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Abstract In this study, the time-dependent stochas-

tic degradation of three types of claddings is analysed.

For this purpose, 203 façades with stone claddings

(directly adhered to the substrate), 195 with adhered

ceramic claddings and 220 with painted surfaces were

analysed. All the façades are located in Lisbon,

Portugal. Their degradation condition was assessed

through an extensive field work. Based on the data

gathered, Markov chains are used to predict the

degradation of claddings and to understand, in some

detail, how the characteristics of the claddings

contribute to the overall degradation. The results

show that the distance from the sea and exposure to

damp are significant to the degradation of all types of

cladding. The type and size of stone plates also

influence the degradation of stone claddings. The

exposure to wind-rain action has a high impact on the

degradation of ceramic claddings. The models pro-

posed provide useful information on the probability of

failure of the claddings; these results are fundamental

in the context of insurance policies and in the

definition of building maintenance plans.

Keywords Degradation � Claddings � Markov

chains � Stochastic analysis

1 Introduction

In the last decades, there has been a growing need for

information on the durability and service life of

building materials and components, an essential for

life cycle assessment or costing analysis methodolo-

gies [1, 2]. This interest arises from two main factors

[3]: (i) the increasing awareness of the concept of

sustainability and concern about the environmental

impact of the construction sector; (ii) the scarcity of

resources that demands a commitment towards a more

rational and balanced use of materials and energy.

Since the management and maintenance of the built

heritage is a significant part of the economy of

societies, and since construction has such high envi-

ronmental impact, the knowledge of the lifetime of

materials needs to be carefully analysed.

There are various methodologies available for

service life prediction and the best approach to the

problem must be chosen, considering the advantages

and limitations of each methodology. Shohet and

Paciuk [4] list different approaches from the point of
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view of data gathering, which could be grouped in four

categories: (i) experimental models; (ii) empirical

models; (iii) analytical models; and (iv) statistical

models. Experimental and empirical models are based

on the observation and study of the deterioration of

materials and components—either in laboratory con-

ditions or through fieldwork assessment—a process

that can be translated into degradation functions that

express the loss of performance of buildings and their

components over time until the end of service life is

reached. Several authors [4, 7–9] have applied these

methods to the service life of façade’s coatings, as they

are easy to apply and understand and can be rapidly

implemented. However, they have also been criticized

since they often deal with service life as an absolute

value and provide little information on the degradation

process, or about the change from a degradation state

to the next one, neglecting the variability associated

with the degradation process [5]. Analytical models

are based on mathematical equations to predict and

estimate the deterioration of building components that

may be deduced from experimental observation [6, 7].

Statistical methods are based on the analysis of large

datasets and can therefore provide some detailed

information, including identifying the characteristics

of the claddings more influential on the degradation

process. A number of more or less complex statistical

tools have been used in order to model the service life

prediction of claddings, including multiple linear

regression analysis [8] or artificial neural networks

[9]. However, statistical models tend to be more

complex than empirical and analytical methods and

their application can be time consuming and not

always achievable for stakeholders who are not

familiarized with such methods or with the software

needed to implement them.

With different combinations, the models described

before can be grouped into three main families,

referred to in the literature as deterministic, proba-

bilistic and engineering methods [10]. Essentially, all

service life prediction models try to forecast the

future behaviour of construction elements and mate-

rials, providing an indication of the moment when

interventions may be required. Deterministic models

provide service life data by means of relatively

simple, cause-effect sets of conditions or functions

that can be straightforwardly applied in the early

stages of design of constructions. In probabilistic

methods, deterioration of buildings is regarded as a

stochastic process, ruled by random variables [11].

According to Leira et al. [12], these models provide

a better understanding of degradation process and

should be used to complement the experience and

knowledge of the behaviour of materials. Probabilis-

tic methods are usually rather complex and require

an extensive collection of data in order to ensure

representative samples, which is not always possible

due to time and cost constraints [13]. Engineering

‘‘design’’ methods blend the two previous methods;

are as easily understood and implemented as deter-

ministic methods, but describe the degradation

processes using stochastic models [14].

According to Basso et al. [15], the degradation

phenomena of materials and components can be

described as the transition between condition states,

characterized by different degradation levels. In

reality, the actual and future degradation condition

of buildings is associated with various degrees of

uncertainty, due to the many durability factors that

may affect a given material or element. To overcome

this difficulty, a stochastic approach to service life

prediction can be used [16]. Coles [16] refers that the

basic ingredients of a statistical model are: the random

variable (in this case, the degradation condition of wall

claddings), whose outcome is uncertain; and the

probability distribution, which allows associating

probabilities to the events related to the random

variable analysed. Markov chains are one of the most

common methods applied to assess stochastically the

future condition of the building components [17].

According to various authors [18] [19], when a process

can be described by a set of distinct observations in

which each observation has several possible outcomes

(or states), it is necessary to decide whether the

probabilities of the various outcomes depend on the

immediately preceding outcomes, in which case a

Markov chain is the appropriate model. Markov chains

are able to simulate the evolution of the degradation

state of buildings, defining the probability of the future

performance of a building element based only on its

current performance - i.e. condition state - ignoring its

age, history of deterioration and maintenance, among

other factors [20]. Unlike deterministic models,

Markov chains model the degradation of construction

elements as a probabilistic process, providing a period

of time when the probability of failure is acceptably

low and indicating the most probable instant for the

loss of performance of the element under analysis.



In this study, Markov chains are applied to the

prediction of degradation of three types of claddings:

stone claddings (directly adhered to substrate); adhesive

ceramic claddings; and painted surfaces. The method

proposed in this study allows predicting the probabilis-

tic condition of degradation over time and the under-

standing, in some detail, how the characteristics of the

claddings and environmental factors contribute to the

overall degradation of the façades. The methodology

proposed provides reliable information concerning the

risk of failure of the building’s components, through

probability distributions of estimated conditions over

time for each cladding, which can be used in mainte-

nance management methodologies.

2 Background

Markov models have often been applied as approxima-

tions of time-dependent processes. Markov chains are

practically ubiquitous in stochastic modelling, for two

main reasons [21]: i) many models are naturally

Markovian, as the future states can be accurately

estimated based only on present performance; ii) the

simple structure of the Markov processes allows devel-

oping powerful mathematical techniques and computer

algorithms that would be intractable by other methods.

Markov chains present various advantages [22]:

(i) they are relatively simple to apply—and thus

become a practical model to predict the future

performance of building elements; (ii) they may use

information on the degradation state of building

components under real in-service conditions, encom-

passing the interaction of different degradation agents,

the uncertainty and variability associated with the

degradation mechanisms. Markov chains also have

some limitations though [23, 24]: (i) the model

assumes that the degradation condition of the building

element can both stay the same or decay, not

contemplating the rehabilitation actions that can be

performed; (ii) the interaction between the degrada-

tion mechanisms and the deterioration of buildings

components remains inaccurately treated; (iii) the

history of deterioration is neglected, as prediction are

performed based only on the last observed state.

Markov chains are based on a set of discrete states

that characterize the performance of buildings and

their elements. They can therefore be used to emulate

the evolution of the degradation state of constructions,

defining the probability of a future state. In recent

decades, Markov chains have been successfully

applied to various fields of civil engineering, including

the deterioration of bridges [25]; Bocchini et al. [17],

for example, use Markov chain models for life cycle

analysis of bridges, including the effect of degradation

and maintenance actions. Markov chains have also

been used in the optimization of maintenance policies:

Augenbroe and Park [26] argue that Markov chains are

able to describe the randomness inherent of buildings

performance and can be used in the decision process

related with the systematic replacement of building

components; Lacasse et al. [27] apply a maintenance

system previously used in bridges to the maintenance

of buildings façades. Markov chains have also been

applied to service life prediction: Silva et al. [28]

analysed the service life prediction of rendered

façades based on their characteristics, using a method-

ology similar to the method proposed in this study.

Concerning the time of transition between states of

deterioration, Markov chains can be divided in two

common types: discrete and continuous. Discrete chains

are useful when transitions can only occur at specific

moments, whilst continuous chains are more appropriate

when transitions can occur at any time, as is, in general,

the case of deteriorating performance. The uncertainty in

the rate of transitions between the states is defined by a

transition probability matrix (denoted P) for discrete-

time processes and by an intensity matrix (denotedQ) for

continuous-time processes [29]. In this study, only the

continuous-time models are analysed.

For deterioration processes, it is in general assumed

that, for an infinitesimal time period, transitions can

only occur between one state—or condition—and the

next. It is also assumed that improvements cannot

occur, and every observed improvement corresponds

to an inspection error or undocumented maintenance

action. Under these assumptions, a generic intensity

matrix Q is shown [30] in Eq. (1).

Q¼

�q0;1 q0;1 0 � � � � � � 0

0 �q1;2 q1;2 � � � . .
.

0

0 0 �q2;3 q2;3
. .
.

0

0 0 � � � � � � . .
.

0

0 0 � � � � � � �qn�1;n qn�1;n

0 0 � � � � � � 0 0

2
6666666664

3
7777777775

ð1Þ



The transition between states of degradation

depends solely on the last recorded state and the

transition rate between the current state and the future

state (given by the matrix Q). In this study, in order to

define the intensity matrix Q the following data is

needed: (i) the initial condition of claddings (assuming

that in instant zero, the façade is in perfect condition);

(ii) the current condition state (observed through field

work and evaluated based on the criteria established in

the next section); and (iii) the time required to transit

from one condition to another. Based on the transition

rates, the probability of transition between states of

condition and the probability of duration in these states

can be computed using the Chapman-Kolmogorov

differential equation:

d

dt
P Dtð Þ ¼ Q � P Dtð Þ ð2Þ

The solution of this system of differential equations

is given by [31]:

P Dtð Þ ¼ exp Q � Dtð Þ ð3Þ

Where the matrix exponential is defined by

exp Q � Dtð Þ ¼
P1

n¼0
Dtn�Qn

n! .

Thus, it is possible to relate the infinitesimal

generator matrix Q with the Markovian transition

matrix P [32].

The calibration of the deterioration model to the

results of inspections can be carried out using

approaches of different complexity. If regular inspec-

tion intervals are used, the transition matrix can be

computed directly as:

Pij ¼
nijPm
k¼1 nik

; ð4Þ

where nij is the number of observed transitions

between condition i and j, m is the total number of

condition states considered, and Pij in the probability

of transition between conditions condition i and j is the

time interval between inspections.

If irregular inspection times are considered, the

calibration must be carried out for the intensity matrix

Q. A consistent and accurate method to estimate this

matrix is based on the minimization of the likelihood

function.

Firstly, the observed results are organized in

transitions, where a transition represents the time

interval between two consecutive inspections (initial

and final) and the resulting condition indices (Cinitial

and Cfinal). An initial estimate of the Q matrix can be

computed as [33]:

hi ¼ Qij ¼
nijP
Dti

ð5Þ

where nij is the number of transitions with Cinitial = i

and Cfinal = j, and
P

Dti is the sum of the time

intervals associated with transitions associated with

Cinitial = i.

The optimization of the matrix Q is based on the

concept of maximum likelihood given by Kalbfleisch

and Lawless [33]:

L Qð Þ ¼
Yn
k¼1

Ym
j¼1

PDt
ij ð6Þ

where n is the number of inspected facades, m is the

number of observed transitions for facade k (i.e. the

number of inspections minus 1), and PDt
ij is the

predicted probability of transition between the

observed initial condition Ci and the observed final

condition Cj in the time interval between inspections

computed using Eq. (3).

To increase the stability of the optimization algo-

rithm, in this case the logarithm of the likelihood was

maximized as [34]:

Findh !maximize
logðL Qð ÞÞ ¼

Xn
k¼1

Xm
l¼1

logðPDt
ij Þ ð7Þ

A wide range of optimizations algorithms can be

used to find the optimum values of h. In the present

case, the constrained optimization problem was solved

with the active-set numerical algorithm [35, 36].

3 Degradation condition of façade claddings

The purpose of this study is to model the deterioration

process of various façade claddings under service

conditions. In this case, the estimation and optimiza-

tion of the intensity matrix (Q) is based only on the

initial condition (assuming that at time zero, the

elements are in perfect conditions) and current con-

dition (based on fieldwork assessment of the façades),

corresponding to the date of inspection.

There are various methods of assessing the degra-

dation state of buildings and their components; usually

these methods take into account the importance rating



of the construction elements, the severity rating of the

defects, and the definition of the condition parameters

associated with the defects detected. Several authors

have established classification systems for defects and

degradation ratings in order to express the physical

and functional degradation of the elements under

analysis [37, 38]. In this study, the levels proposed

vary from 0 (no visible degradation) to 4 (generalized

degradation) and are associated with a qualitative

scale (based on the evaluation of the physical and

visual condition of the sample analysed) and a

quantitative index that defines the global performance

of the façades. This quantitative index, proposed by

Gaspar and de Brito [39, 40], referred to as severity of

degradation, is obtained as the ratio between the extent

of the façade degradation, weighted as a function of

the degradation level and the severity of the defects,

and a reference area, equivalent to the maximum

theoretical extent of the degradation for the façade in

question (expression 8).

Sw ¼
R An � kn � ka;n
� �

A� k
; ð8Þ

where Sw is the weighted severity of degradation of the

facade (%); An is the area of coating affected by an

defect, in m2; kn is the defect’s nth multiplying factor,

as a function of its condition (between 0 and 4); ka,n is

the weighting coefficient corresponding to the relative

importance of each defect based on the cost of repair

(ka,n

”

R?); k is the weighting factor equal to the

highest degradation level in the facade; A is the total

area of the cladding, in m2. Since distinct defects

detected in claddings have different levels of severity.

The coefficient ka,n takes into account the relative

importance of each defect, concerning their repair

cost. The cost of repair is calculated as the ratio

between the sum of the costs of each operation within

the required intervention and the cost of replacing the

cladding. If no further data are provided, it is assumed

that ka,n = 1.

In this study, three types of claddings are analysed

based only on visual inspections: stone claddings

(directly adhered to substrate)—203 samples; adhe-

sive ceramic claddings (195 samples); and painted

surfaces (220 samples):

• The defects in stone cladding have been divided

into four groups [9, 41] —Table 1: (i) visual or

surface degradation (defects that generally affect

the appearance of the cladding); (ii) joint defects;

(iii) loss of bond to the substrate; and (iv) loss of

integrity. In this study, no claddings belong to the

most unfavourable condition of degradation (con-

dition E).

• For adhesive ceramic claddings, four defect groups

are considered [42, 43] —Table 2: (i) visual

defects; (ii) cracking; (iii) defects in joints; and

(iv) detachment.

• In painted surfaces, the degradation scales are mainly

qualitative and are defined based on Portuguese

standards [44–48]. Four main families of defects

affecting paint coatings are considered [49] —

Table 3: (i) staining and colour change; (ii) chalking;

(iii) cracking; and (iv) loss of adherence.

Having defined the scale of degradation of façades

(Tables 1, 2, 3), it is possible to establish a degradation

model using Markov chains. Equations (9)–(11) show

the intensity matrix obtained for the model applied to

stone claddings, ceramic tiling systems and painted

surfaces, respectively.

Q stone claddingsð Þ ¼
qA;B

qB;C

qC;D

2
4

3
5 ¼

0:2210

0:0190

0:0115

2
4

3
5 ð9Þ

Q ceramic claddingsð Þ ¼

qA;B
qB;C

qC;D

qD;E

2
664

3
775 ¼

0:1519

0:0403

0:0252

0:0100

2
664

3
775 ð10Þ

Q painted surfacesð Þ ¼

qA;B
qB;C
qC;D
qD;E

2
664

3
775 ¼

0:4868

0:1962

0:1524

0:1062

2
664

3
775 ð11Þ

The procedure employed does not take into account

the statistical uncertainty resulting from the limited

sample size. This limitation can be overcome by

defining confidence intervals for the maximum like-

lihood estimates, q, using the delta method of the

profile likelihood method [16]. An alternative

approach, specifically for Markov chain models, was

developed by Fuh [19] using the bootstrap method.

After the estimation of the intensity matrix (Q), the

mean time of duration in each degradation state can be

determined [Eq. (12)].

Ti ¼
1

qij
ð12Þ



Table 1 Proposed degradation conditions for natural stone claddings

Degradation condition Defects % of cladding

area affected

Illustration of the

degradation conditions

Condition A: (Sw B 1 %) No visible degradation –

Condition B: Good

(1 %\ Sw B 8 %)

Visual or surface

degradation

defects

Surface dirt [10

Moisture stains B15

Localized stains

Colour change

Flatness deficiencies B10

Loss-of-integrity

defects

Material degradationa B 1 %

plate thickness

–

Material degradationa B 10 %

plate thickness

B20

Cracking width B 1 mm

Condition C: Slight degradation

(8 %\ Sw B 20 %)

Visual or surface

degradation

defects

Moisture stains [15

Localized stains

Colour change

Moss, lichen, algae growth B30

Parasitic vegetation

Efflorescence

Flatness deficiencies [10 and B50

Joint defects Joint material degradation B30

Material loss—open joint B10

Bond-to-substrate

defects

Scaling of stone near the edges

Partial loss of stone material

B20

Loss-of-integrity
defects

Material degradationa B10 %

plate thickness

[20

Material degradationa[10 %

and B30 % plate thickness

B20

Cracking width B1 mm [20

Cracking width[1 mm

and B5 mm

B20

Fracture B5

Condition D: Moderate

degradation

(20 %\ Sw B 45 %)

Visual or surface

degradation

defects

Moss, lichen algae growth [30

Parasitic vegetation

Efflorescence

Flatness deficiencies [50

Joint defects Joint material degradation [30

Material loss—open joint [10

Bond-to-substrate

defects

Scaling of stone near the edges

Partial loss of stone material

[20

Loss of adherence B10

Loss-of-integrity

defects

Material degradationa[10 %

e B30 % plate thickness

[20



In order to evaluate the accuracy of Markov chains

in predicting the deterioration process of façades, the

number of expected and observed façades in each

condition state is shown in Table 4. The similarity

between the values predicted by the model and those

observed in the visual inspections shows that an

acceptable fit was achieved. The results corresponding

to the observed condition states represent a concate-

nation of the results presented in the ‘‘Appendix’’

section. The expected number of claddings is each

state was computed as:

E Cj

� �
¼

Xn
k¼1

Pk
ij; ð13Þ

where n is the number of transitions observed, Pk
ij is the

probability of transition between the initial condition

i and the final state j for the time interval between

inspection for transition k, and i is the initial condition

in transition k.

4 Probabilistic analysis of degradation condition

of façade claddings

Table 5 shows the average time in each degradation

state for the claddings analysed. The results show that

the evolution is faster in the less advanced conditions,

as only slight alterations to the surface of the claddings

will cause a change from condition A to B. As age

increases, claddings tend to remain longer in their

respective conditions.

Tables 6, 7 and 8 show the probabilistic distribution

of the degradation condition of each cladding over

time.

The probability of stone claddings belonging to

condition A decreases over time, to less than 2 % after

year 8 (Table 6). The probability of belonging to

condition B increases initially to a peak (79.2 %) at

year 12 and then slowly declines. As for condition C,

the maximum probability (46.1 %) is reached between

years 71 and 73. Finally, the probability of stone

claddings belonging to condition D increases over

time and reaches 60 % after year 145. At years 3 to 4

there is nearly the same probability for stone claddings

belong to either condition A or B. Around years 49 to

50 the probability of being in condition B is similar to

that of being in condition C. Between years 103 and

104 the probability of belonging to condition C is

similar to that of condition D.

The same trend is observed for ceramic claddings

(Table 7). In fact, there is practically the same

probability of belonging to either condition A or B at

years 4 to 5; of belonging to either condition B or C, at

years 28 to 29; and to either condition C or D, after

years 58 to 59. Finally, at year 134 the probability of

condition D is practically the same as that of condition

Table 1 continued

Degradation condition Defects % of cladding

area affected

Illustration of the

degradation conditions

Material

degradationa[30 % plate

thickness

B20

Cracking width[1 mm

and B5 mm

[20

Cracking width C5 mm B20

Fracture [5 and B10

Condition E: Generalized

degradation (Sw C 45 %)

Bond-to-

substrate

defects

Loss of adherence [ 10 –

Loss-of-

integrity

defects

Material

degradationa[30 % plate

thickness

[20

Cracking width[5 mm

Fracture [10

a Material degradation is meant to be every anomaly that involves loss of volume of the stone material



Table 2 Proposed degradation conditions for adhesive ceramic claddings

Condition condition Defects % of cladding

area affected

Illustration of the

degradation

conditions

Condition A: (Sw B 1 %) No visible degradation –

Condition B: Good

(1 %\Sw B 6 %)

Visual or surface

degradation

defects

Surface dirt –

Small surface craters B10

Wear or scratches

Crushing or scaling of the

borders

Change of shine and/or colour

Damp stains

Cracking Cracked glazinga –

Markedly orientated cracking

(\0.2 mm)(1) without leakagea

Joint deterioration Staining or change in colour –

Condition C: Slight

deterioration

(6 %\Sw B 20 %)

Visual or surface

degradation

defects

Small superficial craters [10 and B50

Wear or scratches

Crushing or scaling of the

borders

Change of shine and/or colour

Damp stains

Biological growth B30

Graffiti

Efflorescence

Cracking Cracking with no predominant

directiona
B30

Markedly orientated cracking

([ 0.2 mm)(2) without leakagea

Joint deterioration Without loss of filling materiala B30

With loss of filling materiala B10

Detachment Loss of adherence B20

Swelling

Condition D: Moderate

degradation

(20 %\Sw B 50 %)

Visual or surface

degradation

defects

Small superficial craters [50

Wear or scratches

Crushing or scaling of the

borders

Change of shine and/or colour

Damp stains

Biological growth [30



E (around 45 %). These milestones mark the threshold

of transitions between states. For painted surfaces

(Table 8) transitions from condition A to condition E

occur at years 1 to 2; at years 6 to 7; at years 12 to 13

and at years 16 to 17.

4.1 Probabilistic analysis of the degradation

of claddings according to their characteristics

Claddings display significant differences in terms of

deterioration due to the great variety of their charac-

teristics. In this study, the most relevant characteristics

that explain the degradation of claddings are identified

and Markov chain models are used to analyse the

probability of belonging to each degradation condition

over time according to the claddings’ characteristics.

Table 9 presents the probability of belonging to a

condition level as a function of the variables consid-

ered for stone claddings. The results obtained led to

the following conclusions (valid for the sample

analysed):

(i) Granite claddings have a very high probabil-

ity (P = 94.4 %) of belonging to the more

favourable conditions of degradation (A and

B), and very low probability of belonging to

condition D; marble claddings are those with

lower probability of belonging to the most

favourable conditions and greater probability

of being in the most unfavourable degrada-

tion condition (E); these results confirm the

study by Schouenborg et al. [50], who tested

the mechanical resistance of the samples

from 200 case studies and concluded that

granite claddings are the most durable,

followed by limestone claddings and marble

claddings (the least durable);

(ii) Stone claddings with large plates have a

maximum probability of transition between

conditions B and C after years 39 to 40 and a

maximum probability of transition between

conditions C and D after years 73 to 74. For

claddings with medium-sized plates the max-

imum probability of transition between con-

ditions occurs later: after years 64 to 65 (for

transition between B and C) after years 121 to

122 (for transition between C and D). Thus

claddings with medium-size plates have

higher probability of belonging to more

favourable conditions and a low probability

of belonging to condition E; this suggests that

Table 2 continued

Condition condition Defects % of cladding

area affected

Illustration of the

degradation conditions

Graffiti

Efflorescence

Cracking Cracking with no predominant

directiona
[30 and B50

Markedly orientated cracking

([ 1 mm)(3) without leakagea

Joint

deterioration

Without loss of filling materiala [30 and B50

With loss of filling materiala [10 and B30

Detachment Loss of adherence [20

Swelling

Localized detachment B10

Condition E: Generalized

degradation (Sw C 50 %)

Cracking Cracking with no predominant

directiona
[50

Markedly orientated cracking

([5 mm)(4)

Joint

deterioration

Without loss of filling material [50

With loss of filling material [30

Detachment Generalized detachment [10
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larger plates reach the end of their service life

sooner, especially when compared with

medium-size plates; which can be explained

by the lower relative area of the joints in the

larger plates and consequent higher concen-

tration of stresses [8].

(iii) Claddings highly exposed to damp remain

less time without degradation (condition A)

and are more likely to belong to the highest

degradation condition (P = 14.3 %) when

compared to coatings less exposed to damp

(P = 9.2 %). Likewise maximum probabil-

ity of belonging to conditions B and C are of

P = 83.3 % (at year 8) and of P = 38.7 %

(year 51), for claddings highly exposed to

damp, and of P = 72.7 % (year 17) and of

P = 48.4 % (after year 80) for less exposed

cases, respectively.

(iv) Claddings located more than 5 km away from

the sea are more prone to belonging to

degradation conditions A and B (P = 68.6 %

as opposed to 51.9 % for coatings located less

than 5 km away); claddings in coastal areas

have a higher probability of belonging to the

more unfavourable condition of degradation

(P = 26 %, substantially higher than those

away from the coast, with 2.5 %).

Table 10 shows the probability of belonging to a

degradation condition as a function of the variables

considered for ceramic claddings. For the sample

analysed the following conclusions can be drawn:

(i) Claddings less exposed to damp are more

prone to remain in lower degradation condi-

tions (A and B), with P = 54.9 %; none of

the façades less exposed to damp belong to

the most unfavourable condition (condition

E); on the contrary, claddings highly exposed

to damp are more prone to belong to the most

unfavourable conditions, and have a rela-

tively small probability of belonging to

conditions A and B (P = 28.5 %);

(ii) Claddings located in coastal areas have

higher probability (P = 67,7 %) of reaching

higher degradation levels (conditions C, D

and E); on the contrary, claddings located

more than 5 km away from the sea have a

probability of 71.4 % of belonging to condi-

tions A and B;T
a
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(iii) Claddings with severe exposure to the com-

bined action of wind and rain are the most

prone to undergo higher degradation

(P = 37.8 % of belonging to conditions D

and E) and the lowest probability of belong-

ing to the most favourable conditions.

Similar conclusions can be drawn for painted

surfaces (valid for the sample analysed). When

considering their distance from the sea, the results

show that painted surfaces in coastal areas (less than

5 km away) transit between conditions C and D after

years 10 to 11, earlier than claddings farther from the

coast, whose transition occurs after years 14 to 15.

Regarding their exposure to damp, claddings less

exposed change between conditions C and D after

years 13 to 14; claddings highly exposed transit

earlier, after years 11 to 12. Claddings with current

exposure to pollutants are more prone to belong to the

most favourable degradation conditions

(P = 56.9 %); conversely, claddings unfavourably

Table 4 Classification

capability of the model

obtained for façade coatings

Condition Natural stone claddings Ceramic claddings Painted surfaces

Observed Estimated Observed Estimated Observed Estimated

A 9 12 15 16 37 33

B 114 105 70 65 73 75

C 57 64 64 67 48 59

D 23 22 43 39 29 35

E – – 3 8 20 18

Table 5 Mean time of duration in each degradation condition

Cladding system Condition A (years) Condition B (years) Condition C (years) Condition D (years)

Natural stone claddings 4.5 52.6 87.0 –

Ceramic claddings 6.6 24.8 39.7 100.0

Painted surfaces 2.1 5.1 6.6 9.4

Table 6 Probability of

belonging to a condition as

a function of the age for

stone claddings

Range in years Probability of belonging to a condition level

Condition A (%) Condition B (%) Condition C (%) Condition D (%)

[0:10] 41.81 53.94 4.11 0.14

[10:20] 3.95 77.34 17.32 1.40

[20:30] 0.43 67.08 28.42 4.07

[30:40] 0.05 55.84 36.29 7.83

[40:50] 0.00 46.23 41.42 12.34

[50:60] 0.00 38.25 44.44 17.31

[60:70] 0.00 31.65 45.82 22.53

[70:80] 0.00 26.18 45.98 27.84

[80:90] 0.00 21.66 45.23 33.11

[90:100] 0.00 17.92 43.83 38.25

[100:110] 0.00 14.82 41.97 43.21

[110:120] 0.00 12.27 39.81 47.93

[120:130] 0.00 10.15 37.47 52.39

[130:140] 0.00 8.39 35.04 56.57

[140:150] 0.00 6.94 32.58 60.47



exposed to pollutants only display a relatively low

probability of belonging to conditions A and B

(P = 10.4 %). These results reveal that coatings

subject to unfavourable environmental conditions tend

to reach higher degradation conditions faster.

5 Results and discussion

The three types of cladding analysed present different

degrees of sensitivity to the characteristics analysed.

Besides the age, which is the most influential param-

eter in the explanation of claddings’ degradation, the

most influential parameter in the degradation of all the

claddings analysed is the distance from the sea. This

fact confirms the results from several studies that show

that salt-induced deterioration of building materials is

drastically accelerated in coastal areas, thus reducing

the durability and service life of façades [51]. The

second most influential parameter is the exposure to

damp; this parameter is highly relevant in the

claddings’ degradation due to the occurrence of

Table 7 Probability of belonging to a condition as a function of the age for ceramic claddings

Range in years Probability of belonging to a condition level

Condition A (%) Condition B (%) Condition C (%) Condition D (%) Condition E (%)

[0:10] 52.38 40.89 6.27 0.45 0.01

[10:20] 10.42 59.19 25.76 4.41 0.22

[20:30] 2.28 45.94 38.82 11.94 1.02

[30:40] 0.50 32.10 43.87 20.88 2.65

[40:50] 0.11 21.76 43.49 29.47 5.18

[50:60] 0.02 14.61 40.13 36.73 8.50

[60:70] 0.01 9.78 35.43 42.32 12.47

[70:80] 0.00 6.54 30.3 46.18 16.91

[80:90] 0.00 4.37 25.5 48.48 21.65

[90:100] 0.00 2.92 21.08 49.44 26.56

[100:110] 0.00 1.95 17.23 49.31 31.51

[110:120] 0.00 1.30 13.9 48.35 36.39

[120:130] 0.00 0.87 11.22 46.75 41.15

[130:140] 0.00 0.58 8.97 44.72 45.73

[140:150] 0.00 0.39 7.14 42.38 50.09

Table 8 Probability of belonging to a condition as a function of the age for painted surfaces

Range in years Probability of belonging to a condition level

Condition A (%) Condition B (%) Condition C (%) Condition D (%) Condition E (%)

[0:5] 40.91 39.90 15.26 3.47 0.47

[5:10] 2.55 31.95 37.43 21.05 7.02

[10:15] 0.22 13.21 31.42 33.22 21.93

[15:20] 0.0 5.06 20.17 34.45 40.30

[20:25] 0.00 1.91 11.50 29.21 57.37

[25:30] 0.00 0.72 6.16 22.12 71.01

[30:35] 0.00 0.27 3.17 15.59 80.97

[35:40] 0.00 0.10 1.59 10.48 87.83

[40:45] 0.00 0.04 0.79 6.82 92.36

[45:50] 0.00 0.01 0.38 4.33 95.28



wetting and drying cycles and the weathering induced

by crystallization of soluble salts. In stone claddings,

the third most important parameter is the dimension of

the stone plates, followed by the type of stone. These

results are coherent with the suggestions present in

other studies addressing other service life prediction

techniques. Different studies performed by Silva et al.

[8, 52, 53], using multiple linear regression, logistic

regression and artificial neural networks, respectively,

reveal that age, distance from the sea and the size of

stone plates are extremely relevant variables to

describe the degradation condition of stone claddings.

Chai et al. [54] and Dias et al. [55] applied multiple

regression analysis and artificial neural networks to

the service life prediction of painted surfaces, reveal-

ing that the distance from the sea is one of the most

influential parameters in the degradation of painted

surfaces.

The probabilistic distribution of degradation con-

ditions over time can be seen as an assessment of risk

of loss of performance due to degradation. Thus, by

establishing a threshold of acceptable risk, a stake-

holder may estimate the need for repair based on the

probabilistic analysis of a set of data. To illustrate this

Table 9 Probability of

belonging to a condition as

a function of the variables

considered relevant for

natural stone claddings

Variables Probability of belonging to a condition level

Condition A (%) Condition B (%) Condition C (%) Condition D (%)

Type of stone

Limestone 4.2 45.8 38.9 11.1

Granite 5.6 88.9 5.6 0

Marble 3.9 42.9 33.8 19.5

Size of stone plates

Large 1.4 40.5 33.8 24.3

Medium 6.2 65.1 24.8 3.9

Exposure to damp

High 6.0 60.7 19.0 14.3

Low 3.4 52.9 34.5 9.2

Distance from the sea

Less than 5 7.8 44.2 22.1 26.0

[5 km 2.5 66.1 28.9 2.5

Table 10 Probability of belonging to a condition as a function of the variables considered relevant for ceramic claddings

Variables Probability of belonging to a condition level

Condition A (%) Condition B (%) Condition C (%) Condition D (%) Condition E (%)

Exposure to damp

High 7.1 21.4 38.1 29.8 3.6

Low 8.1 46.8 28.8 16.2 0.0

Distance from the sea

Less than 5 km 5.8 26.6 36.0 29.5 2.2

[5 km 12.5 58.9 25.0 3.6 0.0

Wind-rain action

Low 2.2 42.2 35.6 20.0 0.0

Moderate 10.3 42.3 29.9 17.5 0.0

Severe 7.5 18.9 35.8 32.1 5.7



concept, one can consider that ‘‘high’’, ‘‘average’’ and

‘‘low’’ probabilities of a given condition correspond to

‘‘high’’, ‘‘average’’ and ‘‘low’’ risks associated to the

consequences of the defects and the cost of repair and

thus produce an indication of the urgency to mainte-

nance and repair actions [28]. Low risk (no actions

required apart from monitoring) may correspond to

P[ 75 % of belonging to either condition levels ‘‘A’’

or ‘‘B’’. High risk (need to extensive repair) may

correspond to P[ 25 % of belonging to condition

levels ‘‘D’’ (for stone or ceramic claddings, more

durable) and ‘‘E’’ (for painted surfaces, with lower

service lives) and average risk may correspond to the

intermediate states. The interpretation of the results,

which depends on the assumptions made previously,

leads to the following recommendations:

(i) For stone claddings: (i) monitor until year 20;

(ii) perform light maintenance actions before

year 70; (iii) consider their replacement after

year 70, subject to on-site confirmation of

their condition state.

(ii) For ceramic claddings: (i) monitor until year

13; (ii) light maintenance actions should be

performed before year 40; (iii) full replace-

ment should be considered after 40 years

subject to on-site confirmation.

(iii) For painted surfaces: (i) monitor every

3 years; (ii) light maintenance actions should

be performed before year 13; (iii) repainting

should be considered after year 13 subject to

on-site confirmation.

In spite of the fact that these recommendations can

vary according to the social and economic context of

the buildings analysed, the probabilistic results

obtained using Markov chains can be used to define

adequate maintenance policies, avoiding the unneces-

sary costs associated with unrequired maintenance or

excessive costs due to urgent unforeseen maintenance

actions. Probabilistic models associated to service life

prediction of wall claddings are extremely useful to

the cost optimization of maintenance actions during

buildings life cycle [56–58]. An accurate optimization

of maintenance actions requires a balanced consider-

ation of both the claddings performance and the total

cost accrued over the entire life-cycle [59, 60].

These recommendations are directly related to the

estimated service life of the wall claddings analysed.

The full replacement of the cladding should be

considered when the end of their service life is

reached. According to the studies performed by Silva

et al. [8, 9, 52, 53], the estimated service life of stone

claddings (directly adhered to the substrate) varies

between 68 (simple regression analysis) [9] and

80 years (artificial neural networks) [53]. The study

performed by Shohet and Paciuk [4], using an

empirical method based on a simple regression

analysis, results on an average estimated service life

of 64 years (with a range between 59 and 70 years) for

stone claddings subjected to normal conditions. For

ceramic claddings, the study performed by Bordalo

et al. [42] and Galbusera et al. [43] results on an

average estimated service life of 50 years. Chai et al.

[49, 54] and Dias et al. [55] obtained an estimated

service life for painted surfaces of 9.75 years,

8.5 years and 9.5 years for simple regression analysis,

multiple regression analysis and artificial neural

networks, respectively. The values obtained in this

study, using a Markov chain model are thus within the

results obtained previously using different service life

prediction techniques.

6 Conclusion

In this study, the future performance of three façade

claddings (stone claddings, ceramic claddings and

painted surfaces) is analysed using Markov chain based

models. Markov chains are a stochastic model widely

used to model the durability of construction and their

elements, requiring limited information for calibration.

The models proposed in this study are able to provide

indications concerning a complex matter such as the

degradation of the façades, giving information on the

synergy between degradation agents (as is the case of

environmental exposure conditions) and degradation

conditions. Furthermore, this study provides indications

on the probabilistic distribution of the degradation

conditions over time (and according to the most

relevant characteristics of each of the claddings), as

well as expert-based knowledge of the mean time of

duration in each condition of degradation until the

transition to the following condition, revealing the

effects of degradation on the durability of claddings.

Markov chains also allow estimating the probability

of each case study to reach the end of its service life

according to the features analysed. As for stone

claddings, granites are the most durable and marbles



are the less durable material. Stone claddings with large

plates are more prone to degradation, reaching the end of

their service life after 53–54 years. On the other hand,

stone claddings with medium-size plates are more

susceptible of belonging to most favourable conditions

(A and B), reaching the end of their service life at years

86 to 88 (latter than claddings with large plates).

Concerning the environmental actions, the expo-

sure to damp is a relevant parameter for all the

claddings analysed. Claddings with high exposure to

damp are the ones with the highest probability of

belonging to the most unfavourable degradation

conditions, reaching the end of their service life

sooner. The distance from the sea is one of the most

influential parameter in the degradation of claddings.

Claddings in coastal areas are more prone to belong to

higher degradation levels; on the other hand, claddings

located more than 5 km from the sea reach the end of

their service lives later than claddings in coastal areas.

Considering the other characteristics analysed, it is

possible to conclude that: (i) ceramic claddings reach

the end of their service life after year 45 for less

exposed façades to wind-rain action and at year 32 for

claddings severely exposed; (ii) concerning painted

surfaces, the end of their service lives is reached at

year 8 for façades with current exposure to pollutants

and at same age for painted surfaces with unfavourable

exposure to pollutants.

The information from this study is useful to enable

the definition (in a rational and technically-informed

way) of a set of maintenance strategies throughout the

life cycle of the building. Moreover, when such

information is available for various building compo-

nents, it is possible to define joint maintenance

strategies for different parts of the building. Stochastic

models, such as Markov chains, provide crucial

information within the context of insurance policies,

since they allow assessing the risk of failure of the

coatings in order to evaluate the most probable delay

time to failure of building elements according to their

specific characteristics.

In future studies, the model proposed can be applied

to other cladding systems, in other contexts and

countries, with the necessary adjustments. Further-

more, other environmental agents can be analysed

(e.g. freeze–thaw cycles in cold countries) and a more

comprehensive sample can be acquired in future

developments.
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Appendix

Age

(years)

Sw (%) Degradation

condition

Type of

stone

Dimension of

stone plates

Exposure

to damp

Distance from

the sea (km)

39 2.42 B Granite Large High \5

39 2.83 B Granite Large Low \5

60 7.64 B limestone Medium Low \5

16 0.86 A Granite Medium Low \5

16 0.85 A Granite Medium Low \5

60 8.98 C Limestone Large Low \5

50 2.66 B Marble Medium High \5

50 4.59 B Limestone Medium High \5

64 13.06 C Limestone Medium Low \5

62 17.82 C Limestone Medium Low \5

64 15.13 C Limestone Medium Low \5

63 20.63 D Limestone Large Low \5

64 14.99 C Limestone Medium High \5

42 3.42 B Marble Medium Low [5

42 6.73 B Marble Medium Low [5

63 37.42 D Limestone Large High \5



Age

(years)

Sw (%) Degradation

condition

Type of

stone

Dimension of

stone plates

Exposure

to damp

Distance from

the sea (km)

63 30.27 D Limestone Large High \5

42 6.11 B Marble Large Low [5

62 11.12 C Limestone Medium Low \5

44 8.60 C Marble Medium High [5

56 5.17 B Limestone Medium Low [5

46 10.22 C Limestone Medium High [5

70 30.18 D Marble Large High \5

23 1.23 B Granite Large Low \5

65 30.39 D Marble Large Low \5

37 10.71 C Marble Medium Low \5

37 9.98 C Marble Medium High \5

69 14.06 C Limestone Large Low [5

21 2.46 B Granite Medium Low [5

69 19.14 C Limestone Large Low [5

22 3.23 B Granite Medium High [5

69 17.22 C Limestone Large Low [5

21 3.70 B Granite Large Low [5

69 18.26 C Limestone Large Low [5

45 5.39 B Limestone Medium High [5

45 4.87 B Limestone Large High [5

22 1.94 B Granite Medium Low [5

69 15.00 C Limestone Large Low [5

22 3.01 B Granite Medium Low [5

13 3.55 B Marble Large High [5

13 4.55 B Marble Large High [5

26 8.33 C Limestone Medium High [5

26 2.08 B Marble Medium Low [5

21 2.79 B Granite Medium Low [5

14 3.83 B Granite Medium Low [5

48 7.77 B Limestone Medium High [5

48 9.99 C Limestone Large Low [5

19 2.17 B Limestone Medium High [5

14 1.67 B Granite Medium Low [5

49 11.97 C Limestone Medium Low [5

49 10.15 C Limestone Medium High [5

19 3.28 B Limestone Medium High [5

14 4.55 B Granite Medium Low [5

14 1.41 B Granite Medium Low [5

45 13.12 C Marble Medium High [5

45 7.51 B Limestone Medium High [5

64 14.10 C Limestone Medium High \5

17 4.10 B Limestone Medium High [5

17 1.69 B Limestone Medium High [5

47 9.32 C Limestone Large High [5

47 8.70 C Limestone Large High [5



Age

(years)

Sw (%) Degradation

condition

Type of

stone

Dimension of

stone plates

Exposure

to damp

Distance from

the sea (km)

64 16.60 C Limestone Large High \5

69 10.73 C Limestone Medium Low [5

37 2.86 B Limestone Medium High [5

65 14.22 C Limestone Large High \5

65 11.48 C Limestone Medium Low \5

69 17.83 C Limestone Large Low [5

69 16.70 C Limestone Large Low [5

60 12.11 C Limestone Medium Low \5

27 2.08 B Marble Medium Low [5

61 11.92 C Marble Large Low \5

59 22.18 D Marble Large High \5

81 27.63 D Marble Large Low \5

81 26.62 D Limestone Large Low \5

89 42.91 D Marble Large Low \5

58 15.88 C Marble Large Low \5

75 26.18 D Marble Medium Low \5

79 25.29 D Limestone Medium Low \5

63 21.30 D Marble Large High \5

61 24.60 D Limestone Large High \5

61 23.14 D Limestone Large High \5

23 1.88 B Marble Medium High [5

23 3.46 B Marble Medium High [5

23 1.82 B Marble Medium High [5

22 3.18 B Marble Medium High [5

22 4.71 B Marble Medium High [5

26 3.93 B Marble Medium Low [5

26 5.32 B Marble Medium Low [5

25 3.82 B Marble Medium Low [5

27 8.43 C Marble Medium Low [5

24 3.35 B Marble Medium High [5

24 3.57 B Marble Medium High [5

15 6.76 B Granite Large Low [5

15 4.52 B Granite Large Low [5

12 1.93 B Granite Large Low [5

12 0.39 A Granite Large Low [5

15 4.50 B Granite Medium Low [5

40 3.00 B Granite Large Low \5

73 27.79 D Marble Medium Low \5

73 19.09 C Marble Medium Low \5

40 7.15 B Granite Medium Low \5

21 4.09 B Granite Medium Low [5

21 1.57 B Granite Large Low [5

23 3.43 B Granite Large Low [5

23 1.46 B Granite Large Low [5

15 1.30 B Granite Medium Low [5



Age

(years)

Sw (%) Degradation

condition

Type of

stone

Dimension of

stone plates

Exposure

to damp

Distance from

the sea (km)

15 2.81 B Granite Medium Low [5

38 7.98 B Granite Large Low [5

38 3.18 B Granite Large Low [5

38 1.45 B Granite Large Low [5

12 2.32 B Granite Medium Low [5

14 3.13 B Granite Large Low [5

61 21.97 D Marble Medium Low \5

61 18.23 C Marble Medium Low \5

68 23.88 D Marble Large High \5

68 20.58 D Marble Large High \5

70 24.36 D Marble Large High \5

59 22.23 D Marble Large High \5

82 40.18 D Marble Large Low [5

5 0.14 A Marble Medium High \5

5 0.40 A Marble Medium High \5

5 0.07 A Marble Medium High \5

15 5.61 B Granite Large Low [5

40 3.18 B Granite Medium Low [5

9 1.29 B Limestone Medium High \5

9 2.71 B Limestone Medium High \5

7 2.05 B Limestone Large High \5

48 5.27 B Granite Medium Low [5

7 2.84 B Limestone Large High \5

51 2.21 B Granite Large Low [5

51 10.42 C Granite Large Low [5

43 5.29 B Marble Medium Low [5

39 2.29 B Granite Large Low [5

42 9.77 C Marble Large Low [5

4 2.14 B Limestone Medium High \5

50 4.30 B Marble Medium Low [5

50 2.09 B Marble Medium Low [5

48 10.08 C Marble Medium Low [5

31 1.54 B Granite Medium Low [5

35 8.12 C Marble Medium Low [5

5 2.04 B Marble Medium High \5

5 1.84 B Marble Medium High \5

5 1.50 B Marble Medium High \5

48 5.16 B Marble Medium Low [5

47 8.93 C Limestone Large Low [5

5 0.96 A Limestone Medium High \5

48 12.93 C Marble Large Low [5

46 12.16 C Marble Medium Low [5

46 5.43 B Limestone Medium Low [5

7 1.23 B Granite Medium High \5

7 1.36 B Granite Medium High \5



Age

(years)

Sw (%) Degradation

condition

Type of

stone

Dimension of

stone plates

Exposure

to damp

Distance from

the sea (km)

48 6.46 B Limestone Medium Low [5

1 0.05 A Limestone Medium Low [5

2 1.77 B Limestone Medium High [5

2 1.29 B Limestone Medium High [5

54 7.29 B Marble Medium Low [5

53 12.25 C Marble Medium Low [5

53 10.39 C Marble Medium Low [5

53 6.16 B Marble Medium Low [5

2 1.61 B Limestone Medium High [5

2 0.86 A Limestone Medium High [5

54 8.14 C Marble Medium Low [5

53 11.25 C Marble Medium Low [5

53 6.50 B Marble Medium Low [5

56 14.98 C Marble Medium High [5

42 5.27 B Marble Large Low [5

42 2.82 B Marble Large Low [5

53 7.48 B Limestone Large Low [5

56 21.41 D Marble Large High [5

53 4.02 B Limestone Medium Low [5

56 15.36 C Marble Large High [5

56 14.22 C Marble Large High [5

53 8.80 C Marble Medium Low [5

53 11.73 C Marble Large High [5

5 1.39 B Granite Medium High \5

5 1.79 B Granite Medium High \ 5

53 4.87 B Limestone Medium Low [5

53 4.71 B Marble Large Low [5

6 1.74 B Limestone Medium High \5

6 1.93 B Limestone Medium High \5

6 1.93 B Limestone Medium High \5

53 10.82 C Marble Large Low [5

37 3.79 B Granite Medium Low [5

7 2.97 B Limestone Medium High \5

53 15.96 C Marble Large Low [5

44 5.87 B Granite Large Low [5

7 2.20 B Limestone Medium High \5

7 2.14 B Limestone Medium High \5

7 1.25 B Limestone Medium High \5

53 14.84 C Marble Large Low [5

54 17.32 C Limestone Medium Low [5

6 3.26 B Marble Medium High \5

6 1.73 B Marble Medium High \ 5

38 10.07 C Granite Medium low [5

9 1.66 B Granite Medium High \5

38 11.68 C Granite Medium Low [5
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