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ABSTRACT 

The paper reports on dambreak-type swash experiments in which intra-swash hydrodynamics and 

sediment flux are measured for swash on a coarse sand beach and a gravel beach. Flow velocity and 

depth are measured using PIV and LIF respectively; the intra-swash sediment flux is measured using 

sediment traps. Comparison of measured hydrodynamics with the immobile, permeable bed 

experiments of Kikkert et al. (2013) indicate that bed mobility impacts on the swash hydrodynamics, 

reducing the maximum run-up by approximately 8% for both beaches, compared to the maximum 

run-up on the corresponding immobile beach. The measured intra swash sediment flux at a given 

location is characterised by high flux at the moment of bore arrival, followed by rapid decay during 

uprush, becoming zero at some time before flow reversal. For the gravel beach, the backwash 

sediment flux is negligibly small, while for the sand beach the backwash flux increases slowly as the 

flow accelerates down the beach, and peaks at about the time of maximum backwash velocity. Intra-

swash sediment flux calculated using the Meyer-Peter and Müller bed load transport formula, with 

measured hydrodynamics as input and bed shear stress estimated using both the Swart and Colebrook 

formulae, are within a factor 2 of the measured intra-swash flux. The agreement between the 

calculated and measured flux is better for the sand beach than for the gravel beach, and better for 

uprush than for backwash. For the sand beach there is good agreement between calculated and 

measured total uprush and total backwash sediment volumes. The agreement is less good for the 

gravel beach, for which calculated and measured uprush volumes show a similar trend but the 

calculated backwash volumes over-estimate the (negligible) volumes observed in the experiments.  
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1.0 INTRODUCTION 

Swash on steep, coarse-grained beaches is generated by the collapse of wave bores on the beach 

slope, resulting in high flow velocities with potential for substantial sediment flux and morphological 

change. Hydrodynamics and sediment dynamics within a swash event are complex because of the 

highly turbulent and aerated nature of the collapsing bore and the high unsteadiness and non-

uniformity of the flow across the swash zone.  In field conditions the complexity is augmented by 

interactions between swash events of varying magnitude and duration, caused by the varying period 

and amplitude of the incident waves, and by the effects of low-frequency water surface oscillations in 

the surf and swash zones.    

 

Field experiments investigating swash hydrodynamics and sediment dynamics have developed 

substantially over the last two decades in terms of the sophistication of the instruments deployed and 

the degree to which detailed processes are captured by the measurements. Regarding sediment flux, 

sediment trapping has been used to measure total uprush and total backwash transport volumes 

(Hughes et al., 1997; Masselink and Hughes, 1998; Austin & Masselink, 2006; Masselink et al., 2009) 

and high-resolution bed elevation measurements across the swash zone have been used to obtain net 

sediment transport volumes for individual swash events (e.g. Blenkinsopp et al., 2011). These 

measurements are extremely valuable in terms of quantifying sediment fluxes and morphological 

change for swash events in the field. However, they do not provide a complete picture since they 

reveal little (in the case of traps) or nothing (in the case of bed elevation measurements) of the 

sediment flux during a swash event. In principle, measurements of intra-swash sediment flux can be 

obtained from co-located measurements of velocities and concentrations, but obtaining these 

measurements sufficiently accurately over the complete water column to give total sediment flux 

through the full swash cycle remains a significant practical challenge (Blenkinsopp et al., 2011).  

 

In the laboratory, small-scale wave flumes have been used to study swash hydrodynamics over 

immobile, impermeable beaches (e.g. Petti and Longo, 2001; Cowen et al., 2003; Gedik et al., 2005; 

Shin and Cox, 2006; Sou et al., 2010; Rivillas-Ospina et al., 2012). Large-scale wave flume experiments 

have studied sand suspension processes in the swash zone (Alsina and Caceres, 2011; Caceres and 

Alsina, 2012), interactions between surf and swash bed dynamics (Alsina et al., 2012), the effects of 
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long waves, wave groups and random waves on surf and swash bed dynamics (Baldock et al., 2011) 

and beach groundwater effects on swash sediment transport (Masselink and Turner, 2012). These 

have yielded insights into swash zone sediment processes and morphology, but, as for field 

experiments, estimates of swash sediment transport are either inferred from bed elevation 

measurements or are limited to suspended sediment flux based on co-located velocity and suspended 

sediment concentration measurements. More recently, van der Zanden et al. (2015) and Puleo et al. 

(in press) obtained measurements of intra-swash sediment concentrations and velocities within the 

sheet-flow layer of swash in large-scale wave flume experiments. The studies used conductivity-based 

instrumentation for the concentration measurements; for the sheet-flow velocities, Puleo et al. (in 

press) used an acoustic velocity profiler while van der Zanden et al. (2015) cross-correlated 

concentration measurements from a pair of concentration probes horizontally separated by 15 mm. 

Neither method was successful in fully resolving the velocities through the sheet-flow layer and 

through the whole swash cycle. Nevertheless,  Puleo et al. (in press) combines their sheet-flow results 

with concentration and velocity measurements above the sheet-flow layer to estimate the relative 

contributions of suspended load and sheet-flow load to the total transport.  

 

The complexity of processes at work in the field and in large-scale wave flume experiments makes it 

difficult to isolate and quantify fundamental processes and to provide measurements of the kind 

needed for the development of swash numerical models. An alternative to wave flumes for laboratory 

swash experiments is to generate swash via a dambreak, whereby a reservoir of water is suddenly 

released in a flume, leading to a bore that collapses on a beach located downstream. The dambreak 

produces a single, highly repeatable, large-scale swash event, with bore depth, bore speed and 

maximum run-up comparable to that seen in the field under energetic wave conditions. The set-up 

avoids many of the complexities associated with swash in the field, and indeed with wave-generated 

swash in laboratory wave flumes, such as the variability in swash events, swash-swash interactions 

and the effects of low-frequency oscillations. This reduction in complexity, combined with the ability 

to repeat the same swash event many times, allows particular fundamental swash processes to be 

isolated and studied in detail. Moreover, dambreak swash experiments provide good benchmark data 

for numerical models since the boundary and initial conditions are well defined and data are available 

with high resolution in time and space. Barnes et al. (2009) used a dambreak set-up to directly 

measure intra-swash bed shear stress using a shear plate; a similar set-up was used by O’Donoghue 

et al. (2010) and Kikkert et al. (2012) to study the detailed hydrodynamics of swash over immobile, 

impermeable beaches of varying surface roughness, and by Kikkert et al. (2013) and Steenhauer et al. 

(2011) to measure hydrodynamics over and within immobile, permeable beaches. The present study 
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uses the same dambreak facility as used for these previous experiments, but with the beach now 

consisting of mobile sediment, the primary objective being to measure the intra-swash sediment flux 

for well-controlled swash conditions. Previous dambreak swash experiments involving a mobile 

sediment beach are limited to Othman et al. (2014), who used a sloping dambreak apparatus to 

measure swash uprush sediment transport at the end of a truncated slope, their particular focus being 

on the influence of grain size and pressure gradient on sediment transport, not on the detailed intra-

swash sediment flux. 

 

This paper reports on dambreak swash experiments in which intra-swash flow depth, flow velocity 

and sediment flux are measured at a number of cross-shore locations for swash on beaches consisting 

of mobile, coarse-grained sediment. The experiments involve two beach types: a coarse sand beach 

and a gravel beach. The experimental setup is the same as that used for the permeable, immobile 

beach experiments of Kikkert et al. (2013), which means that for each of the present mobile bed 

experiments, the incident bore, beach slope, beach material and beach permeability are the same as 

for the corresponding immobile beach experiment reported by Kikkert et al. (2013). Comparing 

hydrodynamic measurements from the present experiments with the hydrodynamic measurements 

from Kikkert et al. (2013) therefore enables the effects of bed mobility on the swash hydrodynamics 

to be isolated and quantified. More importantly, the present experiments yield measurements of 

intra-swash sediment flux for well-controlled, large-scale swash events. To the authors’ knowledge, 

intra-swash flux measurements of this kind, combined with detailed depth and velocity 

measurements, have not been reported previously. 

 

The details of the experimental setup are presented in Section 2. Section 3 presents the experimental 

results for shoreline motion, swash depths and depth-averaged velocities, including comparisons with 

results from the corresponding immobile bed experiments of Kikkert et al. (2012, 2013) in order to 

quantify the effects of bed mobility on the swash hydrodynamics. The measured intra-swash sediment 

flux is presented in Section 4, followed in Section 5 by a comparison of the measured flux with the flux 

calculated using a bed load sediment transport formula. Section 6 concludes the paper with a 

summary of the main results. 

 

2.0 EXPERIMENTAL SET-UP AND MEASUREMENTS 

 

2.1 Set-up and test conditions 
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The experiments were carried out using the same facility used by Kikkert et al. (2012, 2013).  A 

reservoir was placed at one end of a 20 m-long, 0.9 m-high and 0.45 m-wide, glass-sided flume (Figure 

1). The reservoir is fronted by a gate, which is rapidly lifted by a falling-weight mechanism to produce 

a dambreak-generated bore. The reservoir is 0.983 m long (inside dimension), 0.394 m wide and filled 

with water to a depth of 0.600 m; the water depth in front of the gate was set at 62 mm. A 1:10 beach 

was located downstream from the reservoir. The initial shoreline on the beach, corresponding to the 

intersection of the water surface with the top of the beach roughness, was 0.623 m from the toe of 

the beach and 4.82 m from the gate. The origin of the x z−  coordinate system is at the initial 

shoreline, with the x -axis parallel to the beach slope and positive shoreward, and the z -axis 

perpendicular to the slope. The gate is raised at time t  = 0, resulting in a plunging wave, which 

produces a bore, approximately 0.25 m high propagating with approximate speed 2.0 m/s towards 

the beach. The bore collapses on the beach, producing a single, repeatable swash event, with velocity, 

depth and maximum run-up magnitudes similar to those of full-scale swash in the field. 

 

Experiments were carried out on two beach types: a coarse sand (CS) beach with 50d  = 1.3 mm and a 

gravel (GV) beach with 50d  = 8.4 mm. Constant head permeameter tests (Steenhauer et al., 2012) 

established Forcheimer coefficients 81.2ka =  s/m, 3587kb =  sP

2
P/mP

2
P for the CS beach and 4.1ka =  

s/m, 383kb =  sP

2
P/mP

2 
Pfor the GV beach (here 2

k D k DI a u b u= + , where I  is hydraulic gradient and Du  is 

Darcy velocity); the sand is therefore an order of magnitude less permeable than the gravel.  The 

sediments are the same as those used for the corresponding immobile, permeable beach experiments 

reported in Kikkert et al. (2013), for which the top layer of the sediment beach was made immobile 

using a dilute cement mix, without changing the permeability (Steenhauer et al, 2011). The 

permeability of each of the present CS and GV mobile beaches is therefore equal to the permeability 

of each of the corresponding immobile, permeable beaches reported in Kikkert et al. (2013).  

 

The sediment occupied the full beach, i.e. from the surface of the 1:10 beach face to the floor of the 

flume. Lines corresponding to the required 1:10 beach slope were drawn on the glass sides of the 

flume and the beach surface was matched to these lines before each swash run. The 1:10 lines on the 

glass were approximately 1mm thick. Between runs the sediment bed was re-shaped by hand so that 

the top surface of the sediment bed was as close as possible to the top of the line, but never above or 

below; hence the variation in initial bed level between runs is estimated to be of the order of 1mm. 

No sediment was present on the horizontal bed of the flume between the gate and the beach, which 

means the incoming bore does not arrive at the shoreline already loaded with sediment. This feature 

of the experiment differs from swash in the field, where bore-advected sediment can make a 
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significant contribution to sediment flux on the beach (Alsina et al., 2011). The far (downstream) end 

of the beach was supported by a vertical sheet of 30 mm-thick marine plywood, drilled with several 

large-diameter holes and covered with 1 mm-diameter stainless steel mesh to allow the beach to 

drain. Each experiment started with the beach groundwater level equal to the water level in front of 

the reservoir (62 mm). This was achieved using a weir with 62 mm crest elevation placed 

approximately 0.5 m beyond the end of the beach (Figure 1). Between experiments the beach was re-

levelled to its 1:10 slope and the beach was given time to fully drain to the 62 mm groundwater level. 

Drainage times for the CS and GV beaches were approximately 60 mins and 6 mins respectively. 

 

2.2 Hydrodynamic measurements 

Simultaneous measurements of velocity and depth were obtained at a number of cross-shore 

locations using the combined particle image velocimetry (PIV) and laser-induced fluorescence (LIF) 

system previously described by Kikkert et al. (2012). The water in the reservoir was seeded with 

neutrally-buoyant 20 μm titania particles for the PIV measurements and with fluorescent dye 

(concentration 0.1 mg/l) for the LIF measurements. The PIV/LIF measurements were made at five 

cross-shore locations on the beach. At each location the Nd-YAG laser sheet was introduced to the 

flow through a window in the flume floor and a highly-polished perspex tower extending from the 

flume floor to the beach surface (Figure 1; see also Kikkert et al., 2013). Each tower was 20 mm wide 

and 200 mm long (in the cross-shore direction); the top edge had a 1:10 slope to match the beach 

slope and the height was such that the tower was flush with the beach surface at the measurement 

position. Velocities were not measured at the moment of bore arrival because of air bubbles and 

because of high sediment load blocking the light sheet. Thereafter, the presence of individual 

sediment grains in the flow give rise to spurious velocity vectors that were removed by the post 

processing. During the experiments the tower on the lower part of the beach became slightly exposed 

because of slight erosion in its vicinity; scour at the other towers was negligible. No tower was 

completely covered by sediment at the end of a swash run because accretion levels at the tower 

locations was close to zero. 

 

DANTEC Dynamic Studio v1.45 software controlled the PIV and LIF cameras, enabling synchronised 

PIV and LIF images to be recorded at a frequency of 13.5 Hz. The PIV-LIF measurements were triggered 

at the moment of gate release. For the CS beach, simultaneous velocity and depth measurements 

were obtained at five cross-shore locations: x  = 0.072, 0.772, 1.567, 2.377 m and 3.177 m. Because 

swash depth decreases with increasing x , the PIV camera view area was smaller higher up the beach: 

231 mm x 173 mm at x  = 0.072 m, reducing to 114 mm x 86 mm at x  = 3.177 m. The resulting 
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instantaneous velocity vector fields have spatial resolution between 2.5 mm (at x   = 0.072 m) and 1 

mm (at x  = 3.177 m), with corresponding random errors between 14 mm/s and 7 mm/s. The LIF-

measured flow depth has a random error between 0.3 and 0.1 mm. For the CS beach, the simultaneous 

velocity and depth measurements were repeated 10 times for each of the five measurement locations; 

more repeats were not possible because of the long time to drain the beach following each swash run.  

 

For the GV beach, simultaneous velocity and depth measurements were obtained at three cross-shore 

locations: x  = 0.072, 0.772 and 1.567 m; the lower maximum run-up on the gravel beach precluded 

measurements at higher x  . The PIV camera view area ranged from 241 mm x 181 mm at x   = 0.072 

m to 186 mm x 140 mm at x   = 1.567 m. The measured velocity vector fields have spatial resolutions 

between 2.4 mm and 1.9 mm, with random errors between 15 mm/s and 12 mm/s. The LIF-measured 

flow depth has a random error less than 0.3mm. For the GV beach, the simultaneous velocity and 

depth measurements were repeated 15 times for each of the three measurement positions. 

 

The ensemble-averaged depth at location x   and time t   was obtained from the LIF depth 

measurements via  

 

( ) ( )
1

1, ,
N

i
i

h x t h x t
N =

= ∑   (1) 

 

where ih   is the LIF-measured depth for run i   and N   is the number of repeats of the experiment (

N  = 10  for CS and N  = 15  for GV). Note that depth here refers to the distance from the 

instantaneous water surface to the top face of the PIV/LIF tower. The ensemble-averaged, depth-

averaged velocity at location x   and time t   was obtained via 

 

( ) ( )
1 0

1 1, , ,
ihN

i
i i

u x t u x z t dz
N h=

  〈 〉 =  
  

∑ ∫   (2) 

 

where angle brackets indicate depth averaging.  For the remainder of the paper we use simply ( )u t  

and ( )h t  to denote the ensemble-averaged, depth-averaged velocity and ensemble-averaged depth 

respectively. Figure 3 presents example depth and velocity measurements from individual runs and 

the corresponding ensemble-averaged results. 
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In addition to measuring depth at selected x  locations, measurements were also made of the swash 

lens (swash lens being the term used for the instantaneous cross-shore profile of flow depth). This 

was achieved by mounting the laser above the flume in order to illuminate approximately 0.3 m of the 

water surface from above and using LIF to obtain the time-varying flow depth over the 0.3 m extent 

of the measurement with frequency 13.5 Hz (Kikkert et al., 2012). By moving the laser and LIF camera 

between repeats of the swash event, we obtain depth measurements for multiple 0.3 m-long  cross-

shore portions of the lens. Combining these measuremenst with each other, and with the depth 

measurements from the PIV-LIF locations, yields the swash lens measurement. 

 

2.3 Sediment flux measurements 

Intra-swash sediment flux was measured using sediment traps. Different traps were used for the 

uprush flux and the backwash flux. The uprush trap (Figure 2) comprises a net and timing mechanism 

that allows the net to be raised at a predetermined time. The net material was chosen to ensure 

sediment is trapped while keeping net porosity as high as possible: muslin and 2 mm nylon netting 

was used for CS and GV respectively. To minimise interference with the uprush flow, the net extended 

beyond the point of maximum run-up. The net was held in place by frames made from 1 mm-thick, 25 

mm-wide aluminium bar; the frames were 204 mm high and 451 mm wide. Being slightly wider than 

the inside width of the flume, the good fit meant that no separate clamps were required, the trap was 

secure in the flow but sufficiently free to be rapidly lifted. The trap was placed with the bottom edge 

of its opening at a depth of 4-5 mm below the bed surface (corresponding to approximately 503.5d  

for the sand beach and 500.5d for the gravel beach). In the case of the gravel beach, individual particles 

are entrained by the flow and are bounced higher into the flow by collisions with neighbouring 

stationary particles; the result is that the gravel transport takes place above the initial mean bed level, 

not below.  The trap was raised vertically using an electromagnet-controlled falling-weight mechanism 

connected to the front frame of the trap by steel wire and pulleys. The time of the trap lift was 

controlled by a pulse generator triggered by the lifting of the reservoir gate. The delay programmed 

into the pulse generator takes into account the time delay between the release of the trap weight and 

the lifting of the net. The delay was measured at each trap position using a reed switch at the trap 

linked to the gate reed switch and the pulse generator: the average of 10 measurements of the delay 

was taken. The uncertainty in the time between the release of the trap weight and the net being raised 

is the largest source of timing error; the standard deviation of the 10 measurements was taken as a 

measure of the uncertainty and was found to range between 0.002 and 0.010 s across the five trapping 

locations. 
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The intra-swash uprush sediment flux at a given x   was measured by lifting the trap at different times 

for repeats of the swash event and measuring the (oven-dried) mass of sediment collected over the 

time interval. The uprush sediment flux for the thi  trapping period is then  

   

( ) ( ) ( )
1 1 ( ) ( 1)

1s
s L L

m i m iq i
w t i t iρ

 − − =  
− −  

  (3) 

  

where ( )Lt i   and ( )1Lt i −   are the trap lift times (s) for the thi   and previous time interval respectively; 

( )sq i  is the mean sediment flux per metre flume width (mP

3
P/s/m) over the time interval 

( ) ( )1L Lt i t i− −  ; sρ = 2650 kg/mP

3
P is the sediment density; w  = 0.45 m is the width of the flume; ( )m i  

and ( )1m i −   are the masses (kg) of sediment collected during the thi  and previous time interval 

respectively; ( )0L bat i t= =   = the time of bore arrival and ( )0m i =   = 0. The shortest time interval, 

corresponding to the time of bore arrival when flux is highest, was set at 0.2 s in order to ensure the 

interval time error does not exceed 5% (given a maximum uncertainty of 0.01 s in the timing). 

 

The backwash trap (Figure 2) is box-shaped, open at the front and faces up the beach. It comprises an 

aluminium frame, steel wire mesh on the bottom and at the back, and muslin on the sides. The trap is 

0.31 m high, 0.447 m wide (slightly narrower than the flume width) and 0.773 m long (sufficient to 

trap sediment entering at the front end). The trap is initially suspended above and parallel to the 1:10 

beach face using a support structure attached to the top rails of the flume. Operation of the trap 

involved lowering to the bed at a prescribed time during the backrush, holding on the bed, and raising 

at a prescribed time. Trap lowering to the bed is achieved via a compressed air-driven actuator (SMC 

CD85N25-300-B, 1.0 MPa max pressure). The actuator has a solenoid-controlled valve to control the 

direction of compressed air, and a 5-port air control, including 2 exhaust ports, which controls the 

input pressure and hence the acceleration and deceleration of the trap. The actuator enables the trap 

to be lowered very quickly; four springs provide cushioning as the trap comes in contact with the 

beach surface. The extent to which the bottom edge of the trap goes below the bed surface level is 

not known for the backwash. In the case of the gravel the backwash flux was negligibly low. For the 

sand, the lower backwash velocities (compared to uprush) mean that only the surface layer of sand is 

mobilised in the backwash. The thickness of the edging on the trap is less than one sand grain size, so 

even if the trap sits on the beach surface with no penetration the sand flux enters the trap. Like the 

uprush trap, the backwash trap timing is controlled by a pulse generator, triggered by the lifting of the 

reservoir gate. At the moment of gate lifting, the reed switch triggers the pulse generator, which sends 
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two delayed pulses to the actuator, the first to lower the trap and the second to lift it. The delay 

programmed into the pulse generator for lowering the trap takes into account the time required for 

the trap to travel from its suspended position above the beach to the beach surface. The uncertainty 

in the time that the trap is on the beach surface is the largest source of error in the backwash timing. 

For this reason the trapping times are measured for each experiment individually via a micro-switch 

attached to one of the guiding rods. The switch is activated when the trap is within 3 mm of the beach 

surface; it therefore sends two pulses to the data acquisition system, one corresponding to the trap 

reaching the bed and the second corresponding to the lifting from the bed. Estimates for the error 

due to the variability in the down-time, as a percentage of the time the trap is on the beach surface, 

varied between 0.7 and 10.6%.  

The intra-swash backwash sediment flux is calculated from  

 

( ) ( ) ( )
1 1 ( )

s
s up dn

m iq i
w t i t iρ

  =  
−  

  (4) 

 

where ( )dnt i   and ( )upt i   are the times (s) of trap lowering and raising respectively; ( )sq i   is the mean 

sediment flux per unit flume width (mP

3
P/s/m) over the time interval ( ) ( )up dnt i t i−   and ( )m i   is the 

mass (kg) of sediment collected during the time interval. 

 

For the CS beach, uprush and backwash sediment flux measurements were made at four cross-shore 

locations, at x   = 0.602, 1.447, 2.286 and 3.117 m (the locations of the sediment flux measurements 

were slighty seaward of the PIV-LIF measurements in order to avoid the perspex towers).  At each 

location, uprush and backwash flux was measured for 5 time intervals (except at x   = 3.117 m for 

which backwash flux was measured for 3 time intervals), and measurements were repeated 3 to 6 

times.  

 

For the GV beach, uprush sediment flux measurements were made at x   = 0.602, 1.447 and 2.286 m; 

the lower maximum run-up on the gravel beach precluded measurements at higher x  . At  x   = 0.602 

and 1.447 m, the uprush flux was measured for 5 time intervals, with 3 to 4 repeats of each 

measurement; for x   = 2.286 m, the uprush flux was measured over one time interval only because 

of the short duration of the swash at this position. No backwash flux measurements were made for 

GV because backwash flux was negligible at all measurement locations in this case. 
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Table 1 presents the details of the sediment flux measurements: 176 measurements were made in 

total, covering four  x -locations for CS and three  x -locations for GV, with typically five intra-swash 

times at each location and typically four repeats of each measurement. Note that the beach was fully 

drained to the initial 62 mm groundwater level and restored to its 1:10 uniform slope between each 

run. 

 

3.0 EXPERIMENTAL RESULTS: HYDRODYNAMICS 

 

3.1 Shoreline motion and maximum runup 

The swash lens measurements have been analysed to determine shoreline motion through the swash 

cycle, with instantaneous shoreline position defined as the cross-shore location where the 

instantaneous lens depth is 5 mm (Kikkert et al., 2012).  The ensemble-averaged shoreline trajectories 

for the mobile CS and GV beaches are presented in Figure 4, along with the shoreline trajectory results 

from the corresponding immobile, impermeable and immobile, permeable beach experiments 

reported by Kikkert et al. (2012, 2013).  

 

Shoreline motion for the mobile CS beach (Figure 4a) is similar to that for the corresponding immobile 

beaches during the first 1 s following bore arrival. Within this time the shoreline advances 

approximately 2.3 m. Thereafter shoreline deceleration increases as the shoreline approaches 

maximum run-up. The deceleration is higher and the maximum run-up correspondingly lower for the 

mobile CS beach compared to the immobile beaches: maximum run-up is 3.95 m, reached at 5.33 s, 

compared with a maximum run-up of 4.33 m and 4.53 m for the immobile permeable and immobile 

impermeable beaches respectively. There is therefore a 13% reduction in maximum run-up between 

the immobile, impermeable beach and the mobile beach, with two thirds of this reduction arising from 

bed mobility and one third from bed permeability. For the relatively low-permeability CS beach 

therefore, the effect of bed mobility is more significant than the effect of bed permeability in terms 

of maximum run-up. Backwash shoreline motion is similar for the three beaches, although the speed 

of shoreline retreat is a little higher for the mobile and permeable beaches compared to that of the 

impermeable beach: an average speed of approximately 1.5 m/s for t  ≥ 7 s on the mobile and 

permeable beaches compared with an average speed of 1.3 m/s for the impermeable beach. The 

slightly higher retreat speed is likely due to infiltration into the mobile and permeable beaches during 

backwash (as discussed by Steenhauer et al. (2011) and Kikkert et al. (2013), 33% of the water volume 

crossing x   = 0.072 m infiltrates the CS permeable beach, with 13% of this infiltration occurring during 

the backwash). 
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Figure 4(b) shows the measured shoreline trajectory for the mobile GV beach. The trajectory is similar 

to that of the corresponding immobile, permeable beach (except close to maximum run-up, between 

3.5 and 4.5 s), but it is very different to that of the corresponding immobile impermeable beach. 

Infiltration is much greater for the GV beach compared with the CS beach, with 45% of the water 

volume that crosses x   = 0.072 m infiltrating the GV beach during uprush (Steenhauer et al., 2011).  

Maximum run-up on the mobile beach is 2.7 m, occurring at 4.5 s, compared with a maximum run-up 

of 2.93 m and 3.95 m on the immobile permeable and impermeable beaches respectively. For GV 

therefore, the effects of permeability on shoreline motion are much more significant than the effects 

of bed mobility: maximum run-up on the mobile beach is 32% lower than maximum run-up on the 

corresponding immobile, impermeable beach, with 26% of this being due to the permeability.  

 

3.2 Swash depths 

Figure 5 presents swash lenses for twelve intra-swash times on the CS beach and Figure 6 presents 

the ensemble-averaged depth time-series for the five ( ),u h   measurement locations. The lenses and 

depth time-series for the GV beach are presented in Figures 7 and 8.  

 

In the case of CS, the lenses and depth time-series for the mobile beach are similar to those of the 

immobile permeable and impermeable beaches. Significant differences in the lenses are seen only at 

times close to maximum uprush (i.e. between 4.52 and 6 s), when the mobile bed lenses tend to be 

lower than the immobile bed lenses; significant differences in the depth time-series are seen only at 

locations far up the beach slope ( x  = 3.177 m in Figure 6), where mobile bed depths are lower than 

the immobile bed depths. These results are consistent with the results for shoreline trajectory seen in 

Figure 4, and are also consistent with the hypothesis that bed mobility serves as an added momentum 

sink through an increase in the effective bed roughness and through fluid-particle interactions.  

 

In the case of GV (Figures 7 and 8), the high permeability of the mobile and immobile permeable 

beaches results in the swash lenses for these beaches being very different to those of the immobile 

impermeable beach: the lenses for the mobile and permeable beaches are lower than those of the 

impermeable beach and extend much less far up the beach (lower maximum run-up). At the same 

time, the mobile bed and permeable bed lenses are rather similar (but not the same), underlining the 

earlier result that the effects of bed permeability are more significant than the effects of bed mobility 

in the case of GV. Differences in swash depth between the mobile and the immobile, permeable 

beaches are seen in the region x   > 1 m, where depths on the mobile beach are up to 20 mm higher 
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than on the the immobile, permeable beach during the later uprush. The reason for the difference is 

likely related to the fact that gravel entrained lower down the slope tends to deposit in this region 

during uprush, thereby increasing the bed level and forcing the free surface upwards by an amount 

equivalent to 1 – 2 sediment grain diameters. 

 

3.3 Swash velocities 

The depth-averaged velocity measurements are presented in Figures 9 and 10. For the CS beach 

(Figure 9), except far up the beach, uprush velocities for the mobile beach are similar to those of the 

immobile beaches in terms of the timing and magnitude of the maximum velocity, the flow 

deceleration and the timing of flow reversal. Noticeable differences occur in the backwash, with 

backwash velocities for the mobile beach and the immobile permeable beach being lower than 

backwash velocities on the impermeable beach. Also, the mobile beach backwash velocities are lower 

than the permeable beach backwash velocities for three of the five measurement locations. The 

difference at x   = 3.177 m reflects the lower maximum runup on the mobile beach, while the lower 

backwash velocities at x   = 0.072 and 1.567 m may be an effect of an increase in the effective bed 

roughness and momentum loss to fluid-sediment interactions, as more sand becomes mobile during 

the later stages of the backwash.  

Figure 10 presents the depth-averaged velocity time-series for the three measurement locations on 

the GV mobile beach. As for the GV shoreline trajectories, the results are dominated by the effects of 

permeability, with backwash velocities on the mobile and immobile permeable beaches being much 

lower than those on the impermeable beach. Backwash velocities are low in the case of the GV mobile 

beach  - up to a factor of 2 lower compared with the CS mobile beach – which means there is limited 

capacity for backwash sediment mobility in the case of the GV beach.  

  

4.0 EXPERIMENTAL RESULTS: SEDIMENT FLUX 

Figure 11 presents the processed flux results. The figure shows the intra-swash sediment flux for the 

four flux measurement locations on the CS beach and the three flux measurement positions on the 

GV beach. All 176 individual flux measurements are shown (although not all are visible because of 

overlapping results); the average flux at each x   and t   is indicated by the horizontal line, the length 

of which indicates the sediment trapping time interval for the measurement. The transported masses 

of sediment are substantial: the highest uprush mass recorded was approximately 3.5 kg, occurring at 

x   = 1.447 m on the GV beach; this equates to a 7.8 kg/m uprush mass, which is comparable to uprush 

masses measured in the field (Blenkinsopp et al., 2011).  (Note that a subset of the CS data was 

reported by Briganti et al. (2012) and used thereafter by Hu et al. (2015); the results presented here 
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constitute the entire experimental dataset for the two beaches and contain corrections to the bore 

arrival times and, consequently, to the sediment flux at bore arrival reported in Briganti et al. (2012)).   

 

There is generally good agreement between individual flux measurements for given x   and t   and the 

results are consistent in terms of their variation with x   and t  , and consistent with visual observations 

made during the experiments. For each x   the sediment flux is highest at the time of bore arrival, 

decays rapidly with time thereafter and reaches zero at some time before flow reversal. Peak uprush 

flux is much higher for GV than for CS – a factor 2 higher approximately - consistent with a higher bed 

shear stress arising from the rougher bed. In the backwash, the flux is slow to build up as the flow 

accelerates down the beach. For the GV beach, the backwash sediment flux is negligibly small. For the 

CS beach the backwash flux peaks at about the time of maximum backwash velocity; peak backwash 

flux is higher and occurs later in time for lower locations on the beach, consistent with the backwash 

velocities. No sediment was transported off the beach onto the horizontal bed between the gate and 

the beach. This is because the supercritical backwash flow jumps to subcritical below the initial 

shoreline location (but still on the slope) at the end of the backwash, with the result that particles in 

suspension settle to the bed, raising the bed elevation in this region by a few millimetres in the case 

of the CS beach and by order of a grain size in the case of the GV beach (note that bed elevation was 

not measured). This is consistent with the creation of a bed-step at a backwash bore as described by 

Zhu and Dodd (2015). In addition to the accretion observed below the initial shoreline, accretion also 

occurred in the mid-to-upper swash, reaching an estimated (not measured) maximum of order of a 

few millimeters in the case of CS and of one grain size in the case of GV. After each swash run the 

sediment was re-distributed to restore the 1:10 beach slope by matching the beach surface to the 

lines marked on the glass sides of the flume. 

 

5.0 SEDIMENT TRANSPORT CALCULATION 

In Section 5.2 we apply a sediment transport formula to the experimental conditions: we take the 

measured hydrodynamics as input to the transport formula and compare the formula-calculated intra-

swash sediment flux with the measured flux. Because the sediment transport formula is bed shear 

stress-based, we first give some consideration to estimating bed shear stress for swash flow.   

 

5.1 Swash bed shear stress 

We assume the instantaneous bed shear stress, bτ , relates to the instantanteous flow through  

 

1
2b bf u uτ ρ=  (5) 
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where ρ  is the water density (1000 kg/mP

3
P) and bf   is the bed friction factor. For steady flows and 

oscillatory flows, bf  depends on Reynolds number and relative roughness, and there are well-

established methods for estimating bf   for such flows. Swash bed shear stress is complicated by the 

flow’s high unsteadiness and non-uniformity. Measurements of intra-swash bed shear stress have 

been obtained by Conley and Griffin (2004) using a hot-fim sensor at a field site, by Barnes et al. (2009), 

Pujara et al. (2015) and Jiang and Baldock (2015) using a shear plate on laboratory impermeable and 

mobile slopes, and by Kikkert et al. (2012, 2013) using log-law fitting to PIV-measured velocity profiles 

over laboratory impermeable and permeable beaches. Such measurements have yet to result in a 

predictive formula for intra-swash bed shear stress.    

 

In the absence of an established predictor, here we estimate bf   using two methods. The first is based 

on the Swart formula (1974) commonly used to calculate friction factor for wave-driven oscillatory 

flow conditions. The approach was previously used by Othman et al. (2014) to estimate friction factor 

for their laboratory overwash experiments and by Masselink and Turner (2012) for swash flows in field 

conditions. The Swart formula is  

 

0.194

0.0025exp 5.213b
s

af
k

−  
 =  
   

  (6) 

 

where a   is the amplitude of the oscillatory flow water particle displacement and 502.5sk d=   is the 

bed roughness, with 50d   the sediment size. Applied to swash, we estimate a   from 

 

2
s

sd
Ta u
π

=   (7) 

 

where sdu   is the standard deviation of ( )u t   at a given x   location in the swash zone and s end baT t t= −   

is the swash “period”, with bat  being the time of bore arrival at x   and endt   the time corresponding to 

the end of the swash at x   (when the backwash velocity is zero). Substitution for a   in equation (6) 

yields a time-invariant bf   for the given x   location. Of course, the applicability of Swart to swash flow 

is questionable: for Swart the near-bed hydrodynamics are established over multiple flow cycles and 

the flow depth is much greater than the oscillatory boundary layer thickness. In contrast, here we 
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have a single flow “cycle” with peak velocity occurring at the start of the cycle and flow depth varying 

and becoming very shallow in the late backwash. 

  

A disadvantage of Swart in the context of predictive modelling is the need to know the swash period 

sT   and the velocity standard deviation sdu   a priori. The second method used to estimate bf   is the 

Colebrook formula which calculates instantaneous bf   based on the instantaneous flow depth and 

velocity:  

 

10
1 2.512log

3.7 Re
s

h

k
Dλ λ

 
= − + 

 
   (8) 

 

where 4 bfλ = , 4hD h=   and Re uh
ν

=  is Reynolds number, with ν   being the water kinematic 

viscosity. Again, the applicability of Colebrook for estimating swash flow bf   is questionable for a 

number of reasons. First, the Colebrook formula is applicable to conditions in which the boundary 

layer is fully developed, a condition that is unlikely to be met at, and soon after, the time of bore 

arrival at a location on the beach. Second, the Colebrook formula applies to turbulent flow, a condition 

that is not met close to the time of flow reversal (in addition, Re = 0 at flow reversal, giving a singularity 

for bf   at this time) and towards the very end of the backwash (when both flow depth and flow 

velocity are low); this is a minor concern however in the context of estimating intra-swash sediment 

flux because the percentage of the swash duration for which the flow is not turbulent is small (less 

than 5% in the mid-swash) and velocities are very low at these times. Third, in the late backwash a 

fully-developed boundary layer cannot occur because of the limited water depth as the flow becomes 

increasingly shallow; a Lagrangian-type model as suggested by Barnes and Baldock (2010) may be 

more appropriate at this stage of he swash. Moreover, in the extreme late backwash, when the flow 

depth is extremely shallow, the flow regime becomes akin to flow over obstacles rather than a 

boundary layer flow condition. 

 

To compare the two methods with each other, and to evaluate them against experimental data, we apply the 

methods to the experimental data of Kikkert et al. (2013), who measured swash depths and velocities at four cross-

shore locations on immobile, permeable coarse sand and gravel beaches and obtained estimates of the intra-

swash bed shear stress at each location based on log-law fitting to the measured velocity profiles.  Here we take 

the measured depth and velocity time-series as input to the Swart and Colebrook calculations. At each cross-shore 

measurement location the measurements give  bat   and ( )u t  , ( )h t  for ba endt t t< <   (u   and h  cannot be 
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accurately measured at, and immediately following, the moment of bore arrival because of air bubbles in the 

arriving bore front). The measured data are processed as follows to give ( )u t   and ( )h t   spanning the full swash 

period from bat t=   to endt t=  : (i) set endt   equal to the time of the last ( ),u h   measurement plus one 

measurement timestep; (ii) extrapolate the measured ( )u t   to find ( )bau t t=   and set ( ) 0endu t t= =  ;  (iii) 

extrapolate the measured ( )h t   to find ( )bah t t=   and set  ( )endh t t=   equal to the last measured depth; (iv)  

interpolate to get ( )u t   and ( )h t   at 200 evenly-spaced times between bat  and endt  . An example calculation is 

shown in Figure 12: it takes Kikkert et al.’s (2013) measured ( )u t   and ( )h t   at x   = 0.772 m on their coarse sand 

beach as input and calculates bf   and bτ   using Swart and Colebrook. The Swart  bf   is time-invariant with, for 

this example, a value of 0.0125. The Colebrook bf   is time-varying and lower than Swart bf   for most of the swash; 

the lowest Colebrook bf   for this example is 0.0085, approximately 0.7 times the Swart bf  , and occurs around 

midway during the uprush when the flow depth is a maximum and the Colebrook relative roughness s

h

k
D

  is a 

minimum. In the late backwash the flow depth becomes shallow, leading to a rapid increase in the relative 

roughness and to Colebrook bf   reaching twice the value of Swart bf  .  The differences between Swart and 

Colebrook bf   are reflected in the calculated bed shear stresses, ( )b tτ   , shown in the bottom panel of Figure 12. 

Note that the large difference in  bf   in the late backwash translates to a relatively small absolute difference in bτ   

because of the low velocities at this time.  

 
Figure 13 shows the Swart- and Colebrook-calculated ( )b tτ   obtained using the measured depths and 

velocities for all four locations on Kikkert et al.’s (2013) coarse sand and gravel beaches; Kikkert et al.’s 

log-law-based estimates of ( )b tτ   are also shown. A comparison between the Swart and Colebrook 

bed shear stresses ( bSτ   and bCτ   respectively) is presented differently in Figure 14 by plotting bSτ   

versus bCτ  . The results show that bSτ   is generally greater than bCτ   during uprush; the ratio of bSτ   

to bCτ    in the uprush lies in the range 0.9 < bS

bC up

τ
τ

< 1.7 across all locations on the two beach types, 

with the value of the ratio mainly dependent on cross-shore position. In the early backwash bSτ   and 

bCτ   are in close agreement, while in the late backwash bCτ   becomes increasingly greater than bSτ ; 

the ratio of bSτ   to bCτ   in the backwash lies in the range 0.5 < bS

bC back

τ
τ

< 1.1 for CS and in the range 

0.25 < bS

bC back

τ
τ

< 1.1 for GV, with the value of the ratio mainly dependent on time in the backwash. 
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In Figure 13, Kikkert et al.’s (2013) experimental results for ( )b tτ  , based on log-law fitting to the 

measured velocity profiles, show the same general behaviour as Colebrook and Swart – decreasing bτ   

during uprush, increasing in the early backwash and decreasing again in the late backwash – but the 

results show significant scatter and varying level of agreement with Swart- and Colebrook-calculated 

bτ , depending on position on the beach and depending on uprush or backwash. Figure 15 shows the 

comparison by plotting calculated bτ   (taken as the mean of bSτ   and bCτ  ) against experimental bτ  . 

The calculated bτ   lies mostly within a factor 2 of the experimental values for both beaches, but tends 

to be higher than the experimental bτ   during uprush and much lower in the late backwash. Note that 

the experimental results cannot be taken as ground truth in this comparison because the unsteady 

and non-uniform nature of the flow means that the validity of the log law is questionable and its 

practical application difficult, which may explain some of the scatter in the experimental results. We 

note that a previous comparison of log-law-based measurements of swash bed shear stress over 

impermeable beds showed reasonable agreement with corresponding shear plate measurements for 

uprush, but very poor agreement in the backwash, with the log-law backwash estimates being much 

higher than the shear plate backwash estimates (O’Donoghue et al., 2010). 

 

5.2 Intra-swash sediment flux 

Given the relatively large sediment size, the sediment flux is treated as bedload with the Meyer-Peter 

and Müller formula used to estimate the instantaneous flux, i.e. 

 

( ) ( )1.53
501s g crq C s gd

θ
θ θ

θ
= − −    (9) 

 

where C   is a constant, gs  = 2.65 is sediment specific weight, g   is acceleration due to gravity and 

( ) 501
b

gs gd
τ

θ
ρ

=
−

 is instantaneous non-dimensional bed shear stress, with water density ρ  = 1000 

kg/mP

3
P; cθ   is the non-dimensional bed shear stress corresponding to the threshold of sediment motion 

and is here calculated in the same way as in Othman et al. (2014), including an adjustment for the bed 

slope. We process the measured ( )u t   and ( )h t   from the present mobile bed experiments in the 

same way as previously described, calculate ( )b tτ   via the Swart and Colebrook formulae and use 

equation (9) to obtain two estimates of the intra-swash sediment flux, ( )sq t   , one based on the Swart-
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calculated ( )b tτ   and the other based on the Colebrook-calculated ( )b tτ  . In applying Swart and 

Colebrook we make no allowance for the fact that the bed is now mobile, even though the presence 

of a moving sediment layer may increase the bed shear stress somewhat (Jiang and Baldock, 2015). 

For steady flows, a value of 8 is normally used for the constant C   in the Meyer-Peter and Müller 

formula; here we adopt C   = 12, as is often used in the case of unsteady and oscillatory flows (e.g. 

Nielsen, 2006). Note that the choice of value for C   (12 or 8) generally has a similar level of impact 

on the calculated instantaneous flux as the choice of Swart or Colebrook for the friction factor.   

 

Figure 16 presents the calculated and measured intra-swash flux for four locations on the CS beach 

and two locations on the GV beach (flux measurements at the third flux-measurement location on the 

GV beach give only one point for the time-series). The experimental results shown are the averaged 

results from Figure 11 and include a horizontal line to indicate the trapping time interval for the 

measurement. For the purpose of comparing the measured and calculated flux, we ignore the 

difference (approximately 0.1 m) in the position of the sediment flux and the position of the 

hydrodynamic measurements: i.e. we assume the flux measured at the location adjacent to the ( ),u h   

measurement location can be attributed to the ( ),u h   measurement location.    

 

In Figure 16, uprush sediment flux based on Colebrook is always lower than that based on Swart, 

reflecting the differences already seen between Swart- and Colebrook-calculated bf   for uprush; the 

differences are more apparent for sq   than for bτ   because of the higher power dependence of sq   

on bf   ( 1.5,b b s bf q fτ ∝ ∝  ) . With the exception of x   = 1.567 m for the GV beach, there is good 

agreement between the Colebrook- and Swart-based estimates of the peak uprush flux at the time of 

bore arrival; the large difference at  x  = 1.567 m on the gravel beach is due to the relatively low value 

of a   at this location, which increase bSτ   relative to bCτ  . In the backwash, the Colebrook and Swart 

estimates are in good agreement in the early backwash; differences become apparent in the late 

backwash when high Colebrook friction factors result in higher sq   compared to the Swart sq .  

  

As shown in Figure 17, uprush flux calculated using Swart and Colebrook generally lies within a factor 

2 of the measured uprush flux. In some cases (e.g. CS, x   = 2.377 m) the level of agreement between 

the measured and calculated uprush flux is remarkably good. Agreement is generally poor in the 

backwash. For the CS beach, there is reasonable agreement in terms of the magnitude of the peak 

backwash flux (at least compared to Swart), but there is discrepancy in the timing of the peak and of 

the backwash flux generally: the calculated backwash flux is generally higher than the measured flux 
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early in the backwash, it peaks sooner and is lower than the measured flux late in the backwash. In 

the case of GV, the measured backwash flux is negligibly small but the calculated sq   show a small 

backwash flux at  x  = 1.567 m and significant backwash flux at x   = 0.772 m. This difference between 

calculated and measured backwash sq   for GV is at odds with the backwash bed shear stress results 

for GV seen in Figure 13, in which the measured backwash bed shear stresses at these x   are similar 

to or higher than the calculated bed shear stress. A possible explanation is that both the calculated 

and log-law-based measures over-estimate the actual bed shear stress in the backwash. Another 

possibility is that the flux is limited by flow depth. In the late backwash when velocity is high, the flow 

depth is shallow and rapidly decreasing. For example, in the case of GV,  x  = 0.772 m, the bulk of the 

calculated backwash flux occurs in the time period 6 < t   < 8 s, during which time the flow depth 

decreases from 75 mm to 10 mm, i.e. from about 9 grain diameters depth to about 1 grain diameter 

depth. It is unlikely that such shallow flows have the capacity to convey the bedload normally 

associated with bed shear stress levels indicated by the calculated and measured backwash bed shear 

stresses. 

 

While C   = 12 in the Meyer-Peter and Müller formula gives good estimates of the uprush flux for the 

present experiments, we note that Othman et al. (2014) report C   in the range 22 – 42 (Table 7 in 

Othman et al., 2014) when they apply Meyer-Peter and Müller to their measurements of sediment 

load overwashing a truncated slope, with bed shear stress estimated using various methods, including 

Swart and Colebrook. The difference in C   between the present study and Othman et al. (2014) may 

be due to error in estimating the uprush bed shear stress, in the present study and/or in Othman et 

al. (2014): the difference in C   between the two studies is of order factor 3, which would correspond 

to a factor 2 difference in the bed shear stress. The difference in C   may also be due (wholly or partly) 

to the difference in the experimental set-up: while the present experiments involve sediment flux 

measurements over a continuous and deep sediment beach, Othman et al. (2014) measured the 

sediment volume overwashing a truncated slope comprising a shallow (20 mm) sediment bed on a 

hard surface.  

 

5.3 Net volume transport 

Figure 18 presents the measured and calculated total sediment volume transported during uprush 

and backwash at each location on the two beaches. The measured volumes in Figure 18 are simply the 

volumes of sediment collected when the trap was in position for the whole of the uprush or backwash 

duration; the calculated volumes are obtained from the integral of the uprush and backwash flux time-

20 
 



series for all five ( ),u h   measurement locations on the CS beach and all three ( ),u h   measurement 

locations on the GV beach.  

 

For the CS beach, the measured uprush and backwash volumes decay monotonically with distance up 

the beach for x   > 0.6 m, which means this stretch of beach is accreting during uprush and eroding 

during backwash. Uprush accretion is lower in the lower swash compared to the mid and upper swash, 

while backwash erosion is highest in the mid-swash and low in both the lower and upper swash. The 

net result over the full swash event is accretion in the lower swash, no change in the mid-swash and 

net accretion in the upper swash.  Note that the net volume changes are small: if converted to a mean 

bed level change over the region, the result is approximately 0.25 mm accretion in the lower swash 

and approximately 1 mm accretion in the upper swash. For the CS beach, the calculated volumes agree 

reasonably well with each other and with the measured volumes, echoing the level of agreement seen 

in the uprush flux time-series in Figure 16. A difference between the measured and calculated volumes 

is the higher calculated uprush volume at x   = 1.567 m, implying erosion between x   = 0.772 m and 

x   = 1.567 m, as opposed to the accretion implied by the measured volumes. At x   = 0.072 m the 

calculated uprush volumes are low compared to the volumes at x   = 0.772 m because at this x   the 

bore has relatively large depth (Figure 6) and low velocity  (Figure 9), being so close to the initial 

shoreline position where the bore has not yet fully collapsed onto the beach. The calculated volumes 

imply uprush erosion, backwash accretion and net erosion in this very low region of the swash 

(consistent with observations made during the experiment). Note that the difference in the Swart-

based and Colebrook-based estimates of uprush volume is larger at x   = 0.072 m compared to 

elsewhere on the beach because the large depth at this location increases the Colebrook relative 

roughness, thereby decreasing the Colebrook friction factor, as previously discussed.  

 

The measured volumes for the GV beach indicate uprush erosion in the lower swash region, uprush 

accretion in the upper swash region and no change in the backwash, although with only three 

measurement positions the trends are not well resolved.  The net volume changes are again small: 

converted to a mean bed level change, the result is approximatley 1.5 mm erosion in the lower swash 

and approximately 4 mm in the upper swash. The calculated uprush volumes show a similar trend to 

the measured uprush volumes – erosion in the lower swash followed by accretion in the upper swash 

– but there is greater discrepancy between the measured and calculated volumes compared to CS, 

and greater discrepancy between Swart and Colebrook compared to CS; the discrepancy between 

Swart and Colebrook is largest at x   = 0.072 m where, again, the large depth results in lower Colebrook 

friction factor compared with Swart. In the backwash the measured volumes were negligibly small 
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(indicated as zero in Figure 18) while the calculated volumes imply increasing backwash erosion over 

the full swash region.  

 

6.0 CONCLUSION 

Dambreak-type swash experiments have been conducted in which intra-swash hydrodynamics and 

sediment flux have been measured for swash on mobile coarse sand and gravel beaches. The following 

are the main conclusions: 

 

(i) Apart from the bed mobility, the experimental set-up is the same as for the immobile, 

permeable beach experiments of Kikkert et al. (2013), which enables the effects of sediment 

mobility on the swash  hydrodynamics to be quantified. The results indicate that bed mobility 

impacts on the hydrodynamics, reducing the maximum run-up by approximately 8% for both 

beaches compared to maximum run-up on the corresponding immobile beach. For the sand 

beach, the effect of bed mobility on the uprush hydrodynamics seems to be more significant 

than the effect of bed permeability, while for the gravel beach the effects of permeability are 

dominant.  

(ii) The measured intra swash sediment flux at a given location in the swash zone is characterised 

by high flux at the moment of bore arrival, followed by rapid decay during uprush, becoming 

zero at some time before flow reversal. The highest uprush flux on the gravel beach is 

approximately a factor 2 higher than the highest uprush flux on the sand beach. For the gravel 

beach, the backwash sediment flux is negligibly small, while for the sand beach the backwash 

flux increases slowly as the flow accelerates down the beach, and peaks at about the time of 

maximum backwash velocity.  

(iii) Uprush bed shear stress estimated using Swart is generally higher than that estimated using 

Colebrook; for the swash conditions considered in this study, the ratio bS

bC up

τ
τ

  reached a 

maximum value of 1.7, occurring in the lower swash where uprush flow depth is largest. In 

the backwash, Colebrook-estimated bed shear stress becomes increasingly greater than 

Swart-estimated bed shear stress; for the swash conditions considered in the present study, 

the  maximum value of bS

bC back

τ
τ

was approximately 2 for the CS beach and 4 for the GV beach. 

(iv) Bed shear stresses calculated using Swart and Colebrook lie mostly within a factor 2 of the 

swash bed shear stress estimates obtained by Kikkert et al. (2013) using log-law fitting to 

velocity profiles measured over immobile permeable beaches. For uprush, the calculated bed 
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shear stresses tend to be higher than the experimental values; in the backwash, the 

experimental peak bed shear stresses are a factor 2 higher than the calculated values (but we 

note that a previous comparison of log-law-based estimates of bed shear stress with shear 

plate measurements also showed poor agreement in the backwash, with the log-law 

backwash estimates being much higher than the shear plate backwash estimates). 

(v) Intra-swash sediment flux calculated using the Meyer-Peter and Müller bed load transport 

formula, with bed shear stress estimated using Swart or Colebrook, are generally within a 

factor 2 of the measured intra-swash flux. The agreement between the calculated and 

measured flux is better for the sand beach than for the gravel beach, and better for uprush 

than for backwash. For the sand beach there is good agreement between the calculated and 

measured total uprush and total backwash sediment volumes. The agreement is less good for 

the gravel beach, for which the calculated and measured uprush volumes show a similar trend 

but the calculated backwash volumes over-estimate the (negligible) volumes observed in the 

experiments.  

 

The measurements from the present study constitute a unique but limited dataset on intra-swash 

sediment flux: more experiments are needed to cover a greater range of swash and sediment 

conditions, including finer sediments for which the effects of flow unsteadiness and non-uniformity 

are likely to be substantial. More work is also needed  to formulate a robust bed shear stress model 

that is able to cover the wide range of hydrodynamic conditions occurring across the full swash zone 

and through the full swash cycle. Finally, the experimental data are available on request to the first 

author. 
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 Uprush Backwash 
x 

(mm) 
tRba 

(s) 
tRr 

(s) 
tRL 

(s) 
mR1 

(g) 
mR2 

(g) 
mR3 

(g) 
mR4 

(g) 
mR5 
(g) 

mR6 

(g) 
tRdn 

(s) 
tRup 

(s) 
mR1 

(g) 
mR2 

(g) 
mR3 

(g) 
mR4 

(g) 
CS: x = 0.062m 

 
 

602 

 
 

2.303 

 
 

4.788 

2.525 1175 1146 1180 - - - 5.933 6.475 9 7 8  
2.825 1918 1985 1927 1996 - - 6.45 6.99 14 14 -  
3.225 2024 2012 2205 2103 - - 6.983 7.463 163 131 148  
3.825 2309 1975 2144 2266 - - 7.485 8.068 498 440 454 478 
4.788 2550 2465 2270 2161 2293 2321 7.971 8.549 381 393 340 402 

CS: x = 1.447m 
 
 

1447 

 
 

2.625 

 
 

4.997 

2.841 956 812 777 858 - - 6.025 6.472 13 13 17 - 
3.141 1599 1844 1567 1712 - - 6.536 7.128 279 228 212 - 
3.541 1944 1931 2055 2194 - - 7.038 7.580 339 333 - - 
4.041 2067 2014 2034 2104 - - 7.525 8.107 245 251 212 - 
4.997 1949 2021 2016 2083 - - 8.000 8.622 65 67 70 - 

CS: x = 2.286m 
 
 

2286 

 
 

3.053 

 
 

5.194 

3.343 770 917 777 881 - - 5.529 6.084 12 13 14 - 
3.543 1147 1151 1123 1137 - - 6.047 6.632 26 5 14 - 
3.743 1277 1298 1370 1373 - - 6.565 7.148 68 95 - - 
4.143 1309 1417 1392 1378 - - 7.049 7.773 104 95 93 - 
5.194 1373 1452 1457 1451 - - 7.535 8.349 4 2 3 - 

CS: x = 3.117m 
 
 

3117 

 
 

3.613 

 
 

5.411 

3.831 450 470 478 395 - - 5.445 5.918 5 3 4 - 
4.031 632 675 664 670 - - 5.849 6.312 3 1 6 - 
4.231 771 676 797 722 - - 6.265 6.785 16 6 8 - 
4.631 829 794 776 760 - - - - - - - - 
5.411 747 830 742 713 - - - - - - - - 

 

GV: x = 0.062m 
 
 

602 

 
 

2.325 

 
 

4.817 

2.400 711 751 680 - - -  
 

Backwash transport ~ zero 
2.700 2138 2254 2154 2254 - - 
3.100 2712 2717 2567 2536 - - 
3.700 2740 2612 2710 2454 - - 
4.817 2711 2475 2820 2551 - - 

GV: x = 1.447m 
 
 

1447 

 
 

2.749 

 
 

5.093 

3.000 1749 1746 1665 1700 - -  
 

Backwash transport ~ zero 
3.300 2892 2862 2984 2845 - - 

3.700 3279 3111 3326 3247 - - 

4.300 3319 3436 3467 3382 - - 

5.093 3473 3378 3522 - - - 

GV: x = 2.286m 

2286 3.468 5.324 5.324 1170 1291 1417 1238 - - Backwash transport ~ zero 

          

 

Table 1. Sediment flux measurements: trap timings and measured masses of collected sediment. bat  
= time of bore arrival; rt  = time of flow reversal, uprush to backwash; Lt  = time at which uprush trap 

is lifted; dnt  = time at which backwash trap is lowered to the beach face; upt  = time at which 
backwash trap is lifted. 
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Figure 1: Schematic of experimental setup 
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Figure 2: Schematic of uprush sediment trap (left) and backwash sediment trap (right) 
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Figure 3: Example measured depth and depth-averaged velocity time-series (CS beach, 0.772mx = ); 

grey lines: 10 individual swash events; black line: ensemble-averaged result. 
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Figure 4:  Shoreline position for (a) CS and (b) GV beaches. Circles: mobile beach, present 

experiments; corresponding results from Kikkert et al. (2012, 2013) for impermeable beach (grey 

line) and permeable beach (black line) are also shown. 
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Figure 5: Swash lenses at 12 intra-swash times for the mobile CS beach (thick black line); 

corresponding results from Kikkert et al. (2012, 2013) for impermeable beach (grey line) and 

permeable beach (black line) are also shown. 

 

31 
 



 
Figure 6: Depth time-series at 5 locations on the mobile CS beach (thick black line);  corresponding 

results from Kikkert et al. (2012, 2013) for impermeable beach (grey line) and permeable beach 

(black line) are also shown. 

  

 

 

 

32 
 



 

Figure 7: Swash lenses at 12 intra-swash times for the mobile GV beach (thick black line); 

corresponding results from Kikkert et al. (2012, 2013) for impermeable beach (grey line) and 

permeable beach (black line) are also shown. 
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Figure 8: Depth time-series at 3 locations on the mobile GV beach (thick black line);  corresponding 

results from Kikkert et al. (2012, 2013) for impermeable beach (grey line) and permeable beach 

(black line) are also shown. 
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Figure 9: Time-series of depth-averaged bed-parallel velocity at 5 locations on the mobile CS beach 

(thick black line); corresponding results from Kikkert et al. (2012, 2013) for impermeable beach (grey 

line) and permeable beach (black line) are also shown; vertical dashed line indicates bore arrival 

time for the mobile beach. 
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Figure 10: Time-series of depth-averaged bed-parallel velocity at 3 locations on the mobile GV beach 

(thick black line);  corresponding results from Kikkert et al. (2012, 2013) for impermeable beach 

(grey line) and permeable beach (black line) are also shown; vertical dashed line indicates bore 

arrival time for the mobile beach. 
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Figure 11: Measured intra-swash sediment flux for (a) the CS beach and (b) the GV beach; symbols 

correspond to x   = 0.602m (circle), 1.447m (triangle), 2.286m (diamond) and 3.117 m (square); 

horizontal lines indicate average flux at each ( ),x t , with line length indicating trap duration; broken 

line joins average flux at each t   for same x  . 

37 
 



 

Figure 12: Example calculation of bf   and bτ   using Swart and Colebrook; input is ( )u t , ( )h t  

measured at x  = 0.772m on permeable coarse sand beach by Kikkert et al. (2013). Top: Measured 

( )u t   (circles) and measured ( )h t   (squares); lines through the data are extrapolated and 

interpolated ( )u t  and ( )h t . Middle and bottom:  bf   and bτ   respectively from Swart (solid line) 

and Colebrook (dashed line); vertical dashed lines correspond to bat t=   and endt t= . 
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 Figure 13: ( )b tτ  calculated using Swart (solid line) and Colebrook (dashed line); input is ( )u t , ( )h t  

measured by Kikkert et al. (2013) for swash on permeabe coarse sand (CS, left) and permeable 

gravel (GV, right) beaches; Kikkert et al.’s (2013) log-law-based ( )b tτ  also shown (black dots). 
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Figure 14:  Swart bed shear stress ( bSτ  ) plotted against Colebrook bed shear stress ( bCτ  ) ; input is 

( )u t , ( )h t  measured by Kikkert et al. (2013) for swash on (a) permeable coarse sand beach and (b) 

permeable gravel beach; measurements were made at 4 locations: x   = 0.072m (circles), 0.772m 

(squares), 1.567m (diamonds) and 2.377m (triangles); diagonal line is line of perfect agreement. 
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Figure 15:  Calculated bed shear stress (mean of bSτ and bCτ ) plotted against log-law-based 

experimental estimate of bed shear stress for Kikkert et al.’s (2013) (a) permeable coarse sand beach 

and (b) permeable gravel beach experiments; measurements made at 4 locations: x   = 0.072m 

(circles), 0.772m (squares), 1.567m (diamonds) and 2.377m (triangles); solid line is line of perfect 

agreement and dashed lines indicate factor 2 difference.  

 

41 
 



 

 Figure 16: Measured and calculated intra-swash sediment flux at four locations on the CS beach (top 

four panels) and two locations on the GV beach (bottom two panels). Circles: averaged experimental 

results from Figure 11 with horizontal line indicating trapping duration; solid line: calculated flux 

using measured ( )u t   as input and bf calculated using Swart; dashed line: calculated flux using 

measured ( )u t , ( )h t  as input and bf  calculated using Colebrook; vertical broken line indicates 

time of bore arrival; note different vertical scales for CS and GV. 
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Figure 17:  Calculated versus measured sediment flux for (a) the CS beach and (b) the GV beach; 

symbols correspond to x   = 0.772m (circles), 1.567m (squares), 2.377m (diamonds) and 3.177m 

(triangles); solid and open symbols are results based on Swart and Colebrook respectively; solid line 

is line of perfect agreement and dashed lines indicate factor 2 difference. 
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Figure 18: Measured (circles) and calculated (Swart: diamonds; Colebrook: squares) total uprush 

(open symbols) and total backwash (shaded symbols) sediment volumes transported on (a) the CS 

beach and (b) the GV beach; dashed line joins the measured values; vertical dash-dot line indicates 

location of maximum run-up. 
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