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ABSTRACT

Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of
which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mam-
mals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and fer-
rets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding af-
finity for human-like SA�2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The
emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were
fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1
virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely
track their continual adaptation in humans.

IMPORTANCE

Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes,
including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe
human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathoge-
nicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affin-
ity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe
pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat
of avian H5N6 viruses to humans should not be ignored.

On 7 May 2014, the Chinese National Health and Family Plan-
ning Commission (NHFPC) announced the first human case

of avian H5N6 influenza virus infection (1). Subsequently, three
more human infections with H5N6 virus cases were reported in
the winter of 2014-2015 (2, 3). Between 30 December 2015 and 2
January 2016, the NHFPC notified the World Health Organiza-
tion of two additional human cases of avian H5N6 virus infection.
All six human infections were presented as acute respiratory dis-
tress syndrome (ARDS) of which three were fatal. Five cases had a
common history of contact with or exposure to poultry or live-
bird markets before disease onset (1–3), suggesting zoonotic
transmission. Sequence analyses of the human H5N6 isolates in-
dicated that the virus was derived from clade 2.3.4.4 avian H5N6
viruses that are circulating in poultry in China (1, 2, 4).

Avian H5N6 influenza virus was first isolated from mallards in
North America in 1975 (5). In China, H5N6 virus first emerged in
2010 and has since been extensively circulating in both domestic
and wild birds (6–9). Recent surveillance data from the Ministry
of Agriculture of China indicate that H5N6 viruses have become
enzootic in domestic poultry. Unlike the worldwide distribution
H5N2 and H5N8 viruses (10–12), prevailing H5N6 viruses appear
to be largely confined to China and Laos (13). We recently char-
acterized the novel H5N6 viruses in poultry (14); however, their
zoonotic capability and characteristics are poorly understood. In
the present study, we examined the emergent H5N6 virus for its

genetic characteristics, receptor binding properties, pathogenic-
ity, and transmissibility in mice and ferrets.

MATERIALS AND METHODS
Ethical compliance. All animal work was approved by the Beijing Asso-
ciation for Science and Technology (approval SYXK [Beijing] 2007-0023)
and conducted in accordance to the Beijing Laboratory Animal Welfare
and Ethics guidelines, as issued by the Beijing Administration Committee
of Laboratory Animals, and in accordance with the China Agricultural
University Institutional Animal Care and Use Committee guidelines
(SKLAB-B-2010-003).
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Viruses. H5N1 virus A/chicken/China/0603/2008 (CN0603) and pan-
demic H1N1/2009 influenza virus A/Beijing/7/2009 (BJ09) were previ-
ously isolated in our laboratory (14, 15). The four H5N6 viruses were
isolated from ostensibly healthy ducks and geese in live poultry markets in
China between 2013 and 2014. Virus stocks were grown in specific-patho-
gen-free chicken eggs. The virus isolates were A/goose/Eastern China/
S0513/2013 (GS/EC/S0513/13), A/duck/Eastern China/S0711/2014 (DK/
EC/S0711/14), A/duck/Eastern China/S0322/2014 (DK/EC/S0322/14),
and A/duck/Eastern China/S0908/2014 (DK/EC/S0908/14). All experi-
ments with H5 subtype viruses were performed in biosafety level 3 con-
tainment approved by the Ministry of Agriculture of the People’s Republic
of China.

Phylogenetic analysis and molecular characterization. Viral RNA
was directly extracted from infected allantoic fluid by using an RNeasy
minikit (Qiagen, Chatsworth, CA), and reverse transcription was per-
formed using a Uni12 (5=-AGC AAA AGC AGG-3=) primer. PCR was
conducted using specific virus primers as described by Hoffmann et al.
(16). PCR products were purified with a QIAquick PCR purification kit
(Qiagen) and sequenced (Beijing BGI-GBI Biotech Co., Ltd.). Sequence
data were analyzed with DNAMAN5.2 (Lynnon Biosoft, USA). Phyloge-
netic analysis was performed by the distance-based neighbor-joining
method using software MEGA 4.1 (DNAStar, Inc.).

Receptor-binding specificity assays. �-2,6 glycans (6=SLN: Neu5Aca2-
6Galb1-4GlcNAcb-SpNH-LC-LC-biotin) and �-2,3 glycans (3=SLN:
Neu5Aca2-3Galb1-4GlcNAcb-SpNH-LC-LC-biotin) were kindly provided
by the Consortium for Functional Glycomics (Scripps Research Institute,
Department of Molecular Biology, La Jolla, CA). Receptor-binding spec-
ificity was determined by a solid-phase direct binding assay as previously
described (17). The receptor-binding specificities of the viruses were also
determined in hemagglutinin (HA) assays using 0.5% resialylated chicken
red blood cells (cRBCs). For the HA assay, sialic acid residues were enzy-
matically removed from cRBCs by incubation of the cells with 50 mU of
Vibrio cholerae neuraminidase (VCNA; Roche, San Francisco, CA) at 37°C
for 1 h, followed by resialylation using either with �2-6-N-sialyltransfer-
ase or �2-3-N-sialyltransferase (Sigma-Aldrich, St. Louis, MO) at 37°C
for 4 h (18).

Virus binding to human airway tissues. Human respiratory tract sec-
tions were kindly provided by Jiang Gu, Shantou University Medical Col-
lege. Paraffin-embedded 5-�m sections of normal human trachea and
lung tissue were deparaffinized in xylene and rehydrated by alcohol. Sec-
tions were then blocked with 4% bovine serum albumin in phosphate-
buffered saline (PBS), followed by virus incubation (at 64 HA units in PBS
per section) at 4°C overnight. After four washes in ice-cold PBS, the sec-
tions were incubated with mouse monoclonal antibody specific for influ-
enza nucleoprotein (NP; Abcam, Cambridge, United Kingdom) for 3 h at
4°C. Antibody binding was detected by fluorescein isothiocyanate
(FITC)-labeled goat anti-mouse IgG (Abcam, Cambridge, United King-
dom) incubated for 2 h at room temperature. The samples were examined
by confocal laser scanning microscopy (Leica TCS SP5 II; Leica Microsys-
tems). As controls, tissue sections were treated with Arthrobacter ureafa-
ciens sialidase (Sigma) in sodium acetate buffer (100 mM, pH 5.8) for 3 h
at 37°C prior to virus incubation.

Mouse challenge studies. Groups of five 6-week-old female BALB/c
mice (Vital River Laboratory) were anesthetized with Zoletil (tiletamine-
zolazepam [Virbac], 20 �g/g) and intranasally (i.n.) inoculated with 50 �l
of 10-fold virus serial dilutions from 106 to 101 50% egg infectious doses
(EID50). The mice in each group were monitored daily for 14 days for
weight loss and mortality to determine the 50% mouse lethal dose
(MLD50). Mice that lost �20% of their body weight were euthanized. The
MLD50 values were calculated according to the method of Reed and
Muench. Virus virulence levels in mice were categorized as low (MLD50 �
6.5 log10 EID50), medium (3 log10 EID50 � MLD50 � 6.5 log10 EID50), or
high (MLD50 � 3 log10 EID50) pathogenicity.

To detect systemic virus spread, three mice infected with 106 EID50 of
virus were euthanized on day 4 postinfection (p.i.). Tissue samples, in-

cluding lung, brain, spleen, and kidney samples, were collected for virus
titration.

Ferret challenge studies. All 6-month-old male Angora ferrets (An-
gora LTD), serologically tested by a hemagglutination inhibition (HI)
assay to be negative for currently circulating influenza viruses (H1, H3,
H5, H7, and H9), were �1.0 kg (range, 1.12 to 1.58 kg) in weight. Groups
of two ferrets were each anesthetized with ketamine (20 mg/kg) and xyla-
zine (1 mg/kg) and i.n. inoculated with 106 EID50 of test virus in a 1-ml
volume. The animals were subsequently euthanized on day 4 p.i., and
nasal turbinate, tonsil, trachea, lung, and spleen samples were collected
for virus titration. Lung tissues were also used for histology.

In the transmission experiment, groups of three animals were anes-
thetized and inoculated i.n. with 106 EID50 of virus. The next day, the
three inoculated animals were individually paired by cohousing with a
direct-contact ferret; a respiratory-droplet (RD)-contact animal was also
housed in a wire frame cage adjacent to the infected ferret. The infected
and RD-contact ferrets were 5 cm apart. To monitor virus shedding, nasal
washes were collected from all animals every other day for 12 days and
titrated for virus in eggs. Sera were collected from both inoculated and
contacted animals at 14 days p.i. Seroconversion was analyzed by HI assay.

Statistical analyses. Statistically significant differences between exper-
imental groups were determined by using analysis of variance with the
GraphPad Prism software package (GraphPad Software, Inc., La Jolla,
CA). A P value of �0.05 was considered statistically significant.

Nucleotide sequence accession numbers. Nucleotide sequences of
the gene segments of the four H5N6 viruses are available from GenBank
under accession numbers KP732567 to KP732726.

RESULTS
Phylogenetic analyses of four novel avian H5N6 influenza vi-
ruses. From 2013 to 2014, four H5N6 viruses were isolated from
apparently healthy ducks and geese in live bird markets in China.
All eight segments of each virus were sequenced in conjunction
with existing influenza A virus sequences deposited in GenBank,
and phylogenetic trees were constructed which revealed that the
hemagglutinin (HA) genes of all four avian H5N6 viruses are clus-
tered in the 2.3.4.4 clade (Fig. 1A). The HA gene fragments were
closely related to that of human-origin strains A/Guangzhou/
39715/2014 (H5N6) and A/Changsha/1/2014 (H5N6), and
A/Yunnan/0127/2015 (H5N6), since they shared 95.1 to 99.6%
nucleotide homology. The four neuraminidase (NA) genes belong
to the Eurasian lineage and are closely related to the H6N6 viruses
isolated from waterfowl in China (19). The four H5N6 strains
further form two phylogenetic groups: three viruses with 11-
amino-acid deletions in the NA stalk (positions 59 to 69) and one
full-length NA (Fig. 1B). Notably, the NA gene of the three hu-
man-origin H5N6 strains were with 11-amino-acid deletions in
the NA stalk. All internal genes of the four H5N6 viruses were
derived from highly pathogenic avian influenza (HPAI) H5N1-
like viruses (see Fig. S1 in the supplemental material). Not surpris-
ingly, the six internal segments of the four avian H5N6 viruses
shared high nucleotide identity (89.5 to 99.8%) with those of hu-
man H5N6 virus A/Guangzhou/39715/2014 (4). These data sug-
gest that the four avian H5N6 viruses share similar original ances-
tors with those of human-origin H5N6 viruses.

Although the four H5N6 viruses retained some molecular
characteristics of clade 2.3.4 H5N1 viruses, they contained signif-
icant mutations in key amino acid sites, particularly in their HA
genes (Table 1). Compared to clade 2.3.4 H5N1 viruses, the H5N6
viruses and most of other clade 2.3.4.4 viruses shared six amino
acid changes within the receptor-binding site (RBS) of HA: two
mutations in the 130-loop (S133L and S137A), three in the 190-
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helix (D187N, K193N, and Q196K), and one in the 220-loop
(S227R). Remarkably, HA genes of the clade 2.3.4.4 viruses, in-
cluding the four H5N6 isolates, lacked an N-linked glycosylation
site at position 158, whose absence is considered to promote re-
ceptor-binding affinity in guinea pig transmission (20). Comuta-
tion of the RBS and loss of the glycosylation site at residue 158
suggest that these H5 variants may confer receptor preference
changes. Mutations related to pathogenicity in mammals (21),

such as E627K and D701N in PB2, were not found in any of the
four avian isolates. However, E627K of PB2 was found in human
H5N6 isolates A/Guangzhou/39715/2014 and A/Yunnan/0127/
2015 (4). Molecular markers of oseltamivir and amantadine resis-
tance were not present in the NA and Matrix-2 protein sequences
of the avian H5N6 viruses (Table 1).

Avian H5N6 viruses exhibited comparable binding affinity
for avian and human sialic acid receptors. The binding specificity

FIG 1 Phylogenetic relationships of HA and NA genes of avian H5N6 viruses. The phylogenetic trees of HA gene (A) and NA gene (B) were determined using
the distance-based neighbor-joining method in software MEGA 4.1. The reliability of the tree was assessed by bootstrap analysis of 1,000 replicates. Horizontal
distances are proportional to genetic distance. The H5N6 viruses isolated in the present study are indicated in red. Human H5N6 viruses are indicated in purple.

TABLE 1 Analysis of molecular features associated with viral pathogenicity, transmissibility, and antiviral resistancea

Virus Clade

HA NA PB2

M2
31c

NS1

Cleavage site 158–160

RBS
Deletion
(59–69) 275b 627 701

Deletion
(80–84) 92187 193 196 133–137 225–228

H5N1 2.3.4 RERRRKR2G NNT D K Q SGVSS GQSG
DK/EC/S0711/14 (H5N6) 2.3.4.4 REKRRKR2G NDAb N N K LGVSA GQRG No H E D S Yes E
DK/EC/S0322/14 (H5N6) 2.3.4.4 REKRRKR2G NDA N N K LGVSA GQRG Yes H E D S Yes E
GS/EC/S0513/13 (H5N6) 2.3.4.4 REKRRKR2G NDA N N K LGVSA GQRG Yes H E D S Yes E
DK/EC/S0908/14 (H5N6) 2.3.4.4 REKRRKR2G NDA N N K LGVSA GQRG Yes H E D S Yes E
GD/39715/14 (H5N6) 2.3.4.4 REKRRKR2G NDA N N K LGVSA GQRG Yes H K D S Yes E
a H3 numbering was used. Amino acid changes from the clade 2.3.4 H5N1 viruses are indicated by underscoring. Abbreviations: HA, hemagglutinin; NA, neuraminidase; PB,
polymerase basic; M, matrix; NS, nonstructural; RBS, receptor-binding site; DK, duck; EC, Eastern China; GS, goose.
b Molecular markers of oseltamivir resistance.
c Molecular markers of amantadine resistance.

Transmissibility of H5N6 Influenza Viruses in Ferrets
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of HA receptor is a critical determinant for cross-species transmis-
sion of influenza A viruses (22, 23). We determined the affinity
specificity of the four H5N6 viruses by direct binding assays with
SA�2,3Gal and SA�2,6Gal sialylglycopolymers. A 2009 pandemic
H1N1 virus (BJ09) and the 2.3.4 clade avian H5N1 virus
(CN0603) that selectively bound SA�2,6Gal and SA�2,3Gal, re-
spectively, were used as controls. All four H5N6 viruses bound to
both SA�2,6Gal and SA�2,3Gal receptors at comparable levels
(Fig. 2A). Using resialyated cRBCs that expressed either
SA�2,6Gal or SA�2,3Gal, we also found that the four H5N6 vi-
ruses bound both �2,6-resialylated and �2,3-resialylated cRBCs
(Fig. 2B), an observation consistent with the direct virus-sialyl-
glycopolymer binding assay results. Therefore, all four H5N6 vi-
ruses of clade 2.3.4.4, isolated from waterfowl, have maintained
the affinity for avian-like SA�2,3Gal receptors and acquired con-
siderable affinity for human-like SA�2,6Gal receptor, suggesting
their potential to infect humans.

Extensive binding of avian H5N6 viruses to the upper and
lower human respiratory tract. The affinity of the four H5N6
viruses for SA�2,6Gal-linked receptor was further assessed on
human tracheal and lung sections. All four H5N6 viruses were
found to bind tracheal epithelial and alveolar cells (Fig. 3),
further affirming their potential ability to infect humans. Pre-
dictably, control avian H5N1 virus binding was restricted to
the alveoli, and control 2009 pandemic H1N1 virus was able to
attach to both epithelial lining of the trachea and alveoli (24).

Pathogenicity of avian H5N6 viruses in mice and ferrets.
Pathogenicity of the H5N6 viruses was compared with HPAI
H5N1 virus (CN0603) in mice and ferrets. All four H5N6 viruses
showed relatively low pathogenicity in i.n.-inoculated BALB/c

mice, with MLD50 values higher than 5.0 log10 EID50 (Table 2 and
Fig. 4). In contrast, H5N1 virus was lethal to mice at a low dose
(MLD50 of 1.0 log10 EID50). To assess for systemic virus spread,
various tissues were sampled for virus titration from mice at 4 days
p.i. with 106 EID50 of virus. All H5N6 viruses replicated well in the
lungs of mice, with titers ranging from 2.5 to 5.2 log10 EID50.
Systemically, DK/EC/S0322/14 (H5N6) virus was detected in the
kidneys and DK/EC/S0908/14 (H5N6) virus was detected in the
spleens of infected mice. No H5N6 virus was detected in the brain.
H5N1 virus, however, caused widespread systemic infection and
was readily detected in all tissues sampled, including the lungs,
spleen, kidneys, and brain (Table 2).

The HA and six internal segments of the four H5N6 avian
viruses shared high nucleotide identity, but their NA genes form
two phylogenetic groups: three viruses with 11-amino-acid dele-
tions in the NA stalk and one full-length NA (Fig. 1B). Since
amino acids deletions in NA stalk were thought to be related to
viral pathogenicity (25, 26), we selected two representative H5N6
strains GS/EC/S0513/13 and DK/EC/S0711/14 with or without
amino acids deletions in the NA stalk, respectively, in ferret exper-
iments. HPAI H5N1 virus (CN0603) was used as a control.
Groups of two ferrets were i.n. inoculated with 106 EID50 of virus,
and all individuals were euthanized on day 4 p.i. for virus titration
and histological examination. All ferrets infected with the H5N6
viruses showed no obvious clinical signs, except transient eleva-
tion of body temperature at day 1 p.i. Ferrets infected with control
H5N1 virus, on the other hand, displayed severe and early onset of
clinical signs such as wheezing and coughing. H5N1 virus-in-
fected ferrets produced generally high virus titers from all tissues
sampled: nasal turbinate, trachea, lung, and spleen (Fig. 5). Prog-

FIG 2 Avian H5N6 viruses exhibited comparable binding affinity for avian and human type of sialic acid receptors. (A) Binding affinity of inactivated viruses to
�2,3-linked (blue) and �2,6-linked (red) sialic acid polymers. Each data point is the means � the standard deviation (SD) of triplicate experiments. (B) HA assays were
performed using resialylated cRBCs. The HA titers of each test virus with 0.5% cRBCs were determined as follows: cRBCs (untreated control), �-2,3 cRBCs (VCNA
treated and resialylated with �-2,3 glycans), �-2,6 cRBCs (VCNA treated and resialylated with �-2,6 glycans), and desialylated (Desial) cRBCs (treated with VCNA).
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eny H5N6 (DK/EC/S0711/14) virus production was significantly
lower (P � 0.05) in the left cranial, left middle, left caudal, right
cranial, and right caudal lung regions and the spleen than corre-
sponding H5N1 virus-infected tissues (Fig. 5). The other H5N6
virus subtype (GS/EC/S0513/13) showed virus production from
the lung lobes and, to a lesser extent, the spleen that was compa-
rable to H5N1 virus infection; virus titers from nasal turbinate and
trachea were, however, significantly higher (P � 0.05) than those
from H5N1 virus infection (Fig. 5). Overall, our virus titration
results from infected ferrets indicate that both H5N6 virus sub-
types were capable of productive infection from the upper respi-
ratory tract (URT); however, virus replication in the lower respi-
ratory tract (LRT) and spleen was dependent on specific H5N6
virus subtype.

The pathological findings of H5N6 virus infection in ferrets
were consistent with the relatively mild clinical response. DK/EC/
S0711/14 virus-infected lungs appeared normal, but GS/EC/
S0513/13 virus-infected lungs showed multifocal areas of consol-
idation in the diaphragmatic and intermediate lobes. H5N1 virus-
infected lungs had the most severe lesions, with extensive
consolidation in all lobes (Fig. 6). Microscopic lesions from DK/
EC/S0711/14 virus-infected lungs showed mild bronchitis (Fig.
6C), and GS/EC/S0513/13 virus-infected lungs showed broncho-
pneumonia, characterized by a dropout of mucous epithelium
and inflammatory cells adhering to the bronchiolar surface (Fig.
6B). H5N1 virus-infected lungs, in contrast, exhibited extensive

and severe peribronchiolitis and bronchopneumonia, and inter-
stitial pneumonia was also observed that showed interstitial
edema and thickening of the alveolar walls. Moreover, the alveolar
lumen was flooded with detached alveolar cells, erythrocytes, and
inflammatory cells (Fig. 6A). Viral NP of H5N6 and H5N1 viruses
could be readily detected in the bronchioles, terminal bronchioles,
and alveoli of infected ferrets (Fig. 6D to F). In summary, based on
the findings from the mouse and ferret challenge studies, H5N6
viruses are capable of extensive replication along the respiratory
tract that results in significant pathological changes but, seem-
ingly, not as severe as those caused by a clade 2.3.4 HPAI H5N1
virus.

Transmissibility of avian H5N6 viruses in ferrets. The trans-
missibility of the above two H5N6 viruses (DK/EC/S0711/14 and
GS/EC/S0513/13) in ferrets were compared to pandemic H1N1
(BJ09) and avian H5N1 (CN0603) viruses. In the H5N6 virus
groups, viruses were detected only in nasal washes from all inoc-
ulated and direct contact animals, indicating a direct contact route
of H5N6 virus transmission with no aerosol spread (three animals
were examined for each route) (Fig. 7 and Table 3). Pandemic
H1N1 virus efficiently transmitted to all ferrets by direct contact
and via aerosol (Fig. 7). Despite severe pathogenicity, there was no
horizontal transmission of H5N1 virus over 10 days of infection
(Fig. 7). Likewise, no H5N1 virus seroconversion was found in the
direct-contact and aerosol-treated groups of animals (Table 3).
These findings demonstrate that emergent avian H5N6 viruses

TABLE 2 Replication and virulence of the H5N6 viruses in micea

Virus strain (subtype)

Mean virus replication (MID50) � SEM in organsa

MLD50 PathotypebLung Spleen Brain Kidney

CN0603 (H5N1) 5.7 � 0.2 3.7 � 0.4 2.5 � 0.6 3.2 � 0.3 1.0 High
DK/EC/S0711/14 (H5N6) 5.2 � 0.5 –c – – 5.3 Middle
DK/EC/S0322/14 (H5N6) 4.5 � 0.3 – – 1.2 � 1.2 5.0 Middle
GS/EC/S0513/13 (H5N6) 4.6 � 0.1 – – – 5.3 Middle
DK/EC/S0908/14 (H5N6) 4.6 � 0.9 1.2 � 0.4 – – 5.3 Middle
a The virus titer in organs, MID50, and MLD50 values are shown as the log10 EID50.
b Pathotypes were determined on the basis of replication and lethality in mice. Middle, medium pathogenicity; high, high pathogenicity.
c –, Virus was not detected in the undiluted sample.

FIG 3 Extensive binding of avian H5N6 viruses to the upper and lower human respiratory tract. Avian H5N1 (control), human H1N1 BJ09 (control), and H5N6
viruses were incubated on human respiratory sections and immunostained for influenza NP. Antibody binding was detected by using FITC-labeled goat
anti-mouse IgG (green). Unlike avian H5N1 virus that predictably bound only to human alveoli, avian H5N6 viruses, such as the human H1N1 virus, bound to
both tracheal and alveolar linings.
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have acquired the ability of contact transmission but not aerosol
spread in ferrets.

DISCUSSION

In the present study, we found that all four emergent avian H5N6
viruses of clade 2.3.4.4 have acquired binding affinity for the hu-
man SA�2,6Gal-linked receptor, leading to their ability to attach
to human tracheal epithelia and alveoli on tissue sections. H5N6
viruses were efficiently transmitted between ferrets by direct con-
tact but not via aerosol. They were, however, not as pathogenic in
mice and ferrets as their parental clade 2.3.4 H5N1 virus.

HPAI H5N1 viruses continue to cause unprecedented out-
breaks in poultry in more than 60 countries. There have been
844 human cases of H5N1 virus infection with 449 deaths (as
of December 2015; http://www.who.int/influenza/human
_animal_interface/H5N1_cumulative_table_archives/en/). Clade
2.3.4 H5N1 viruses emerged in chickens and waterfowl in south-
ern China in 2005 and have become predominant in Southeast
Asia (27, 28). Since 2010, its inner-clade 2.3.4.4 H5 reassortants,
which include H5N2, H5N6, and H5N8 viruses, are frequently
found in waterfowl and terrestrial poultry in China and other

Asian countries (8, 29, 30). By 2014, H5N2 and H5N8 viruses had
spread by migratory birds to poultry in multiple continents (10).
Although H5N6 virus is still limited in China and Laos (6-9, 13),
reports show that H5N6 virus is gradually becoming more preva-
lent in poultry than H5N1 virus in China (9). It is a concern that
wild birds would spread the H5N6 virus to distant places to be-
come the next potential candidate of global dissemination after
H5N2 and H5N8 viruses.

The weak affinity of HPAI H5N1 virus for SA�2,6Gal-linked
receptor is considered a key factor for limited human transmissi-
bility (31, 32). Here, we demonstrated that the acquisition of
SA�2,6Gal-linked receptor binding by emergent H5N6 viruses
coincided with clear virus binding to both human URT and LRT.
Previous studies showed that the loss of glycosylation at HA 158
was responsible for H5N1 virus binding to the SA�2,6Gal-linked
receptor (31, 32) and transmission between guinea pigs (20). Yen
et al. found that combined deglycosylation at residue 158 and
S227N substitution could substantially increase the affinity of HA
for SA�2,6Gal-linked receptor (33). The four emergent H5N6 vi-
ruses possess mutations in the RBS of HA and lack the N-linked
glycosylation site at HA residue 158, which are characteristic of
most clade 2.3.4.4 H5 viruses, including H5N2 and H5N8, indi-
cating that these viruses have acquired other features, as yet not
understood, for human-type receptor-binding affinity (34, 35).

In our ferret challenge study, pathogenicity of H5N6 viruses
was relatively mild compared to the corresponding HPAI H5N1
virus infection. These results were similar to previous findings
observed with clade 2.3.4.4 H5N2 and H5N8 viruses (34, 36).
Nonetheless, H5N6 virus replication was detectable in ferret lungs
with associated pneumonic pathology. It is noteworthy that the
GS/EC/S0513/13 H5N6 virus showed virus production from lung
lobes that was comparable to H5N1 virus infection and induced
multifocal areas of consolidation in the diaphragmatic and inter-
mediate lobes. Similar pulmonary changes in humans could be
presented with vastly different clinical effects. The six human pa-
tients infected with H5N6 viruses were presented with fever and
severe pneumonia and developed septic shock and ARDS; three of
them died several days after the onset of illness (8, 13). Therefore,
emergent avian H5N6 viruses, while showing less severe pathoge-
nicity than HPAI H5N1 virus in the ferret model, can still cause
severe if not fatal disease in infected humans.

We showed that H5N6 viruses were transmissible in ferrets by
direct contact but not by aerosol. Other researchers have reported
that clade 2.3.4.4 HPAI H5N8 viruses lack the contact transmissi-

FIG 4 Weight loss and mortality of mice inoculated with avian H5N6 viruses. Six-week-old female BALB/c mice (n � 5 mice/group) were inoculated i.n. with
105 EID50 of virus or diluent (mock). The body weights of inoculated mice were measured daily and are represented as percentages of the weight on the day of
inoculation (day 0). The averages for each group are shown, and the error bars represent the SD. (B) Survival percentages of mice infected with 105 EID50 of virus.

FIG 5 Productive virus replication of avian H5N6 viruses in ferrets. Each
ferret, in groups of two, was i.n. inoculated with 106 EID50 of the indicated
virus. The indicated tissues from control H5N1 virus (A) and two H5N6 virus
subtypes DK/EC/S0711/14 (B) and GS/EC/S0513/13 (C) were collected at day
4 p.i. for virus titration. *, P � 0.05; **, P � 0.01 (H5N6 virus-infected ferrets
versus H5N1 virus-infected ferrets). Dashed lines indicate the lower limit of
detection.
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bility in ferrets (34, 36) and guinea pigs (35). An H5N2 virus
isolated in China (A/duck/Eastern China/1112/2011), however,
was able to efficiently transmit between cohoused guinea pigs
(35). We also found that H5N2 viruses from clade 2.3.4.4 can
efficiently transmit between in-contact ferrets but not via aerosol
route and that H5N8 viruses lack the ability for efficient in-contact

transmission in ferrets and guinea pigs (unpublished data). There-
fore, among the novel H5Nx viruses, H5N6, as well as H5N2, seem
better able to infect model mammals by direct contact than are
H5N8 viruses, suggesting that H5N6 and H5N2 subtypes are more
infective to humans. In addition to the receptor-binding prefer-
ence conferred by HA, NA and internal gene combination could

FIG 6 Gross and histopathology of lungs of ferrets infected with avian H5N6 viruses. Representative gross respiratory tracts (left column) and corresponding
histological (hematoxylin and eosin staining; middle column [A to C]) and immunohistochemical (right column [D to F]) lung sections at day 4 p.i. are shown.
(A) Avian H5N1 (control) infection caused severe bronchopneumonia with hemorrhage, edema, and diffuse consolidation; (B and C) GS/EC/S0513/13 (H5N6)
and DK/EC/S0711/14 (H5N6) infections, respectively, produced moderate bronchopneumonia with inflammatory cell infiltrates in alveoli and interstitia. (D to
F) Extensive viral NP localization to bronchioles and alveoli for all three indicated viruses.

FIG 7 Horizontal transmission of avian H5N6 viruses between ferrets. Groups of three ferrets were inoculated i.n. with 106 EID50 of the indicated viruses. The
next day, the inoculated animals were individually paired by cohousing with a direct-contact (DC) ferret; an RD-contact animal was also housed in a wire frame
cage adjacent to the infected ferret. Nasal washes for virus shedding detection were collected every other day from all animals from day 2 of the initial infection.
Each color bar represents the virus titer of an individual animal. Dashed lines indicate the lower limit of virus detection.
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also play a role in moderating virus transmissibility in mammals
(32). Notably, the newly isolated H5N6 virus (A/Yunnan/0127/
2015, GenBank accession numbers KT245143 to KT245150) from
human infections was found to be a further reassortment of inter-
nal viral genes with avian H9N2 viruses. Thus, attention should be
paid to the relentless reassortment and mutational changes of
these viruses which may break down the barrier of transmission
between host species.

In summary, compared to the parental clade 2.3.4 HPAI H5N1
virus, the emergent H5N6 viruses have acquired an affinity for the
human-like SA�2,6Gal-linked receptor to bind human tracheal
epithelial and alveolar cells, with the ensuing ability for in-contact
transmission in ferrets. Although their pathogenicity in model
mammals was not as severe as that of the HPAI H5N1 virus, hu-
man cases of H5N6 virus infection are severe and are associated
with a high death rate. The dissemination of H5N6 viruses in
domestic poultry and wild birds poses a serious threat to both
poultry and human health.
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