, the
bond tool (wedge), a touch-down sensor, a wire guide, and a
cutter (see Fig. 2).

The ultrasonic generator has a phase-locked loop (PLL)
controller, and during bonding, the PLL tunes the frequency
output to the resonant frequency of the mechanical con-
stituents, namely, the transducer, tool, and sample. Because
the generator operates in constant-voltage mode, so the cur-
rent signal varies according to the mechanical impedance
presented to the transducer. Both the electrical impedance

Fig. 3. Typical signature of bond signal and its corresponding envelope.

and the resonant frequency are influenced by the conditions
at the bond interface during bonding. Thus, acquired current
signals directly reflect bonding conditions. Fig. 2 also shows
a schematic representation of the setup used in this paper for
signal detection, acquisition, and analysis.

IV. FEATURE SELECTION AND CLASSIFICATION METHOD

Electrical signatures were recorded for each bond at a
sampling rate of 12.5 MHz, in order to ensure that the
signals collected could resolve the variations anticipated. The
envelopes of the ultrasonic generator currents were computed
using the MATLAB codes as follows. First, the bond signal
was divided into 1000 intervals. Then, a fast Fourier trans-
form (FFT) was performed for each interval, and the root mean
square of the FFT magnitude was calculated at the frequency
of interest for the corresponding interval. Fig. 3 shows a typical
signature of a bonding signal and its corresponding envelope
of current.

Our previous research confirmed that the current envelope of
the electrical signal reflects the wire bonding machine parame-
ters, and the correlation between the bond signal characteristics
and the bond quality was confirmed by X-ray tomography
images [11]. In this paper, this correlation between is examined
for subtle change in bonding conditions, using a semisu-
pervised learning algorithm. A semisupervised approach is
appropriate in our case, because a small quantity of labeled
data (imaged bonded area) is available, while unlabeled data
are abundant. Semisupervised learning is halfway between
supervised and unsupervised learning [12]. It is of practical
value as it requires less training data than a fully supervised
method and is preferable to an unsupervised approach in terms
of accuracy [12]. Fig. 4 shows the typical procedures for a
semisupervised algorithm.

Transductive support vector machine and cotraining are
two of the well-known semisupervised algorithms [13].
Recently, researchers have shown an increased success with
graph-based semisupervised learning algorithms as an initial
guide for decision making [14]–[17]. In this paper, we used
a semisupervised dimension reduction algorithm referred to
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Fig. 4. Procedures for a semisupervised learning algorithm.

as semisupervised discriminate analysis (SDA) [13], [18] in
order to classify bond signals with respect to their quality.
It has been proposed that the SDA is able to reduce the
dimensionality of data in semisupervised cases, achieving a
much more efficient computation and has shown promising
performance in a variety of applications [19].

SDA focuses on finding a projection which characterizes
the discriminating structure from labeled data and also the
inherent geometrical structure from both labeled and unlabeled
data. In this algorithm, the labeled data points are specifi-
cally combined with unlabeled to build a graph incorporat-
ing neighborhood information. The graph allows a discrete
approximation to the local geometry of the data manifold.
Details of the workings of SDA algorithms are available in
the literature [13], [18], [20].

V. EXPERIMENTAL PROCEDURE

A total of 513, 99.999% pure aluminum wires, 375 µm
in diameter, were ultrasonically bonded at room temperature
onto silicon dies with a 5-µm-thick aluminum top metalliza-
tion with the following bonding parameters: time: 250 ms;
ultrasonic power: 145 digits; bond force start: 400 cN; bond
force end: 900 cN; and touchdown steps: 100 µm. Bonding
loop parameters were kept identical through all experiments
(see Fig. 5).

The bond signals of the bonds on silicon dies (see Fig. 5)
were collected at a sampling rate of 12.5 MHz. A Versa-
XRM 500 machine supplied by Carl Zeiss X-ray microscopy
was used for X-ray tomography. The bonds were subjected
to passive thermal cycling from −55 °C to +125 °C. From
the 513 bonds, 24 bonds were randomly selected for X-ray
tomography and imaged in their as-bonded condition, and then
after 700 cycles and 1400 cycles. The remaining bonds were
gently prodded with tweezers after every 100 cycles in order
to record any liftoffs or failures.

VI. RESULTS AND DISCUSSION

The results of the 24 bonds randomly selected for X-ray
tomography were analyzed by estimating the bonded area from

Fig. 5. Aluminum wire bonding on silicon dies.

Fig. 6. Current envelope of 24 selected bonds.

Fig. 7. Variation in bonded area in as-bonded condition.

2-D virtual cross sections of the interface in the xy plane. This
was done using ImageJ, an open-source image processing and
analysis software program. Figs. 6 and 7 show the variation
in bond signal envelope and the bonded area of the selected
wire bonds, respectively.
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Fig. 8. X-ray tomography images of classified signals in the xy plane in
as-bonded condition.

Fig. 9. Labeled signals according to measured bonded area.

According to the results of measured area, the bonds’
signals were classified into three classes, A, B, and C, and
the classified signals were used as labeled signals for the
classification algorithm. The number of classes is usually
arbitrarily chosen. In this case, we have been chosen three
classes for simplicity; however, this can be any number greater
than two. The bonds within class A had the largest attached
area and those within class C had the least attached area.
Fig. 8 shows the typical X-ray tomography images of the
bonded area in each class. The labeled signals according to
the measured bonded area are shown in Fig. 9. As can be
seen, the bonds with largest attached area (class A) have a
more uniform signal shape and received a more constant level
of power compared with the bonds with the least attached
area.

Fig. 10. Average lifetime of predicted classes.

Fig. 11. Cumulative frequency curve of three classes.

A. Classification

The 20% of all bond signals, with the exception of those
used as labeled data (98 bonds), were randomly selected as a
training set, and the remaining bonds were selected for the test
set (391 bonds). The SDA algorithm [13] was used to predict
the bonds’ classes. Meanwhile, all bonds were subjected to
thermal cycling (−55 °C to +125 °C) and inspected for the
occurrence of liftoffs at 100 cycle intervals. Fig. 10 shows that
the average lifetime of the class A bonds (with largest bonded
area) is longer than either the class B or class C bonds. The
results of model classifier performance thus indicate a strong
correlation between the inferences of bond quality made from
the bond signals and wire bond lifetime.

Cumulative frequency curves for the lifetime of the three
classes are shown in Fig. 11. Clear separation of the life-
times of the three classes can be observed, the onset of
liftoff for class A bonds being almost a factor of 2 higher
than for those in class C. The results of one-way analy-
sis of variance (ANOVA) tests also confirm a significant
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TABLE I

ONE-WAY ANOVA FOR WIRE BONDS LIFETIME DATA

TABLE II

INDIVIDUAL 95% CONFIDENCE INTERVAL FOR THE

MEAN OF WIRE BOND’S LIFETIME DATA

TABLE III

PRECISION VALUE FOR EACH CLASS

difference in the lifetime of wire bonds among the three
classes (see Tables I and II). This affirms the suitability of
the method for monitoring the quality of the bonding process.

The overall accuracy of the classifier was assessed by
comparing predicted classed and actual lifetime data. This is
the sum of all correct classified bonds over total number of
bonds. In this case, if we assume that the following holds.

1) Class A > 1800 cycles.
2) 1400 cycles ≤ class B ≤ 1800 cycles.
3) Class C < 1400 cycles.

Then, the overall accuracy would be 78%. The value of the
overall accuracy obviously depends on the assumption made
with regard to the lifetime boundaries of each class.

In addition to the overall accuracy, as described above, we
can also describe our model in terms of two other performance
indices: 1) precision values for individual classes derived as the
number of correctly predicted bonds over the total number of
predicted bonds in that class (see Table III) and 2) recall values
for individual classes derived as the total number of correctly
predicted bonds over the total number of actual bonds in each
class (see Table IV).

B. Degradation Rate

The bonds randomly selected for X-ray tomography were
imaged at 0 cycles (in the as-bonded condition), 700 cycles,
and 1400 cycles. The reduction of attached area was measured
to obtain the rate of degradation for the different classes. The
results are given for both class C and class A. As can be

TABLE IV

RECALL VALUE FOR EACH CLASS

Fig. 12. X-ray tomography images of two bonds in class C in the xy plane
in as-bonded condition, 700 cycles and 1400 cycles.

seen in Fig. 12, in the as-bonded condition, the bonds attached
from the middle and significant precracks appear around the
edge and in particular at the toe and heel of the bonds. After
700 cycles, cracks have started to grow inward from the edge,
and microvoids have begun to coalesce. After 1400 cycles, the
bond has almost lifted off as illustrated in the xz plane image
inset in Fig. 12.

Fig. 13 shows that in the as-bonded state, the bonds in class
A have a more bonded area compared with those in class C.
Again, precracks are evident around the edge of the bond
and in particular at the heel and the toe. After 1400 cycles,
microvoids have started to join together. The rate of degrada-
tion, measured in terms of the remaining bonded area, for both
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Fig. 13. X-ray tomography images of two bonds in class A in the xy plane
in as-bonded condition, 700 cycles and 1400 cycles.

Fig. 14. Bonds degradation rate in classes A and C.

classes is shown Fig. 14. The results indicate that both classes
degrade at almost the same rate, although the initial bonded
area of the class A bonds is significantly higher, leading to

Fig. 15. Classification results in (a) using fresh and plasma-cleaned dies,
(b) using fresh and without plasma cleaning, and (c) using old dies (stored
for four days in purged cabinet) and without plasma cleaning.

longer life. The estimated lifetime from the linear regression
lines in Fig. 14 agrees very well with the actual average
lifetime of the predicted class of class A in Fig. 10. In class C,
there is a slight difference between the estimated lifetime and
the actual average lifetime. This might be because the bonds
with a very small bonded area are prone to liftoff as a result
of gentle prodding with the tweezer. Therefore, it might be a
reason that the actual (tweezer test) lifetime is less than the
lifetime estimated from the residual bonded area.

C. Surface Treatment

Evidence from the previous work obtained from the lit-
erature confirms that appropriate surface treatment prior to
wire bonding improves wire-bonding strength by removing
contamination. In this paper, we also checked the performance
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of the presented method for different bond pad conditions.
This is shown in Fig. 15, which shows the effect of bond
surface condition on bond quality. In condition a, the bonds
were made on freshly manufactured and plasma-cleaned dies,
in condition b, bonds were made on freshly manufactured dies
without prior plasma cleaning, and in condition c, bonds were
made on manufactured dies which had been stored in a argon
purged cabinet for four days at room temperature. The results
from condition a shows that the samples contain no class C
bonds, in other words no weak bonds, and also confirm the
work of [21] that plasma cleaning can provide the best wire
bonding quality. The results from condition c clearly illustrate
how bond quality is reduced due to using old dies.

Overall, the method for bond quality assessment proposed
in this paper has been shown to be capable of distinguishing
between the differing levels of bond quality expected within
a batch of bonds exhibiting typical variation, which are not
solely due to the wire bonding machine and its parameters,
but also due to other factors, including the condition of bond
surface, such as cleanliness of die surface, freshness of die,
and bonding environment condition.

In Fig. 10, the predicted classes of bond quality show
some variation (see error bars), especially in bonds classified
as class A. However, the classification is strong enough to
demonstrate that the bonds may be separated into different
quality groups for the purposes of online quality monitoring
and evaluation of the wire bonding process. In addition, it is
important to note that the accuracy of prediction of the model
classifier can be improved by adding more labeled signals and
increasing the size of the training set.

VII. CONCLUSION

In this paper, we have reported a nondestructive, online
technique for detecting the quality of ultrasonically bonded
wires by the application of a semisupervised classification
algorithm to process signals obtained from the ultrasonic
generator. The role of the semisupervised algorithm was to
find the best model classifier using the labeled data and a
training set.

The method is unique in providing a nondestructive way
of evaluating wire bond quality in real time. All the steps
followed in this paper, such as the signal acquisition, data
analysis, classification, and lifetime production, can be car-
ried out instantaneously on the production line with minimal
additional infrastructural requirements. Therefore, it can be
used to detect any fault or abnormality continuously and in
real time, instead of relying on quality measurements at the
end of a batch or at given sampling intervals. The choice
of bonded area as the discriminating parameter at the time
of bonding has the further advantage that it is correlated
with thermal cycling lifetime and is, therefore, a good indi-
cator of the in-service reliability of the bond. This can be
applied to streamline production processes by, for example,
grading predicted product life based on the proportion of
high-quality bonds. The method can also be applied in the
development of improved bonding processes, or as illustrated
here, in the identification of optimized handling and cleaning
methods.

Finally, the proposed method possesses significant improve-
ment and effectiveness compared with other existing meth-
ods of real-time bond quality monitoring. In future work, it
would be interesting to evaluate the accuracy of the model
performance on new data sets, as it is important to have high
performance with new data.
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