Our reference:	IMAVIS	03507
Our reference.	INTAVIS	05507

Our reference: IMAVI	S 03507	P-authorquery-v1	
	AUTHO	R QUERY FORM	
Joi	urnal: IMAVIS	Please e-mail your responses and any corrections to:	
ELSEVIER	ticle Number: 03507	E-mail: Corrections.ESCH@elsevier.spitech.com	
ear Author,			
ease check your proc the PDF file) or com ease also highlight th ithin 48 hours.	of carefully and mark all corrections at ppile them in a separate list. Note: if y he appropriate place in the PDF file. T	t the appropriate place in the proof (e.g., by using on-screen annotation ou opt to annotate the file with software other than Adobe Reader then To ensure fast publication of your paper please return your corrections	
r correction or revis	ion of any artwork, please consult http	p://www/elsevier.com/artworkinstructions.	
e were unable to pro	cess your file(s) fully electronically a	nd have proceeded by	
Scanning (parts article	s of) your Rekeying (par article	ts of) your Scanning the artwork	
ny queries or remark oof. Click on the 'Q'	is that have arisen during the processi i link to go to the location in the proof	ng of your manuscript are listed below and highlighted by flags in the f.	
Location in article	Quer Please insert your repl	y / Remark: click on the Q link to go ly or correction at the corresponding line in the proof	
21	Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact michael.evans@elsevier.com immediately prior to returning your corrections.		
22	The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.		
23	The term "experimental section" has been changed to "Experiments section" so as to match and link it with the section heading "Experiments". Please check if this change is appropriate, and correct if necessary.		
Q4	Please provide the grant numbers for "Qualcomm", "Imperial College London" and "Seventh Framework Programme".		
Q5	One sponsor name "7th Framework Programme" has been edited to a standard format "Seventh Frame- work Programme" that enables better searching and identification of your article. Please check and correct if necessary.		
	Please check	this box or indicate your approval if	

you have no corrections to make to the PDF file.

Thank you for your assistance.

IMAVIS-03507; No of Pages 1

Image and Vision Computing xxx (2016) xxx-xxx

Contents lists available at ScienceDirect Image and Vision Computing

journal homepage: www.elsevier.com/locate/imavis

141		
142		
143	Highlights	
144		
145		Image and Vision Computing xxx (2016) xxx-xxx
46	A robust similarity measure for volumetric image registration with outliers	
47	Datrick Snape d.* Stefan Dezezolkowski ^c Stefanos Zafeiriou d. Ceorgios Tzimiropoulos b	
48 49	Christian Ledig ^a , Daniel Rueckert ^a	
50	^a Imperial College London Department of Computing London SW7 247 LIK	
51	^b University of Nottingham. School of Computer Science. Nottingham NG8 1BB. UK	
52	^c University of Nottingham, School of Medicine, Nottingham NG7 2UH, JK	
53	▲	
54	 Investigation of robust alignment methods for volumetric medical images 	
55	 Proposal of two novel similarity measures based on the cosine of normalised 3D volumetric grades 	adients
56	• The measures are shown to be robust to occlusions and bias field corruption.	▲
57	The first review of robust 3D Lucas–Kanade methods for affine image alignment The average of methods are used as foregoing a finite structure.	
58	• The proposed methods show good partormance for non-rigid alignment.	
59		
60		
61		
62		
53		
64		
65		
66		
67		
68		
69		
70		
71		
/2		
/) 74		
74		
75 76		
70		
78		
70		

'n

¹⁹⁷ http://dx.doi.org/10.1016/j.imavis.2016.05.006

198 0262-8856/© 2016 Elsevier B.V. All rights reserved.

IMAVIS-03507; No of Pages 17

Image and Vision Computing xxx (2016) xxx-xxx

SEVIE

265

266

267 268

269

270

271

272

273

274

275

276

278

279

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

328

O2 280

01 277 Contents lists available at ScienceDirect

Image and Vision Computing

331

332 333

334

335

336

337

338

339

340

341

342

343

344

345

346

349

350

351

352

353

354

355

367

368

369

370

371

A robust similarity measure for volumetric image registration with outliers $\stackrel{\text{\tiny $\&$}}{\leftarrow}$

Patrick Snape^{a,*}, Stefan Pszczolkowski^c, Stefanos Zafeiriou^a, Georgios Tzimiropoulos^b Christian Ledig^a, Daniel Rueckert^a

^aImperial College London, Department of Computing, London SW7 2AZ, UK ^bUniversity of Nottingham, School of Computer Science, Notting<mark>ham NG</mark>8 1BB, UK ^cUniversity of Nottingham. School of Medicine. Nottingham NG7 2UH. 🥼

ARTICLE INFO

Article history: Received 9 February 2015 Received in revised form 30 April 2016 Accepted 5 May 2016 Available online xxxx

Keywords: Image registration Lucas-Kanade Normalised gradient Free-form deformation

ABSTRACT

Image registration under challenging realistic conditions is a very important area of research. In this paper, 356 we focus on algorithms that seek to densely align two volumetric images according to a global similarity 357 measure. Despite intensive research in this area, there is still a need for similarity measures that are robust 358 to outliers common to many different types of images. For example, medical image data is often corrupted 359 by intensity inhomogeneities and may contain outliers in the form of pathologies. In this paper we propose 360 a global similarity measure that is robust to both intensity inhomogeneities and outliers without requiring 361 prior knowledge of the type of outliers. We combine the normalised gradients of images with the cosine function and show that it is theoretically robust against a very general class of outliers. Experimentally, 362 we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our similarity 363 measures within a proof-of-concept extension of the Lucas-Kanade algorithm for volumetric data. Finally, 364 we embed our measures within a popular non-rigid alignmen tranework based on free-form deformations 365 and show it to be robust against both simulated tumours and intensity inhomogeneities. 366

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Image registration is an important procedure in many areas of computer vision for both 2D and volumetric 3D images. Given its relevance, there is a large body of prior work concentrating on methodologies for performing accurate registration. In this paper, we are most interested in techniques that attempt to densely align two images according to a global similarity measure. Many global similarity measures have been proposed, yet only a few focus on being robust to the presence of outliers and systematic errors. We consider a similarity measure to be robust if it is not biased by the presence of noise and/or occlusions within the image to be registered. Generally, if a similarity measure is biased by noise or occlusions, this will manifest as a failure to accurately register the images.

E-mail addresses: p.snape@imperial.ac.uk (P. Snape),

- (G. Tzimiropoulos), christian.ledig@imperial.ac.uk (C. Ledig), 326
- d.rueckert@imperial.ac.uk (D. Rueckert). 327
- 329 http://dx.doi.org/10.1016/j.imavis.2016.05.006

In the case of 2D images, systematic errors and outliers are com-372 mon in the form of illumination variance and occlusions, which 373 naturally occur in so called "in-the-wild" images. Although 2D image 374 alignment is a broad field, much of the existing work focuses on aug-375 menting existing efficient algorithms with improved robust proper-376 ties. For example, one of the first algorithms to describe a 2D image 377 alignment approach was the Lucas-Kanade (LK) algorithm [1]. The 378 LK algorithm concentrates on recovering a warp that best maximises 379 a similarity measure between two images. Numerous extensions to 380 the LK algorithm have been proposed [2,3,4] and most are based on 381 ℓ_2 norm minimisation [3,5,6,7]. Most notably, the inverse compo-382 sitional framework proposed by Baker and Matthews [5] provides 383 a computationally efficient framework for solving the least squares 384 problem. 385

For volumetric, or 3D images, outliers can occur in the form 386 of pathologies, and systematic errors are commonly seen as intensity inhomogeneities caused by image acquisition artefacts such as bias fields [8]. Several methods have been proposed for registration of medical images with mismatches, focusing on robustness [9], tumour models [10] or Bayesian models [11]. However, previous methods [12] all require prior knowledge of what constitutes a mismatch in order to detect and ignore them. Additionally, a number of

395

This paper has been recommended for acceptance by Ioannis A. Kakadiaris, PhD. Corresponding author.

stefan.pszczolkowskiparraguez@nottingham.ac.uk (S. Pszczolkowski),

s.zafeiriou@imperial.ac.uk (S. Zafeiriou), yorgos.tzimiropoulos@nottingham.ac.uk 325

³³⁰ 0262-8856/© 2016 Elsevier B.V. All rights reserved.

397

398

ARTICLE IN PRESS

methods based on mutual information have been proposed to reduce the effect of intensity inhomogeneities in the registration [13,14,15].

399 To the best of our knowledge, no existing similarity measure pro-400 vides robustness against both outliers and intensity inhomogeneities 401 for registration of 3D images without prior knowledge of the type of 402 dissimilarity. However, the 2D similarity measure recently proposed 403 in Ref. [16], has been shown to be robust against both general occlu-404 sions and illumination variance. This measure is formulated as the 405 cosine of normalised gradient orientations and is simple and effi-406 cient to compute. For 3D images, we seek to provide a similarity 407 measure that can utilise the robust properties of the cosine function. This requires calculating a similarity between the two images 408 409 being aligned that can be represented as an angle. In this work, we provide two separate methodologies of measuring angular similarity 410 between 3D images 411

We clarify that when we state 3D images, we are referring to vol-412 413 umetric data where it is valid to compute gradients along all 3 of the 414 principle axes. This may be in contrast to other usages of the term 415 "3D" when referring to data sources such as range images or mesh 416 data. In this case, we would refer to these data sources as 2.5D data, as the computation of the gradient for the depth axis is non-trivial. 417 418 In fact, as mentioned by Baker et al. [17], the inverse compositional 419 algorithm is no longer valid when extended to 2.5D data due to the representation of the data as a surface. Therefore, given that the 420 421 treatment of 2.5D data is totally different from the 3D volumetric 422 images that we use here, we do not further consider it.

423 It is important to note that there is a large amount of exist-474 ing work on using gradient information for image registration on 425 volumetric data. The concept of normalised image gradients was 426 introduced to the field of medical image registration by Pluim et 427 al. [18]. In Ref. [18], normalised mutual information (NMI) [19] is 428 weighted voxelwise by the normalised image gradients in order to 429 incorporate spatial information. After this initial work, the first similarity based solely on normalised gradients was proposed by Haber 430 431 and Modersitzki [20]. This similarity measure is based on the squared 432 cosine of the normalised gradients and is equivalent to minimising 433 the squared inner product. In contrast, our proposal is to use the cosine 434 of the normalised gradient orientations and is equivalent to minimis-435 ing the *inner product*. This seemingly small difference, the squaring 436 of the cosine, causes outliers to bias the similarity measure and thus 437 affects the robustness. Despite these properties of the squared cosine 438 measure, it has been successfully utilised in the literature [21,22,23] 439 for registering images that do not contain outliers.

Preliminary work on the cosine of orientations has been shown in
our previous work [24,25]. In Ref. [24], we gave preliminary results
that show that the cosine of normalised gradient orientations represents a robust similarity measure in the presence of both occlusions
and intensity inhomogeneities. We extend this work in two major
areas:

446 Firstly, we note that that there are two separate angular measures 447 that can be defined in order to compute the cosine of normalised gra-448 dient orientations between two images. These orientations are based on the spherical coordinates of the gradients and the inner prod-449 450 uct between the gradients. As a proof of concept, we directly extend 451 the methodology of Ref. [16] to provide evidence that our similar-452 ity measures are robust to occlusions and intensity inhomogeneities. Although the extension of LK-type algorithms to 3D is simple and 453 454 was proposed in Ref. [17], no previous investigation has been done 455 on how similarity measures perform when extended to 3D. Since no previous work has investigated the use of 3D Lucas-Kanade for 456 457 robust registration, we chose to extend existing robust²D meth-458 ods into 3D. These extended state-of-the-art 2D methods are then 459 compared against using a synthetic dataset.

460 Secondly, in order to show that our similarity measures compete
 461 with state-of-the-art techniques, we embed them within a widely
 462 and successfully used non-rigid registration framework based on

free-form deformations (FFD) [26]. This FFD registration framework 463 differs from our LK example as it is a local deformation model and 464 thus contains many thousands of parameters. This large parame-465 ter space makes Gauss-Newton optimisation infeasible due to the 466 memory requirements of inverting the Hessian matrix. For this rea-467 son, registration techniques that focus on local deformations are 468 469 generally solved using gradient descent algorithms that incorporate line searches [26]. We compare against the NMI measure [19], 470 DRAMMS [27] and the cosine squared measure [20] and confirm 471 the robustness of the proposed similarity measures on simulated 472 473 pathological data from a tumour database. Secondly, we provide more extensive evaluation into the robust properties of the cosine of 474 normalised gradient orientations when applied to volumetric data. 475

The remainder of the paper is organised as follows. In Section 2 476 we discuss relevant related works and consider the advantages of our 477 proposed measures. In Section 3 we give a thorough explanation of 478 the theory behind our work and empirically verify its robustness on 479 our chosen data. In Section 4 we describe the application of our sim-480 ilarity measure within the Lucas-Kanade algorithm and in Section 5 481 we show its application within the non-rigid framework of Rueck-482 ert et al. [26]. Experimental results within both rigid and non-rigid 483 alignment are given in Section 6. Finally, we draw conclusions in 484 Section 7. 485 486

2. Related work

In this paper we are most interested in similarity measures 490 that have been proposed for parametric image alignment. This is 491 primarily due to the fact that parametric image alignment methods are often very computationally efficient. In particular, we are interested in approaches that show robustness to both intensity inhomogeneities and occlusions. 495

487

488

489

496 Within 2D image registration there has been a large body of 497 work that focuses on illumination invariance. Within the most 498 popular parametric image alignment framework, the Lucas-Kanade algorithm (LK), one of the the earliest attempts was by Hager and 499 Belhumeur [28]. In Ref. [28], the authors incorporate a linear appear-500 501 ance basis that models illumination variance and excelled in the 502 area of object tracking. However, this requires prior knowledge of 503 the type of object under consideration so that the appearance basis can be precomputed. There is a large amount of existing literature 504 about incorporating prior knowledge via linear bases within the LK 505 algorithm. However, we do not consider them here, as we are most 506 interested in modelling unseen structured variation via robust simi-507 508 larity measures and thus prior knowledge is generally not available.

Within the LK framework, a number of robust measures have 509 been proposed. Black and Jepson [29] proposed incorporating robust 510 statistics into the LK framework and showed their effectiveness 511 in the presence of illumination variance. Dowson and Bowden [3] 512 incorporated the mutual information (MI) measure within the LK 513 framework and found it to be superior to an SSD based measure for 514 illumination variance. However, using mutual information as a sim-515 516 ilarity measure requires updating the Jacobian and Hessian matrices 517 at each iteration. For this reason, the MI measure is unable to make 518 use of more computationally efficient LK algorithms such as the 519 inverse compositional (IC) method proposed in Ref. [5]. Although 520 the authors do give an ad hoc solution that involves fixing the values of the Jacobian and Hessian matrices, it is still a more complex 521 522 implementation than the original inverse compositional algorithm. Evangelidis and Psarakis [6] provide a correlation measure between 523 524 images and a computational framework that is invariant to illumina-525 tion differences. This is a great strength of the algorithm, however, the correlation measure is still grossly affected by outliers. Lucey et 526 al. [4] propose a method of weighting the LK fitting with a large 527 bank of filters in a computationally efficient manner. This is a very 528

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

3. Cosine of normalised gradients In this section, we describe the malised gradients and specify how

In this section, we describe the concept of the cosine of nor-597 malised gradients and specify how they represent a robust measure 598 of similarity. In this work, we consider a similarity measure to be 599 robust if it suppresses the contribution of comparisons between 600 image areas that are unrelated. More specifically, we seek a measure 601 that, when given two images that are visually dissimilar, will cal-602 culate zero correlation between them. For example, consider Fig. 3 603 which shows cross sections of a brain containing a tumour. When 604 registering this corrupted image with an image of a healthy brain, the 605 ideal registration would not be biased by the presence of the tumour, 606 as it does not share relevant anatomical structures with the healthy 607 brain. To this end, Tzimiropoulos et al. [16,34] proposed the cosine 608 of orientation differences between two images, which we describe in 609 detail below. 610

3.1. Cosine similarity in 2D

614 Assuming that we are given two 2D images, denoted as $I_i i \in \{1, 2\}$, we define $G_{i,x} = \mathbf{F}_{x} * I_{i}$ and $G_{i,y} = \mathbf{F}_{y} * I_{i}$ as the gradients obtained 616 by convolving I_i with differentiation approximation filters \mathbf{F}_x and \mathbf{F}_y 617 respectively. We denote the lexicographical vectorisation of $G_{i,x}$ as \mathbf{g}_{ix} and define an index k into the vector, $\mathbf{g}_{ix}(k)$. We define an iden-618 619 tical vector for $G_{i,y}$ as $\mathbf{g}_{i,y}$. We also define $\mathbf{g}_i(k)$ as the vector formed by concatenating the *x* and *y* gradients together. Trivially, we can define the normalised gradient as $\tilde{\mathbf{g}}_i(k) = \frac{\mathbf{g}_i(k)}{\|\mathbf{g}_i(k)\|}$ where $\|\mathbf{g}_i(k)\| =$ 620 621 622 $\sqrt{g_{i,x}(k)^2 + g_{i,y}(k)^2}$. We also define similar vectors for the x and y 623 components separately, with $\tilde{\mathbf{g}}_{i,x}$ being the *x* components concate-624 nated in lexicographical ordering and $\tilde{\mathbf{g}}_{i,y}$ being the y components. 625 Finally, $\tilde{\mathbf{g}}_i$ is the vector of concatenated normalised gradients for 626 image I:. 627

Given the normalised gradients, it is simple to parametrise them 628 within a polar coordinate system with radius $r_i(k) = \|\tilde{\mathbf{g}}_i(k)\| = 1$, 629 orientation $\phi_i(k) = \arctan \frac{g_{iy}(k)}{g_{ix}(k)}$ and pole at the origin. Given orientations from two dissimilar images, it is reasonable to assume 631 that difference between the orientations, $\Delta \phi(k) = \phi_1(k) - \phi_2(k)$, 632 can take any angle between $[0, 2\pi)$. Intuitively, this implies that 633 selecting two pixels from dissimilar images is unlikely to yield any correlation between the images. In Ref. [16], it was experimentally 635 verified that the orientation differences follow a uniform distri-636 bution, $\Delta \phi(k) \sim U(0, 2\pi)$. The fact that the orientation differences 637 follows a uniform distribution is unsurprising under the assumption 638 that the two images have absolutely no correlation. However, the 639 expectation of the cosine of the uniform distribution is zero, which 640 is a powerful property that can be exploited for image registration. It 641 is powerful because it means that the expected overall contribution 642 of uncorrelated areas to any cost function will be zero, meaning that 643 the uncorrelated areas do not affect the result of the registration. 644

Fig. 2. The distributions of $\cos\sigma$ and $\cos^2\sigma$ averaged over 10 subjects from the BraTS simulated images. The images were registered using a rigid transformation prior to computation and only the tumour areas were sampled. (a) shows the distribution of $\cos\sigma$ over the entire image. (c) shows the distribution of $\cos^2\sigma$ proposed in Ref. [20] in the simulated tumour region.

Fig. 1. An illustration of the spherical coordinate system as described in this paper.

effective technique and is largely illumination invariant, however, it gives little benefit when presented with occlusions.

For 3D images, robust registration is a very active area of research. The most commonly used techniques for multi-modal registration are based on mutual information (MI) [30]. These techniques are highly effective at registration of objects with inherent structure such as anatomy but are very sensitive to global corruption such as intensity inhomogeneities. To overcome this, gradient information is often utilised and in particular was incorporated into a MI framework by Pluim et al. [18]. In particular, gradient information helps capture the local structure within an image which is not described by general MI-based registration techniques. Gradient information has also been successfully used in a number of other works [31,32,33]. However, these works focus on capturing local structure and not on robustness to artefacts such as pathologies caused by tumours. The most related work is that of Haber and Modersitzki [20], which proposes a similarity measure based on the square of the cosine (inner product squared). We conduct a thorough comparison with this technique and show that it is biased by the presence of occlusions.

Finally, the work of Tzimiropoulos et al. [16] introduced the first similarity measure based on the cosine of normalised gradients. We would stress that although our work is inspired by Ref. [16], the calculation of the orientations for our proposed similarities is very different. In particular, it is important to note that calculating an orientation in 3D is more complex than the 2D case due to the extra degree of freedom. In this work, we give a detailed explanation of how to calculate these orientations in 3D and how to optimise them for use in image registration.

580

581

582

583

584

585

586

587

588

589

590

59

592

594

596

611

612

613

645

646

ARTICLE IN PRESS

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

Fig. 3. Example images of a T1-weighted brain containing a tumour area. The tumour areas are outlined in yellow in each image. Left: axial view. Middle: coronal view. Right: sagital view. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Formally, we assume that $\Delta \phi(k)$ is a stationary random process y(t) with index $t \triangleq k \in \mathbb{R}^2$, where $\forall t \sim U(0, 2\pi)$. We define the random process $z(t) = \cos y(t)$ and thus $\forall t$ random variable Z = z(t) has mean value $E\{Z\} = 0$. In fact, by assuming mean ergodicity, we find that

$$E\{Z\} \propto \int z(t)dt \equiv \int_{\mathcal{R}^2} \cos[\Delta\phi(k)]dk =$$
(1)

This is an important property for a similarity measure to be robust against occlusions. Since occlusions do not provide useful information for alignment, ideally they would be ignored. However, manual segmentation of occluded areas is time consuming and prone to error. Therefore, an ideal robust similarity measure would be able to automatically identify regions of the image that are occluding the true object of interest. Under the previous definition of robustness, the cosine similarity naturally represents a robust similarity measure as it automatically suppresses the contribution of outliers.

Given an image warping function with parameters **p**, maximising the sum of the cosine of orientation differences provides the robust similarity measure:

$$q = \sum_{k} \cos\left(\Delta \phi(k)[\mathbf{p}]\right) \tag{2}$$

For more details of the specifics of optimising (2) for image alignment, we refer the reader to Ref. [16].

3.2. Cosine similarity in 3D

We make very similar assumptions for 3D images as we did in Section 3.1 for 2D images. We simply extend the previous notation by including the gradient of the *z*-axis, denoted as $G_{i,z} = \mathbf{F}_z * I_i$. We also redefine the normalised gradient as $\tilde{\mathbf{g}}_i(k) = \frac{\mathbf{g}_i(k)}{\|\mathbf{g}_i(k)\|}$ where $\|\mathbf{g}_i(k)\| = \sqrt{g_{i,x}(k)^2 + g_{i,y}(k)^2 + g_{i,z}(k)^2}$ and $\mathbf{g}_i(k)$ is defined as the vector formed by concatenating the *x*, *y* and *z* gradients together.

Measuring the angular distance between vectors in 3D is more complex than in 2D, due to the extra degree of freedom. In the fol-lowing sections, we describe two different measures that can be used to calculate similarities between vectors within 3D images, the spherical coordinates and the inner product. In the previous section, we described in detail how properties of the cosine of a uniform dis-tribution can be exploited to form a robust measure of similarity. The most important property was that uncorrelated areas such as occlu-sions should have no impact registration. This was formalised as the expectation of the sum of the uncorrelated elements should be zero. In the case of input to the cosine function, a given distribution must simply be symmetric over the positive and negative span of outputs of the cosine. When symmetric over the positive and negative outputs, the expectation of the cosine function is zero. In fact, we can relax the definition of a measure being robust to outliers by stating that we desire a measure whereby the expectation of the measure over image areas that are uncorrelated is zero.

In practise, when comparing two images where one image contains occlusions, there will be regions that are correlated and then the occluded region that is uncorrelated. In this case, the total distribution of all pixels will be described by a mixture model of the occluded and non-occluded regions. We desire that the distribution of the uncorrelated areas has an expectation of zero and thus will not affect the optimisation of the similarity measure.

In Section 3.2.1 and Section 3.2.2 we describe two measures of angular difference between 3D images. We investigate the distribution of these angular measures when combined with the cosine function and motivate that they are both suitable for use as a similarity measure between real 3D images.

3.2.1. Spherical coordinates

In 2D, a natural parametrisation of the angle between the two gradient vectors is the polar coordinate system. In 3D, we have three gradient vectors and thus require two angles to describe their orientation. Unlike in 2D, where the vectors lie on the unit circle, in 3D the vectors lie on the surface of a unit sphere. Therefore, it is possible to parametrise the vectors in terms of the spherical coordinate system, which is described by two angles: the azimuth angle ϕ with range $[0, 2\pi)$ and the elevation angle θ with range $[0, \pi]$. Given the normalised gradients as vectors with Cartesian coordinates, we can calculate the spherical angles as follows:

 $r_i(k) = \|\tilde{\mathbf{g}}_i(k)\| = 1$

$$\phi_i(k) = \arctan \frac{g_{i,y}(k)}{\tilde{g}_{i,x}(k)} \tag{3}$$

$$\theta_i(k) = \arccos \tilde{g}_{i,z}(k)$$

An illustration of the spherical coordinate system, as used in this paper, is given in Fig. 1.

Our proposal is to combine the spherical coordinates with the cosine function in order to provide a robust similarity measure. Similar to the 2D case, we propose the cosine of azimuth differences, $\Delta \phi = \phi_1 - \phi_2$, and the cosine of elevation differences, $\Delta \theta = \theta_1 - \theta_2$, as a combined similarity measures. Given a 3D image warping function with parameters **p**, the spherical coordinates form a similarity measure as follows:

$$q = \sum_{k} \cos\left(\Delta\phi(k)[\mathbf{p}]\right) + \sum_{k} \cos\left(\Delta\theta(k)[\mathbf{p}]\right)$$
(4) 789
790
791

Optimisation of Eq. (2) is described in detail in Section 4.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

(b)

Fig. 4. The mean distribution of $\Delta\phi$ of the BraTS simulated images. The images were registered using a rigid transformation and only the tumour areas were sampled. (a) The distribution of $\Delta\phi$ in the simulated tumour region. (b) The distribution of $\Delta\phi$ over the entire image. It also shows the Laplacian distribution that best fits the data.

Experimentally, we verified that $\Delta \phi$ approximates a symmetric distribution for simulated tumour data taken from the Multimodal Brain Tumor Image Segmentation (BraTS) challenge, as shown in Fig. 4. Fig. 4a shows the distribution of $\Delta \phi$ between the tumour area circled in yellow in Fig. 3 and a healthy brain. The images were reg-istered using a rigid transformation before $\Delta \phi$ was computed. The azimuth angle is analogous to the angle studied in Ref. [34] and follows the same uniform distribution, $\Delta \phi \sim U(0, 2\pi)$.

(a)

When the entire region of the rigidly registered brain images is considered, we find that the distribution of $\Delta \phi$ is clearly a mixture of two separate models, one for the occluded area and one for the rigidly registered area. Fig. 4b shows the distribution of $\Delta \phi$ calcu-lated over the entire image region of each image and a Laplacian distribution that best fits the data. Thus, our experimental evidence suggests that the total distribution of $\Delta \phi$ over the entire image region is a mixture model between a uniform distribution and a Laplacian distribution with approximately zero mean.

3.2.2. Inner product

A more general angular measure between two vectors is the inner product. Unlike in Ref. [16] or Section 3.2.1, the inner product is a single angle and not the difference between two angles. Practically, the inner product measures the projection error between two vectors and is defined as:

 $\cos\sigma = \tilde{\mathbf{g}}_1^{\mathsf{T}} \tilde{\mathbf{g}}_2 \tag{5}$

In Ref. [34], the authors reasonably propose that the angle between the gradients of dissimilar images can take any value in $[0, 2\pi)$ with equal probability. Similarly, the relationship between the gradient vectors of two dissimilar 3D images could feasibly be in any direction with equal probability. Therefore, the distribution of inner

products between two unrelated vectors can take the values [-1,1]with equal probability. Due to the expected range of inner product values, we would expect that $\cos\sigma$ follows a uniform distribution. $\cos \sigma \sim U(-1, 1)$. Note that this is a different assumption to that made in **Ref.** [34], which assumes that the *azimuth angle itself*, $\Delta \phi$, follows a uniform distribution. However, it is merely sufficient that the total sum of values from the dissimilar vectors is zero. Therefore, since $E\{U(-1,1)\} = 0$, the inner product of normalised gradients satisfies our definition of being robust to outliers. In Fig. 2a, we show that 886 this assumption holds for the simulated tumour data taken from the BraTS challenge.

When the entire region of the rigidly registered brain images is considered, we find that the distribution of $\cos\sigma$ is clearly a mixture of two separate models, one for the occluded area and one for the rigidly registered area. Fig. 2b shows the distribution of $\cos\sigma$ calcu-lated over the entire image region. In this case, the distribution of the inner product appears to be a mixture model between a uniform 894 distribution and a zero mean Laplacian distribution. However, due to the ambiguity in the inner product in terms of orientation, the angle of the inner product is only defined in the range $[0, \pi]$ and thus only the positive tail of the Laplacian appears.

In Fig. 2c we also show the distribution of the similarity measure proposed by Haber and Modersitzki [20]. In Ref. [20], the authors propose the inner product as a similarity measure, which looks very similar to the measure we proposed in Eq. (5). However, Haber and Modersitzki [20] maximise the square of the inner product using a least squares Gauss-Newton optimisation. As we have shown, the inner product is related to the cosine between the vectors. Haber and Modersitzki [20] proposed the inner product squared as a similarity, which is equivalent to the square of the cosine. As we can see in Fig. 2c, the cosine squared does not represent a symmetric distribution and therefore is not a robust similarity measure by our definition.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

ARTICLE IN PRESS

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

4. Robust Lucas–Kanade

Little work has been published on the applications of 3D Lucas-Kanade (LK), despite the extension of LK into 3D being trivial [17]. Given the relative efficiency of Lucas-Kanade and other similar algo-rithms, and their potential accuracy inder challenging conditions, we propose to investigate using LK for robust affine alignment in voxel images. To the best of our knowledge, this is the first such com-parison of using state-of-the-art LK fitting algorithms for voxel data. Given the similarity measures defined in Section 3, we propose novel LK algorithms that directly maximise the measures.

When referring to the operations performed by the LK algorithm we will use the following notations. Warp functions $\mathcal{W}(\mathbf{x}_i; \mathbf{p}) =$ $[\mathcal{W}_x(\mathbf{x}_i; \mathbf{p}), \mathcal{W}_v(\mathbf{x}_i; \mathbf{p}), \mathcal{W}_z(\mathbf{x}_i; \mathbf{p})]$ express the warping of the *i*th 3D coordinate vector $\mathbf{x}_i = [x_i, y_i, z_i]^{\top}$ by a set of parameters $\mathbf{p} =$ $[p_1, \ldots, p_n]^{\top}$, where *n* is the number of warp parameters. We extend the previously defined linear index k in to a coordinate vector, $\mathbf{x} =$ $[x_1, y_1, z_1, \dots, x_D, y_D, z_D]$ that represents the concatenated vector of coordinates, of length D, which allows the definition of a single warp for an entire image, $\mathcal{W}(\mathbf{x}; \mathbf{p}) = [\mathcal{W}_{x}(\mathbf{x}_{1}; \mathbf{p}), \mathcal{W}_{y}(\mathbf{x}_{1}; \mathbf{p}), \mathcal{W}_{z}(\mathbf{x}_{1}; \mathbf{p}), \dots,$ $\mathcal{W}_{x}(\mathbf{x}_{D};\mathbf{p}), \mathcal{W}_{y}(\mathbf{x}_{D};\mathbf{p}), \mathcal{W}_{z}(\mathbf{x}_{D};\mathbf{p})$]. We assume that the identity warp is found when $\mathbf{p} = \mathbf{0}$, which implies that $\mathcal{W}(\mathbf{x}; \mathbf{0}) = \mathbf{x}$. We abuse notation and define the warping of an image I by parameter vector **p** as $I(\mathbf{p}) = I(\mathcal{W}(\mathbf{x}; \mathbf{p}))$, where $I(\mathbf{p})$ is a single column vector of concatenated pixels.

In the following sections we describe the details of relevant LK algorithms. We begin with the original forward additive LK algorithm [1,5]. We then describe the enhanced correlation coeffi-cient (ECC) algorithm [6] which was shown to be robust to inten-sity inhomogeneities. We conclude the existing algorithms with a description of the efficient inverse compositional algorithms for both the original LK method [35] and the ECC method [6]. Following the existing literature, we present our proposed LK algorithms. The first of which is a variation of the ECC method for normalised gradients and the second involves a traditional inverse compositional method. Both of the proposed algorithms take the inverse compositional form due to its computational efficiency.

4.1. Forward additive LK fitting

The original forward additive ℓ_2 LK algorithm [1,5] seeks to minimise the sum of squared differences (SSD) between a given template image and an input image by minimising the sum of the squared pixel differences:

where $T(\mathbf{0})$ is the unwarped reference template image. Due to the non-linear nature of Eq. (6) with respect to **p**, Eq. (6) is linearised by taking the first order Taylor series expansion. By iteratively solving for some small $\Delta \mathbf{p}$ update to **p**, the objective function becomes

$$\underset{\mathbf{p}}{\operatorname{argmin}} \quad \|I(\mathbf{p}) + \nabla I \frac{\partial \mathcal{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{0})\|^2$$
(7)

where ∇I is the gradient over each dimension of $I(\mathbf{p})$ warped into the frame of *T* by the current warp estimate $\mathcal{W}(\mathbf{x}; \mathbf{p})$. $\frac{\partial \mathcal{W}}{\partial \mathbf{p}}$ is the Jacobian of the warp and represents the first order partial derivatives of the warp with respect to each parameter. $\nabla I \frac{\partial \mathcal{W}}{\partial \mathbf{p}}$ is commonly referred to as the steepest descent images. We will express the steepest descent images as $\frac{\partial I(\mathbf{p})}{\partial \mathbf{p}}$. Eq. (7) is now solvable by assuming the Gauss-Newton approximation to the Hessian, $\mathbf{H} = \begin{bmatrix} \frac{\partial l(\mathbf{p})^{\top}}{\partial \mathbf{p}} & \frac{\partial l(\mathbf{p})}{\partial \mathbf{p}} \end{bmatrix}$:

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \frac{\partial I(\mathbf{p})}{\partial \mathbf{p}}^{\top} [T(\mathbf{0}) - I(\mathbf{p})]$$
(8)

Eq. (8) can then be solved by iteratively updating $\bm{p} \leftarrow \bm{p} + \Delta \bm{p}$ until convergence.

4.2. ECC LK fitting

The enhanced correlation coefficient (ECC) measure, proposed by Evangelidis and Psarakis [6], seeks to be invariant to illumination differences between the input and template image. This is done by suppressing the magnitude of each pixel through normalisation. In Ref. [6], they provide the following cost function

$$\underset{\mathbf{p}}{\operatorname{argmax}} \quad \frac{I(\mathbf{p})^{\top} T(\mathbf{0})}{\|I(\mathbf{p})\| \| T(\mathbf{0})\|}$$
(9)

Assuming a delta update as before and linearising in a similar manner to Eq. (7) results in

$$\underset{\mathbf{p}}{\operatorname{trgmax}} \quad \hat{T} \frac{I(\mathbf{p}) + \frac{\partial I(\mathbf{p})}{\partial \mathbf{p}} \Delta \mathbf{p}}{\|I(\mathbf{p}) + \frac{\partial I(\mathbf{p})}{\partial \mathbf{p}} \Delta \mathbf{p}\|}$$
(10)

where $\hat{T} = \frac{T(\mathbf{0})}{\|T(\mathbf{0})\|}$. Evangelidis and Psarakis [6] give a very comprehensive proof of the upper bound of Eq. (10), which yields the following solution for $\Delta \mathbf{p}$

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \frac{\partial I(\mathbf{p})}{\partial \mathbf{p}}^{\top} \left[\frac{\|I(\mathbf{p})\|^2 - I(\mathbf{p})^{\top} \mathbf{Q}I(\mathbf{p})}{\hat{T}^{\top} I(\mathbf{p}) - \hat{T}^{\top} \mathbf{Q}I(\mathbf{p})} \hat{T} - I(\mathbf{p}) \right]$$
(11)

where **Q** is an orthogonal projection operator on the Jacobian, $\mathbf{J} = \frac{\partial I(\mathbf{p})}{\partial \mathbf{p}}$, defined as $\mathbf{Q} = \mathbf{J}(\mathbf{J}^{\top}\mathbf{J})^{-1}\mathbf{J}^{\top}$.

In fact, the Δp update given in Ref. [6] is more complex than Eq. (11), as it seeks to find an upper bound on the correlation between the two images. However, in the case where Eq. (11) does not apply, it is unlikely that the algorithm is able to converge. For this reason, we only consider the update equation presented in Eq. (11).

4.3. Inverse compositional LK

The inverse compositional algorithm, proposed by Baker and Matthews [35], performs a compositional update of the warp and linearises over the template rather than the input image. Linearisation of the template image causes the gradient in the steepest descent images term to become fixed. The compositional update of the warp assumes linearisation of the term $\frac{\partial \mathcal{W}(\mathbf{x};\mathbf{0})}{\partial \mathbf{p}}$, which is also fixed. Therefore, the entire Jacobian term, and by extension the Hessian matrix, are also fixed. Similar to the ℓ_2 SSD algorithm described in Section 4.1, we pose the objective function as:

$$\operatorname{argmin}_{\mathbf{p}} \|T(\Delta \mathbf{p}) - I(\mathbf{p})\|^2$$
(12)

where we notice that the roles of the template and input image have been swapped. Assuming an inverse compositional update to the warp, $W(\mathbf{x}; \mathbf{p}) \leftarrow W(\mathbf{x}; \mathbf{p}) \circ W(\mathbf{x}; \Delta \mathbf{p})^{-1}$ and linearisation around the template, Eq. (12) can be expanded as:

$$\underset{\mathbf{p}}{\operatorname{argmin}} \quad \|I(\mathbf{p}) - \frac{\partial T(\mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{0})\|^2$$
(13)

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

٩Q

Solving for $\Delta \mathbf{p}$ is identical to Eq. (8), except that the Jacobian and Hessian have been pre-computed

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \frac{\partial T(\mathbf{0})}{\partial \mathbf{p}}^{\top} [I(\mathbf{p}) - T(\mathbf{0})]$$
(14)

The ECC can also be described as an inverse compositional algorithm, by performing the same update to the warp and simply swapping the roles of the template and reference image. In short, solving ECC in the inverse compositional case becomes

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \frac{\partial \hat{T}}{\partial \mathbf{p}}^{\top} \left[\frac{\|\hat{T}\|^2 - \hat{T}^{\top} \mathbf{Q} \hat{T}}{I(\mathbf{p})^{\top} \hat{T} - I(\mathbf{p})^{\top} \mathbf{Q} \hat{T}} I(\mathbf{p}) - \hat{T} \right]$$
(15)

where **Q** is as before, except $\mathbf{J} = \frac{\partial \hat{T}}{\partial \mathbf{p}}$. Any term involving \hat{T} is fixed and pre-computable, so the reduction of calculations per-iteration is substantial.

It is worth noting that not every family of warps is suitable for the inverse compositional approach. The warp must belong to a family that forms a group, and the identity warp must exist in the set of possible warps. For more complex warps, such as piecewise affine and thin plate spline warping, approximations to the inverse compositional updates have been proposed [36,37].

4.4. Inner product ECC LK

Given the inner product similarity measure as described in Section 3.2.2, we seek to embed it within the LK framework in order to present a robust parametric alignment algorithm. Therefore, we begin by restating our cost function:

$$\underset{\mathbf{p}}{\operatorname{argmax}} \quad \sum_{k} \cos\left(\sigma(\mathbf{p})\right) \tag{16}$$

with an abuse of notation for the parameters which are hidden within the cosine function. Expanding Eq. (16) reveals the parameters and makes the relationship between our inner product similarity and the ECC framework clear:

$$\operatorname{argmax}_{\mathbf{p}} \tilde{\mathbf{g}}_{I}(\mathbf{p})^{\top} \tilde{\mathbf{g}}_{T}(\mathbf{0})$$
(17)

which yields our forward additive algorithm.

However, unlike in ECC where the vectors represent concatenated normalised intensities, we are considering normalised gradients. Since gradients have three separate components we must consider the derivatives when linearising \mathbf{g}_{l} . Since \mathbf{g}_{l} is composed of multiple components, there will be extra derivatives to calculate via the chain rule. Formally, linearising Eq. (17) with respect to \mathbf{g}_{l} yields

$$\underset{p}{\operatorname{argmax}} \quad \tilde{\mathbf{g}}_{T} \frac{\tilde{\mathbf{g}}_{I}(\mathbf{p}) + \mathbf{J}_{\mathbf{g}} \Delta \mathbf{p}}{\|\tilde{\mathbf{g}}_{I}(\mathbf{p}) + \mathbf{J}_{\mathbf{g}} \Delta \mathbf{p}\|}$$
(18)

where \mathbf{J}_{σ} is the matrix formed by correctly computing the derivative of \mathbf{g}_{l} with respect to each component of \mathbf{g}_{l} . For example, given that $\mathbf{g}_{l,x}(\mathbf{p})$ is a vector formed of the *x*-components of the gradients and $\tilde{\mathbf{g}}_{l,x}(\mathbf{p})$ is a vector formed of $\tilde{\mathbf{g}}_{l,x}(\mathbf{p})[k] = \frac{\mathbf{g}_{l,x}(\mathbf{p})[k]}{\|\mathbf{g}_{l}(\mathbf{p})[k]\|}$, the true derivative of $\tilde{\mathbf{g}}_{l,x}(\mathbf{p})$ is of $\tilde{\mathbf{g}}_{l,x}(\mathbf{p})$ is

$$\begin{array}{ll} \overset{1118}{\overset{1119}{\underset{1120}{1}}} & \frac{\partial \tilde{\mathbf{g}}_{l,x}(\mathbf{p})}{\partial \mathbf{p}} = \frac{\partial \tilde{\mathbf{g}}_{l,x}(\mathbf{p})}{\partial \mathbf{g}_{l,x}(\mathbf{p})} \frac{\partial \mathbf{g}_{l,x}(\mathbf{p})}{\partial \mathbf{p}} \\ \overset{1120}{\overset{1121}{\underset{1122}{1}}} & \frac{\partial \tilde{\mathbf{g}}_{l,x}(\mathbf{p})}{\partial \mathbf{g}_{l,x}(\mathbf{p})} = \frac{\mathbf{g}_{l,y}(\mathbf{p})^2 + \mathbf{g}_{l,z}(\mathbf{p})^2}{\left(\mathbf{g}_{l,x}(\mathbf{p})^2 + \mathbf{g}_{l,y}(\mathbf{p})^2 + \mathbf{g}_{l,z}(\mathbf{p})^2\right)^{3/2}} \end{array}$$
(19)

where $\frac{\partial \mathbf{g}_{l,x}(\mathbf{p})}{\partial \mathbf{p}}$ is equivalent to $\frac{\partial l(\mathbf{p})}{\partial \mathbf{p}}$ in the original ECC equations. The *y* and *z* derivatives are given in a similar fashion as

$$\partial \tilde{\mathbf{g}}_{l,y}(\mathbf{p}) = \mathbf{g}_{l,x}(\mathbf{p})^2 + \mathbf{g}_{l,z}(\mathbf{p})^2$$

$$\partial \mathbf{g}_{I,y}(\mathbf{p}) = (\mathbf{g}_{I,x}(\mathbf{p})^2 + \mathbf{g}_{I,y}(\mathbf{p})^2 + \mathbf{g}_{I,z}(\mathbf{p})^2)^{3/2}$$
 112

$$\frac{\partial \tilde{\mathbf{g}}_{l,z}(\mathbf{p})}{\partial \mathbf{g}_{l,z}(\mathbf{p})} = \frac{\mathbf{g}_{l,x}(\mathbf{p})^2 + \mathbf{g}_{l,y}(\mathbf{p})^2}{\left(\mathbf{g}_{l,x}(\mathbf{p})^2 + \mathbf{g}_{l,y}(\mathbf{p})^2 + \mathbf{g}_{l,z}(\mathbf{p})^2\right)^{3/2}}$$
(20)

However, $\nabla \mathbf{g}_{l,x}$, formally the image gradient, represents the gradient over only the x-component, and is equivalent to the second order derivative of the gradients with respect to x.

Since $\frac{\partial g_{I_X}(\mathbf{p})}{\partial \mathbf{p}}$ is a matrix and $\frac{\partial \tilde{g}_{I_X}(\mathbf{p})}{\partial g_{I_X}(\mathbf{p})}$ is a vector, we multiply the two using a Hadamard product, denoted by the \odot operator. However, $\frac{\partial \tilde{g}_{I_X}(\mathbf{p})}{\partial g_{I_X}(\mathbf{p})}$ must first form a matrix, \mathbf{J}_X , of size $D \times p$ by repeating the vector p times to form columns within the matrix. Finally the total *x*-component Jacobian is given by $\mathbf{J}_{\mathbf{g},x} = \mathbf{J}_x \odot \frac{\partial \mathbf{g}_{I,x}(\mathbf{p})}{\partial \mathbf{p}}$

Given that $\mathbf{J}_{\mathbf{g},i} \forall i \in \{x, y, z\}$ have been calculated, the total derivative term is given by $\mathbf{J}_{\mathbf{g}} = [\mathbf{J}_{\mathbf{g},x}, \mathbf{J}_{\mathbf{g},y}, \mathbf{J}_{\mathbf{g},z}]^{\mathsf{T}}$. Solving for $\Delta \mathbf{p}$ is now identical to the ECC formulation:

1152Q

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \mathbf{J}_{\mathbf{g}} \begin{bmatrix} \| \mathbf{g}_{l}(\mathbf{p}) \|^{2} - \mathbf{g}_{l}(\mathbf{p})^{\top} \mathbf{Q} \mathbf{g}_{l}(\mathbf{p}) \\ \\ \mathbf{\tilde{g}}_{T}^{\top} \mathbf{g}_{l}(\mathbf{p}) - \mathbf{\tilde{g}}_{T}^{\top} \mathbf{Q} \mathbf{g}_{l}(\mathbf{p}) \\ \\ \end{bmatrix}$$
(21) 1146
1147

Since the update step is identical to the one given in Eq. (15) it is simple to reformulate the inner product ECC in an inverse compositional form by following a derivation identical to Section 4.3. In the Experiments section, we consider the inverse compositional form of the algorithm.

In contrast to the inner product derivation in the previous section. the spherical representation requires the optimisation of the summation of two cosine correlations. In theory, it would be possible to solve for each correlation separately in a manner similar to that proposed by Tzimiropoulos et al. [16]. This would be suboptimal as it would require an alternating optimisation scheme. Therefore, in the interest of solving a single objective, we note the following relationship between the two summations:

$$\underset{\mathbf{p}}{\operatorname{argmax}} \quad \sum_{k} \cos\left(\Delta\phi(\mathbf{p})\right) + \sum_{k} \cos\left(\Delta\theta(\mathbf{p})\right) \tag{22} \qquad (22)$$

is equivalent to the minimisation of

$$\underset{\mathbf{p}}{\operatorname{argmin}} \left\| \begin{pmatrix} \cos \phi_{l}(\mathbf{p}) \\ \sin \phi_{l}(\mathbf{p}) \\ \cos \theta_{l}(\mathbf{p}) \\ \sin \theta_{l}(\mathbf{p}) \end{pmatrix} - \begin{pmatrix} \cos \phi_{T}(\mathbf{0}) \\ \sin \phi_{T}(\mathbf{0}) \\ \cos \theta_{T}(\mathbf{0}) \\ \sin \theta_{T}(\mathbf{0}) \end{pmatrix} \right\| \triangleq 1172$$

$$\underset{\mathbf{p}}{\operatorname{argmin}} \left\| \begin{pmatrix} \mathbf{g}_{I,x}(\mathbf{p}) \\ \tilde{\mathbf{g}}_{I,y}(\mathbf{p}) \\ \tilde{\mathbf{g}}_{I,z}(\mathbf{p}) \\ \sqrt{1 - \tilde{\mathbf{g}}_{I,z}^{2}(\mathbf{p})} \end{pmatrix} - \begin{pmatrix} \mathbf{g}_{T,x}(\mathbf{0}) \\ \tilde{\mathbf{g}}_{T,y}(\mathbf{0}) \\ \tilde{\mathbf{g}}_{T,z}(\mathbf{0}) \\ \sqrt{1 - \tilde{\mathbf{g}}_{T,z}^{2}(\mathbf{0})} \end{pmatrix} \right\|$$
(23)

where $\sin \theta_*(\cdot) = \sqrt{1 - \tilde{\mathbf{g}}_{*,z}^2(\cdot)}$ where * denotes either the template or the input image. For notational simplicity, let $\tilde{sz}(\cdot) = \sqrt{1 - \tilde{g}_z^2(\cdot)}$. We define the forward additive objective function as

$$\operatorname{argmin}_{\mathbf{p}} \| \hat{\mathbf{g}}_{l}(\mathbf{p}) - \hat{\mathbf{g}}_{T}(\mathbf{0}) \|^{2}$$
(24) (24)

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

where $\hat{\mathbf{g}}_{l}(\mathbf{p}) = \begin{bmatrix} \tilde{\mathbf{g}}_{l,x}(\mathbf{p}), \tilde{\mathbf{g}}_{l,\underline{y}}(\mathbf{p}), \tilde{\mathbf{g}}_{l,z}(\mathbf{p}), \tilde{\mathbf{g}}_{l,sz}(\mathbf{p}) \end{bmatrix}^{\top}$ and $\hat{\mathbf{g}}_{T}(\mathbf{0}) =$ $[\tilde{\mathbf{g}}_{T,x}(\mathbf{0}), \tilde{\mathbf{g}}_{T,y}(\mathbf{0}), \tilde{\mathbf{g}}_{T,z}(\mathbf{0}), \tilde{\mathbf{g}}_{T,sz}(\mathbf{0})]^{\top}$, the concatenated vectors of each normalised component.

Similar to the derivation in Section 4.4, the Jacobian must be taken over each component and thus linearising around $\hat{\mathbf{g}}_{l}(\mathbf{p})$ yields

argmin
$$\|\hat{\mathbf{g}}_{l}(\mathbf{p}) + \hat{\mathbf{J}}_{\mathbf{g}} \Delta \mathbf{p} - \hat{\mathbf{g}}_{T}(\mathbf{0})\|^{2}$$
(25)

where $\hat{\mathbf{J}}_{\mathbf{g}} = [\hat{\mathbf{J}}_{\mathbf{g},x}, \hat{\mathbf{J}}_{\mathbf{g},y}, \hat{\mathbf{J}}_{\mathbf{g},z}, \hat{\mathbf{J}}_{\mathbf{g},sz}]^{\top}$. Unlike in Section 4.4, the calculation of each Jacobian is not identical due to the different normalisation procedure taken for each component. Given that we can split the par-tial derivative $\mathbf{J}_{\mathbf{g},x} = \mathbf{J}_x \odot \frac{\partial \mathbf{g}_{l,x}(\mathbf{p})}{\partial \mathbf{p}}$, we define the component specific Jacobian, $\mathbf{J}_i \forall i \in \{x, y, z, sz\}$ as:

$$\begin{aligned} & \sum_{l=205}^{1205} \quad \mathbf{J}_{x} = \frac{\mathbf{g}_{l,y}(\mathbf{p})^{2}}{\left(\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2} + \mathbf{g}_{l,z}(\mathbf{p})^{2}\right)^{3/2}} \\ & \sum_{l=205}^{1208} \quad \mathbf{J}_{y} = \frac{\mathbf{g}_{l,x}(\mathbf{p})^{2}}{\left(\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2} + \mathbf{g}_{l,z}(\mathbf{p})^{2}\right)^{3/2}} \\ & \sum_{l=10}^{1211} \quad \mathbf{J}_{z} = \frac{\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2}}{\left(\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2} + \mathbf{g}_{l,z}(\mathbf{p})^{2}\right)^{3/2}} \\ & \sum_{l=11}^{1213} \quad \mathbf{J}_{sz} = -\frac{\mathbf{g}_{l,z}(\mathbf{p})\left(\frac{\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2} + \mathbf{g}_{l,z}(\mathbf{p})^{2}\right)^{3/2}}{\mathbf{g}_{l,x}(\mathbf{p})^{2} + \mathbf{g}_{l,y}(\mathbf{p})^{2}} \end{aligned}$$

$$(26)$$

Now, given the definitions of the correct Jacobians per component, we can solve Eq. (25) as:

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \hat{\mathbf{J}}_{\mathbf{g}}^{\top} \left[\hat{\mathbf{g}}_{T}(\mathbf{0}) - \hat{\mathbf{g}}_{I}(\mathbf{p}) \right]$$
(27)

Given that the update in Eq. (27) is identical to that of Eq. (8), it would be trivial to formulate an inverse compositional form of this residual by following the steps described in Section 4.3.

5. Robust nonrigid alignment

Non-rigid registration is the term generally used to describe an alignment algorithm that utilises a non-rigid warp. A non-rigid warp is generally achieved via a motion model that allows for smaller scale local deformations than can be achieved under models such as affine or similarity. For example, Rueckert et al. [26] proposed free-form deformations (FFD) as a motion model that gives a smooth spline-based transition between neighbouring control points. How-ever, due to the local nature of non-rigid alignment algorithms, they require many more parameters. In the case of FFDs there may be many thousands of parameters depending on the resolution of the FFD chosen. Unfortunately, due to the complexity of the parameter space, this causes Gauss-Newton algorithms such as those described in Section 4 to be infeasible. This is primarily due to the fact that the size of the Hessian matrix is defined by the number of parameters and a large Hessian matrix may be non-invertible under reasonable memory requirements.

Therefore, we augment the FFD algorithm given in Ref. [26] to use our similarity measure. The local transformation described by a FFD consists of a mesh of control points, $\phi_{i,i,k}$, separated by a uniform spacing. The FFD is then given as in Ref. [26], as a 3-D tensor product of 1-D cubic B-splines

¹²⁵³
₁₂₅₄
$$W(\mathbf{x}; \mathbf{p})_{local} = \sum_{l=0}^{3} \sum_{m=0}^{3} \sum_{n=0}^{3} B_{l}(u)B_{m}(v)B_{n}(w)\phi_{i+l,j+m,k+n}$$
 (28)

where B_l describes the *l*th basis function of the B-spline, $B_0(u) =$ $(1-u)^3/6$, $B_1(u) = (3u^3 - 6u^2 + 4)/6$, $B_2(u) = (-3u^3 + 3u^2 + 3u + 3u^2)/6$ 1)/6, $B_3(u) = u^3/6$ and *i*, *j* and *k* are control point indices over the *x*, y and z axis respectively. We then perform a simple gradient descent algorithm, which terminates when a local minima is reached.

Typically, the total cost function for the FFD algorithm consists of a similarity term that depends in the data and a regularisation term that enforces smoothness on the local transformation. In this work we seek to improve the performance of the similarity term in the presence of systematic errors.

Let us assume that the parameters of the FFD are $\Phi = \{\phi_{iik}\}$. We replace the normalised mutual information similarity measure $C(\Phi)_{\text{Similarity}}$ from the original FFD algorithm with our new robust similarity. For example, for the inner product similarity as described in Section 3.2.2 we define $C(\Phi)_{IP}$ as

$$C(\Phi)_{\rm IP} = \tilde{\mathbf{g}}_{\rm I}(\Phi)^{\top} \tilde{\mathbf{g}}_{\rm T}(\mathbf{0})$$
⁽²⁹⁾

The parameters, Φ , can then be updated in gradient descent form as follows:

$$\Phi = \Phi + \mu \frac{\nabla_{\Phi} \mathcal{C}(\Phi)_{\text{IP}}}{\|\nabla_{\Phi} \mathcal{C}(\Phi)_{\text{IP}}\|}$$
(30)

where $\nabla_{\Phi} C(\Phi)_{\rm IP}$ is the gradient of the similarity measure.

5.1. Numerical stability

As discussed in Ref. [20], it is not possible to use normalised gradient fields directly due to discontinuities in differentiation. We thus regularise the normalised gradient fields using the technique presented in Ref. [23].

$$C(\Phi)_{\rm IP} = \sum_{k\in\Omega} \frac{\mathbf{g}_{l}(\Phi)[k]^{\top} \mathbf{g}_{T}(\mathbf{0})[k] + \varrho\tau}{\|\mathbf{g}_{l}(\Phi)[k]\|_{\varrho} \|\mathbf{g}_{T}(\mathbf{0})[k]\|_{\tau}}$$
(31)

where $\|\cdot\|_* = \sqrt{\langle \cdot, \cdot \rangle + *^2}$ and Ω is the set of indices corresponding to the target image support. In this work ρ and τ require only a single parameter, as opposed to the user specified regularisation values chosen in Ref. [23]. Explicitly, ρ and τ are computed following an automatic choice based on total variation

$$\varrho = \frac{\eta}{V_I} \sum_{k \in \Omega_I} \mathbf{g}_I(\Phi)[k], \quad \tau = \frac{\eta}{V_T} \sum_{k \in \Omega_T} \mathbf{g}_T(\mathbf{0})[k] \tag{32}$$

where $\eta > 0$ is a parameter for noise filtering and *V*^{*} is the volume of interest in the image domain Ω_* .

5.2. Robustness against bias fields

In this section we provide a formal proof of the robustness of our cost functions to bias field corruption. Consider an image signal M with no intensity inhomogeneities and a smooth signal Q, represent-ing a multiplicative bias field [38,39]. We assume Q to be constant within a small neighbourhood, $N(k) = (\Delta k_x \Delta k_y \Delta k_z)$. Therefore, for Δk_x , we have

$$I(k) = M(k)Q(k) + \epsilon$$
¹³¹³

$$I(k + \Delta k_x) = M(k + \Delta k_x)Q(k + \Delta k_x) + \epsilon$$
(33) (33) (33)

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

where ϵ is an additive error term. Given that Q is constant within N 1321 1322

$$\frac{\partial I(k)}{\partial x} \approx \lim_{\Delta k_x \to 0} \frac{I(k + \Delta k_x) - I(k)}{\Delta k}$$
$$\approx \lim_{\Delta k_x \to 0} \frac{Q(k)(M(k + \Delta k_x) - M(k))}{\Delta k}$$
$$= Q(k) \frac{\partial M(k)}{\partial x}$$
(34)

1330 Using Eq. (34), we show our proposed cost function to be robust to locally constant bias fields, since

$$\frac{\frac{\partial I(k)}{\partial x}}{\sqrt{\left(\frac{\partial I(k)}{\partial x}\right)^{2} + \left(\frac{\partial I(k)}{\partial y}\right)^{2} + \left(\frac{\partial I(k)}{\partial z}\right)^{2}}} \approx \frac{Q(k)\frac{\partial M(k)}{\partial x}}{\sqrt{\left(Q(k)\frac{\partial M(k)}{\partial x}\right)^{2} + \left(Q(k)\frac{\partial M(k)}{\partial y}\right)^{2} + \left(Q(k)\frac{\partial M(k)}{\partial z}\right)^{2}}} \approx \frac{\frac{\partial M(k)}{\partial x}}{\sqrt{\left(\frac{\partial M(k)}{\partial x}\right)^{2} + \left(\frac{\partial M(k)}{\partial y}\right)^{2} + \left(\frac{\partial M(k)}{\partial z}\right)^{2}}}$$
(35)

 $(\mathbf{\beta}5)$ are analogous for Δk_y and Δk_z . Therefore,

which demonstrates the invariance of our cost functions with respect 1350 to Q. 1351

1353 6. Experiments

1354

1323

1324

1325

1326

1327

1328

1329

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340 1341

1342

1343

1344

1345

134

134

1349

1352

1355 We assessed the performance of our similarity measures within 1356 two separate experimental frameworks. For the LK experiments, we 1357 used data from the Visible Human project [40] and demonstrate the 1358 robustness of our proposed measures to both a simulated bias field 1359 and artificial occlusions.

1360 For the non-rigid registration experiments, we demonstrate the 1361 robustness of our similarity measures to intensity inhomogeneities 1362 in the form of a bias field as well as simulated pathologies. The 1363 pathologies are introduced in the form of simulated brain tumours 1364 provided by the BraTS MICCAI 2012 challenge¹ image database. We 1365 also used MR brain images from the OASIS dataset [41] and traumatic 1366 brain injury MR images from Turku University Hospital. 1367

1368 6.1. Intensity inhomogeneity implementation

1369 1370 Robustness to intensity inhomogeneities relaxes the necessity 1371 of an explicit intensity correction step in the registration pipeline, 1372 which can be time consuming and a potential source of errors, 1373 especially for non-brain images. Any similarity measure that can 1374 accurately align images containing intensity inhomogeneities is of great benefit for data sources such as MRI data where bias field cor-1375 1376

ruption is very common. Bias field corruption is a low-frequency 1377 and very smooth signal that corrupts MRI images, especially those 1378 produced by older MRI machines. To introduce intensity inhomogeneities into the images, we sim-1379 ulate several two-dimensional complex-valued MRI sensitivity maps 1380 1381 using a MATLAB tool.² For each image, we simulate the effect of 8

1384

Then, we randomly select one of the 8 generated sensitivity maps 1387 as the final map S for the image. Since the sensitivity maps are two-1388 dimensional, we apply them to every 2D slice of the image along the 1389 Z-axis in a weighted fashion. Hence, if we denote the original image as *M*, then the simulated image with intensity inhomogeneities *I* is constructed according to

$$I(\cdot, \cdot, z) = R(w(z) \otimes || S(\cdot, \cdot, z) || \otimes M(\cdot, \cdot, z)),$$

$$z \in [1, N_Z],$$

where N_z corresponds to the number of image slices in the Z direction, $R(\cdot)$ is the function that rounds the argument to the nearest integer, \otimes is the voxelwise multiplication and w(z) is given by

$$w(z) = 1 + \frac{10}{\sqrt{2\pi\sigma^2}}e^{-\frac{\left(z-\frac{N_z-1}{2}\right)}{2\sigma^2}}$$

For all the simulations we use $\sigma = 0.15 \cdot (N_z - 1)$. Fig. 5 shows an example image with and without intensity inhomogeneities.

6.2. 3D affine registration using LK

For the LK experiments, the data used was from the Visible Human project [40]. This data has an image structure that differs from other common 3D image sources such as MR images. Each voxel in an image is formed from physical slices that were taken from the body of a cadaver. Therefore, the gradient information across the x, y plane is incredibly rich as it represents a true 2D-image. However, the 3D nature of the data is still maintained as each image along the z-axis represents another slice acquired from the body.

In all experiments an affine motion model was used and performance was measured within an extension of the evaluation framework proposed in Ref. [5]. We used the Oral section from the Visible Human dataset [40] as the target image. We selected 10 dif-1425 ferent regions of interest and parametrised the regions as a set of 1426 points representing the bounding cube of the region. These points were then perturbed using Gaussian noise of standard deviation σ . 1427 Using the affine warp defined between the original and perturbed 1428 1429 points, we generate a distorted image. Then, given a warp estimate, we compute the new template points and calculate the root mean 1430 square error (RMSE) between the estimated and correct locations. 1431 The performance metric used to assess the algorithms is the aver-1432 age convergence rate for each fixed $\sigma = [1, 10]$, over each of the 10 1433 regions of interest. An algorithm was considered to have converged 1434 1435 if it had a final RMSE of less than 2.0 pixels after 30 iterations. For 1436 each template, 100 convergence tests were performed. Each image 1437 was smoothed using Gaussian smoothing with $\sigma = 2.0$ and kernel size $5 \times 5 \times 5$, before the calculation of derivatives. All algorithms 1438 were implemented using the inverse compositional form. 1439

To provide a competitive assessment of our similarity measures, 1440 1441 we extended recent state-of-the-art 2D algorithms for use with 3D 1442 images. We concentrated on algorithms that aim to provide robustness against outliers, particularly in the form of intensity inhomo-1443 1444 geneities. Therefore, we provide comparisons against the enhanced correlation coefficient (ECC) [6] and the Fourier LK algorithm with 1445 1446 Gabor filter banks (GaborFourier) [7]. As a baseline, we also compare 1447 against the standard LK algorithm and the iteratively re-weighted 1448 least squares algorithm (IRLS) also proposed by Baker et al. [2].

1449 We also compare against the most related technique that utilises the cosine squared measure (CosineSquared) [20]. Our implementa-1450 tion of CosineSquared is equivalent to the Gauss-Newton methodol-1451 ogy described within Ref. [20]. 1452

q

1408

1409

1400

coils uniformly placed according to the software implementation. 1382 1383

¹³⁸⁵ http://www2.imm.dtu.dk/projects/BRATS2012/.

¹³⁸⁶ bigwww.epfl.ch/algorithms/mri-reconstruction.

1472

ARTICLE IN PRESS

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

¹⁴⁵³ 6.2.1. Experiments without corruption

In this subsection, we present our performance evaluation
results obtained without applying any corruption to the 3D images.
We compared the performance of the inverse-compositional LK
algorithm (IC) with both forms of our algorithm, InnerProduct and
Spherical and the related method CosineSquared. This experiment
is designed as a baseline that presents the performance of robust
measures in data that is known to contain no outliers.

As Fig. 6a shows, the IC algorithm outperforms the other meth-1461 ods for this experiment. This result is unsurprising, as the distorted 1462 image is generated directly from the original image without any out-1463 liers. Since both of our proposed methods discard information in the 1464 form of the gradient magnitude, they inevitably perform worse than 1465 the LK algorithm. However, the difference between our two algo-1466 rithms is negligible, which is expected given that they both discard 1467 1468 the same amount of information. The larger deformations signifi-1469 cantly decrease the performance of the CosineSquared algorithm. 1470 This is likely due to the bias created by squaring the inner product of 1471 the images.

6.2.2. Experiments with corruption

In this subsection, we present three separate experiments: 1520 images with a simulated bias field, with an occlusion and with an 1521 occlusion and a simulated bias field. The bias field was generated 1522 as described in Section 6.1 and an example is shown in Fig. 7b. 1523 Occluded sections were created synthetically by randomly plac-1524 ing image sections taken from another random area of the body, 1525 and putting them into every slice of the 3D image, as shown in 1526 Fig. 7a. 1527

Fig. 6b shows that our proposed techniques are competitive with 1528 the state-of-the-art for bias field corruption. The LK and IRLS algo-1529 rithms are not able to cope with the intensity variation caused 1530 by the bias field. GaborFourier copes reasonably well with this 1531 type of corruption due to the illumination invariant properties 1532 described in Ref. [7]. ECC performs very well, which is unsurpris-1533 ing as the enhanced correlation coefficient performs a normalisation 1534 of the image pixels, which reduces the effect of the bias field. The 1535 CosineSquared algorithm performs well for smaller deviations, but 1536 quickly diminishes in performance. 1537

 Fig. 6. Average frequency of convergence vs point standard deviation for the Visible Human dataset. (a) Simulated bias field, (b) occlusions, (c) occlusions + bias field. CosineSquared: black-D. ECC: black-D. GaborFourier: black-x. IC: blue-x. IRLS: blue-+. InnerProduct: red-*. Spherical: red-o. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

1519

Fig. 7. Examples of images from the Visible Human project [40] used in the LK experiments. (a) Artificially occluded image. The occlusion appears as the white square in the top right. (b) Image with simulated bias field.

Table 1 Images with pathology: mean (median) overlap measures and standard deviation for white matter (WM), grey matter (GM) and ventricular cerebrospinal fluid (CSF) labels propagated using on-rigid registration.

)5			WM	GM	CSF	Overall	1
)6)7	NMI [19]		$78.1(78.1)\pm 0.03$	79.0(78.0) ± 0.03	$88.4 (88.9) \pm 0.02$	$81.8(81.3)\pm 0.02$	
10	DRAMMS [27]		$73.7(74.2)\pm 0.02$	$79.0(79.5) \pm 0.03$	$78.4(81.2)\pm0.11$	$77.1(78.6)\pm0.05$	
	Proposed similarity	$(\eta = 0.1)$	$78.1(78.1)\pm 0.00$	$76.4(76.6) \pm 0.01$	$83.4(84.5)\pm0.03$	$79.3(79.9)\pm0.01$	
)9	Haber and Modersitzki [20]	$(\eta = 0.1)$	$74.2(74.4)\pm0.01$	$75.1(75.0)\pm 0.01$	$80.9(82.2)\pm 0.03$	$76.8(77.2)\pm 0.02$	1
0	Proposed similarity	$(\eta = 1)$	$80.9(80.8) \pm 0.00$	$79.1(79.3) \pm 0.01$	$88.1(89.1) \pm 0.03$	$82.7(83.3) \pm 0.01$	1
1	Haber and Modersitzki [20]	$(\eta = 1)$	$81.2(81.2) \pm 0.00$	79.6(79.7) ± 0.01	$88.4(89.0) \pm 0.03$	$83.1(83.7) \pm 0.01$	

Fig. 6c shows that our proposed similarity measures are also the most robust to occlusions. IRLS performs better under these situations as it is able to discard some of the outliers that bias the alignment. The normalisation step in ECC has no benefit in suppressing this sort of bias, and so it performs very similarly to the non-robust IC algorithm. GaborFourier still performs well as the Gabor filter banks suppress the contribution of the outliers. The CosineSquared performs well under smaller deformations but is heavily biased under large deformations as the squaring of the cosine fails to suppress the contribution of the occlusions.

Finally, in Fig. 6d we see that even under occlusion and global illumination variation, our proposed measures perform with relatively high accuracy. This is a challenging experiment which demonstrates the power of our proposed similarity measure. Despite the large amount of outliers, our proposed measures are still able to perform

REF	NMI	PROPOSED	COS ²	DRAMMS
	A AND			A A A A A A A A A A A A A A A A A A A

Fig. 8. Reference and propagated labels using $\eta = 0.1$. REF denotes the reference labels, NMI is normalised mutual information, PROPOSED is the proposed similarity, COS² is Haber and Modersitzki [20], DRAMMS is the method of Ref. [27]. The first row is the axial view, second row is the coronal view and final row is the sagital view. Boundaries of the tumours and image are provided for visualisation. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

Contraction of the second		And C
Contraction of the second		

Fig. 9. Example images of a BraTS subject in axial and coronal view. First and second columns depict subjects with high-grade gliomas. Third and fourth columns depict subjects with low-grade gliomas.

accurate alignment with a higher success rate than any of the other algorithms considered.

6.3. 3D non-rigid registration using FFDs

As previously mentioned, we incorporate the proposed inner product measure into a B-Spline FFD algorithm [26]. For comparison, we also incorporate the cosine squared similarity [20] and nor-malised mutual information (NMI) [19] into our framework. We also compared our FFD-based non-rigid registration on images containing pathologies with a recent work, DRAMMS [27]. DRAMMS attempts to reduce matching ambiguities through a multi-scale and multi- orien-tation Gabor filters. These extracted filters are then weighted during registration using a function dubbed "mutual-saliency" designed to improve matching uniqueness. DRAMMS has been shown to be effective on a wide range of data sources. However we show that whilst not failing completely on images containing pathologies, our FFD-based similarity measure yields superior performance.

We concentrate on two separate experiments, images with inten-sity inhomogeneities and images with pathologies. In all the con-ducted experiments within the FFD framework, we utilise the thin-plate bending energy of the deformation field with a weight of $\alpha = 0.002$ as a regularisation term and optimise using conjugate gradient descent. We use the same regularisation weight for every similarity since the empirical range of values that they take using our experimental image datasets are of very similar width for all of them.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

of errors, especially for non-brain images. To evaluate the proposed similarity measure for non-rigid registration, we perform the 30 \times 29 = 870 pairwise registrations with control point spacings of 20, 10, 5 and 2.5 mm, using the 35 original preprocessed T1-weighted MR brain images from the OASIS dataset [41]. We subsequently introduce different smooth intensity inhomogeneities individually to all the images according to the procedure described in Section 6.1 and repeat the registrations again using the original images as target and the affected ones as source.

field applied. We compute the mean and standard deviation of the SI values calculated on the propagated and reference labels for all 870 propagations. We differentiate between the 98 cortical and 36 subcortical labels. The results are shown in Fig. 13. We observe that NMI performs well when there are no intensity inhomogeneities in the images. On the contrary, it is severely affected by the presence of intensity inhomogeneities. Conversely, both gradient-based simi-larity measures show similar performance for registrations with and without intensity inhomogeneities, demonstrating their robustness.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

Fig. 11. Angle ϕ and histograms of $\cos\phi$ and $\cos^2\phi$ using (a) $\eta = 0.1$ and (b) $\eta = 1$ between a healthy subject and the BraTS simulated images in the tumour areas. The means are 0.031 and 0.296 respectively for $\eta = 0.1$ and 0.410 respectively for $\eta = 0.1 \eta = 1$.

Nevertheless, the proposed similarity measure performs slightly better that cosine squared, and the differences are statistically signif-icant according to a paired Wilcoxon signed rank test ($p < 10^{-5}$). To complement the analysis, we show the same results for each of the images and each label in Fig. 10. It is important to note that in the case where no intensity inhomogeneities are present, the proposed method has a lower performance than NMI. The conducted analyses suggest that, when using normalised gradient fields, the registra-tion of MR images is more difficult than the alignment of scans from other imaging modalities as in Refs. [21,22,23]. We observe that in the particular case of MR brain images, the discrimination between noise and structure related gradients is very challenging, especially in cortical areas.

2034 6.3.2. MR images with pathologies

Registration of images depicting pathology is a challenging procedure, since the images may exhibit strong structural differences
that cannot be matched. Here, we show that our similarity measure is capable of handling images with areas of mismatches, e.g.,
areas of pathology, without any prior knowledge nor any subsequent
correction step.

We use a dataset of 10 simulated MR images of the brain depicting tumours. These images are taken from the BraTS MICCAI 2012 challenge.³ Half of these images show high grade gliomas and the

³ http://www2.imm.dtu.dk/projects/BRATS2012/.

other half have low grade ones. The images are labelled into white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and 2 fur-ther labels for the sum our areas. All the images are skull stripped, and have $256 \times 181 \times 256$ voxels with an isotropic resolution of 1 mm. A visualisation of all the subjects from this dataset is pro-vided in Fig. 9. For a quantitative evaluation, a labelled image of a healthy subject is registered to all 10 images in our BraTS dataset using NMI and both normalised gradient field based similarity mea-sures. The registrations using either the cosine or cosine squared similarity measure were run in two settings. In the first setting, the noise parameter η is set to 0.1. In the second, we set the value of η to 1. We measure registration accuracy using SI over three labels, namely WM, GM and CSF. We ignore the two available tumour labels as there is no equivalent in the healthy scan. A good overlap for non-tumour labels is an indicator that the similarity measure is not biased by the presence of pathology. We also include the registration result of DRAMMS [27], which shows that FFD registration is still highly competitive with more recent state-of-the-art works. Overlap results for non-rigid registration are shown in Table 1. It can be observed that for the case where $\eta = 0.1$, the proposed similarity measure yields a worse alignment than NMI (p = 0.0098). How-ever, when compared to the cosine squared similarity, a much better result is obtained for the proposed similarity measure (p = 0.002). Further visual results for this comparison are shown in Fig. 8. The main areas where the registration using cosine squared similarity measure is affected by the tumour presence are highlighted by a red ellipse. Although Table 1 suggests that higher values of the parameter

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

NMI

Fig. 12. Visual comparison of the proposed similarity (PROPOSED), normalised mutual information (NMI) [18] and cosine squared (COS²) [20] for TBI data. Top row: vaseline and follow-up images. Second row: transformed follow-up isolines of the registration results overlaid on the baseline image. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

 η provide superior overlap measures this is not necessarily the case. Given Eqs. (31) and (32), we can clearly see that η has the effect of suppressing the contribution of the gradients within the similarity measure. Therefore, η can be thought of as a filtering parameter that will benefit any normalised gradient field similarity measures by decreasing the effect of noise. However, as demonstrated in Fig. 11, larger values of η also effect the distribution of ϕ in the occluded areas. As η is increased, the gradient values are suppressed towards 0 and thus the distribution of $\cos\phi$ ceases to approximate a uniform distribution. Therefore, although $\eta = 1$ provides superior results for the experiment in Table 1, we focus our results on $\eta = 0.1$ whereby our assumption of the uniform distribution of outliers is not violated. This is clearly demonstrated by Fig. 11 for the BraTS simulated images in the tumour areas when $\eta = 0.1$. Fig. 11 differs from Fig. 2 in its application of the noise filtering as no filtering is applied in Fig. 2. This can be seen as equivalent to $\eta = 0$ which was used to validate that the difference between two visually dissimilar areas does indeed approximate a uniform distribution for the cosine.

COS²

Fig. 13. Mean similarity index and standard deviation over cortical and subcortical labels for all 30 × 29 = 870 registrations in the OASIS dataset [41].

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

2245 In addition to the BraTS experiments, we perform registrations 2246 using NMI, the proposed similarity measure and cosine squared similarity measure on traumatic brain injury (TBI) data. The imaging data 2247 2248 was acquired at Turku University Hospital, Finland in the course of the TBIcare project.⁴ One image corresponds to a baseline scan and 2249 2250 the other is the follow ap scan taken after 4 months and 19 days at Turku University Hospital. Both images have 176 × 240 × 256 voxels 2251 2252 with an isotropic resolution of 1mm.

We utilise the baseline image as a target and the follow-up image 2253 2254 as a source. For the gradient-based similarity measures we set η to 0.1. Visual results are given in Fig. 12. The main observation is that, in 2255 contrast to NMI and the cosine squared similarity measure, the pro-2256 2257 posed measure is able to recover most of the underlying changes in shape within the pathology area (as pointed out with a red arrow). 2258 This is because the registration inside the area of pathology affects 2259 2260 the value of both NMI and cosine squared similarity measure signif-2261 icantly, causing the optimisation to converge very quickly. On the 2262 other hand, the proposed similarity is almost unaffected by the forces 2263 in the area of pathology, allowing the optimisation to continue until 2264 good alignment is achieved.

7. Conclusion

2265

2266

2267

2268 In this work, we have provided a set of novel global similarity 2269 measures based on the cosine of the orientation between normalised 2270 gradients. We have shown that these measures are theoretically 2271 robust to a very general class of outliers that includes intensity 2272 inhomogeneities and systematic errors such as occlusions. We have 2273 empirically verified that our measures are robust for various sources 2274 of brain MRI data.

2275 We have provided a proof-of-concept investigation as to the 2276 effectiveness of our similarity measures within the popular Lucas-2277 Kanade algorithm. Despite the popularity of Lucas-Kanade algo-2278 rithms for 2D images, little work has been done on its performance 2279 for voxel data. In fact, to the best of our knowledge, no previous work 2280 exists that extends the current state-of-the-art Lucas-Kanade algo-2281 rithms in to 3D. We provide a thorough experimental analysis on 2282 both our proposed measures and extensions of state-of-the-art 2D 2283 methods in Section 6. 2284

We also embedded our similarity measures within a popular 2285 non-rigid alignment framework based on free-form deformations. 2286 We demonstrated the effectiveness and robustness of our similar-2287 ity measure on images with simulated bias fields and on simu-2288 lated pathological images. We showed superior robustness in these 2289 scenarios compared to NMI and the cosine squared measure of 2290 Haber and Modersitzki [20]. We also demonstrate superior perfor-2291 mance on images containing pathologies when compared against 2292 DRAMMS [27]. 2293

The main contribution of this paper is that our similarity mea-2294 sures relax the need for bias field correction, which can be time 2295 consuming and prone to errors. They can also register images in 2296 the presence of pathologies, since they do not rely on any par-2297 ticular deformation model and do not require segmentation of 2298 outliers. Our similarity measures are very efficient and simple to 2290 compute and compare very favourably with current state-of-the-art 2300 methodologies. 2301

Acknowledgements 2303

2302

2304

2306

2307

2308

2309

Q4₂₃₀₅

The work of Patrick Snape was funded by the Qualcomm Innovation Fellowship and by an EPSRC DTA from Imperial College London. The work of Stefanos Zafeiriou was partially supported by the EPSRC

```
2310
          <sup>4</sup> http://www.tbicare.eu.
```

project EP/J017787/1 (4DFAB). This work was partially funded under 2311 the Seventh Framework Programme by the European Commission 2312 05

(http://cordis.europa.eu/ist/, 2314 TBIcare: http://www.tbicare.eu/).

References

- [1] B.D. Lucas, T. Kanade, An iterative image registration technique with an appli-2319 cation to stereo vision, Proceedings of the 7th International Joint Conference on 2320 Artificial Intelligence, 1981.
- S. Baker, R. Gross, T. Ishikawa, I. Matthews, Lucas-Kanade 20 Years On: A 2321 Unifying Framework: Part 2, Tech. rep., 2003. 2322
- [3] N. Dowson, R. Bowden, Mutual information for Lucas-Kanade tracking (MILK): 2323 an inverse compositional formulation, IEEE Trans. Pattern Anal. Mach. Intell. 30 2324 (1) (2008) 180-185.
- S. Lucey, R. Navarathna, A.B. Ashraf, S. Sridharan, Fourier Lucas-Kanade 2325 algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 35 (6) (2013) 1383-139 2326
- S. Baker, I. Matthews, Lucas-Kanade 20 years on: a unifying framework, Int. J. 2327 Comput. Vis. 56 (3) (2004) 221-255. 2328
- G.D. Evangelidis, E.Z. Psarakis, Parametric image alignment using enhanced [6] correlation coefficient maximization, IEEE Trans. Pattern Anal. Mach. Intell. 30 10) (2008) 1858-1865
- 2330 A.B. Ashraf, S. Lucey, T. Chen, Fast image alignment in the Fourier domain, CVPR, [7] 2010. pp. 2480-2487 2331
- M. Guerquin-Kern, L. Lejeune, K.P. Pruessmann, M. Unser, Realistic analytical [8] 2332 phantoms for parallel magnetic resonance imaging, IEEE Trans. Med. Imaging 2333 31 (3) (2012) 626-636
- [9] F.J.P. Richard, A new approach for the registration of images with inconsistent 2334 differences, ICPR, 2004. pp. 649-652. 2335
- [10] E.I. Zacharaki, D. Shen, S. Lee, C. Davatzikos, ORBIT: a multiresolution frame-2336 work for deformable registration of brain tumor images., IEEE Trans. Med. 2337 Imaging 27 (8) (2008) 1003-1017.
- [11] M. Hachama, A. Desolneux, F.J.P. Richard, Bayesian technique for image classi-2338 fying registration, IEEE Trans. Image Process. 21 (9) 4080-4091. 2339
- [12] X. Liu, M. Niethammer, R. Kwitt, M. McCormick, S. Aylward, Low-rank to the 2340 rescue - Atlas-based analyses in the presence of pathologies, Image Analysis and Processing Springer International Publishing, Cham, 2014, pp. 97-104. 2341
- C. Studholme, C. Drapaca, B. Iordanova, V. Cardenas, Deformation-based map-2342 ping of volume change from serial brain MRI in the presence of local tissue 2343 contrast change., IEEE Trans. Med. Imaging 25 (5) (2006) 626-639
- [14] D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, P. Suetens, Nonrigid image 2344 registration using conditional mutual information, IEEE Trans. Med. Imaging 29 2345 (1)(2010)19-292346
- [15] X. Zhuang, S. Arridge, D.J. Hawkes, S. Ourselin, A nonrigid registration framework using spatially encoded mutual information and free-form deformations., 2347 IEEE Trans. Med. Imaging (c) (2011) 1-10. 2348
- [16] G. Tzimiropoulos, S. Zafeiriou, M. Pantic, Robust and efficient parametric face 2349 alignment, ICCV, IEEE. 2011, pp. 1847-1854.
- S. Baker, R. Patil, K.M. Cheung, I. Matthews, Lucas-Kanade 20 years on: part 2350 [17] 5. Robotics Institute, Carnegie Mellon University, Tech Rep.CMU-RI-TR-04-64. 2351 2004 2352
- [18] J.P.W. Pluim, J.B. Maintz, M. Viergever, Image registration by maximization 2353 of combined mutual information and gradient information., IEEE Trans. Med. Imaging 19 (8) (2000) 809-814. 2354
- C. Studholme, D.L.G. Hill, D.J. Hawkes, An overlap invariant entropy measure of 2355 3D medical image alignment., Pattern Recogn, 32 (1) (1999) 71-86.
- 2356 [20] E. Haber, I. Modersitzki, Intensity gradient based registration and fusion of multi-modal images, MICCAI Springer Berlin Heidelberg, Berlin, Heidelberg, 2357 2006, pp. 726-733. 2358
- S. Heldmann, S. Zidowitz, Elastic registration of multiphase CT images of liver. [21] 2359 in: D.R. Havnor, S. e. b. Ourselin (Eds.), Proc. SPIE, 2009
- [22] T. Lange, N. Papenberg, S. Heldmann, J. Modersitzki, B. Fischer, H. Lamecker, 2360 P.M. Schlag, 3D ultrasound-CT registration of the liver using combined 2361 landmark-intensity information., IJCARS 4 (1) (2009) 79-88.
- 2362 [23] J. Ruhaak, L. Konig, M. Hallmann, N. Papenberg, S. Heldmann, H. Schumacher, B. Fischer, A fully parallel algorithm for multimodal image registration using 2363 normalized gradient fields, ISBI (2013) 572-575. 2364
- S. Pszczolkowski, Z. Stefanos, C. Ledig, D. Rueckert, A robust similarity measure [24] 2365 for nonrigid image registration with outliers, ISBI, IEEE, 2014,
- [25] S. Pszczolkowski Parraguez, Fast and Robust Methods for Non-rigid Registra-2366 tion of Medical Images, Imperial College London, 2014, (Ph.D. thesis). 2367
- [26] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, D.J. Hawkes, Nonrigid 2368 registration using free-form deformations: application to breast MR images, 2369 IEEE Trans. Med. Imaging 18 (8) (1999) 712-721.
- Y. Ou, A. Sotiras, N. Paragios, C. Davatzikos, DRAMMS: Deformable registration [27] 2370 via attribute matching and mutual-saliency weighting, Med. Image Anal. 15 (4) 2371 (2011) 622 - 639
- 2372 [28] G.D. Hager, P.N. Belhumeur, Efficient region tracking with parametric models of geometry and illumination, IEEE Trans. Pattern Anal. Mach. Intell. 20 (10) 2373 1998) 1025-1039 2374
- [29] M.J. Black, A.D. Jepson, EigenTracking: robust matching and tracking of artic-2375 ulated objects using a view-based representation, ECCV Springer-Verlag, Berlin/Heidelberg, 1996, pp. 329-342. 2376

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

2313

2315

2316 2317 2318

[30] J.P.W. Pluim, J.B.A. Maintz, M.A. Viergever, Mutual-information-based registration of medical images: a survey, IEEE Trans. Med. Imaging 22 (8) (2003) 986–1004.

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx-xxx

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision

- [31] T. Butz, J.-P. Thiran, Affine registration with feature space mutual information, MICCAI Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 549–556.
- [32] H. Livyatan, Z. Yaniv, L. Joskowicz, Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT, IEEE Trans. Med. Imaging 22 (11) (2003) 1395–1406.
- [33] M. Droske, M. Rumpf, A variational approach to nonrigid morphological image registration, SIAM J. Appl. Math. 64 (2) (2004) 668–687.
- [34] G. Tzimiropoulos, V. Argyriou, S. Zafeiriou, T. Stathaki, Robust FFT-based scaleinvariant image registration with image gradients, IEEE Trans. Pattern Anal. Mach. Intell. 32 (10) (2010) 1899–1906.
- [35] S. Baker, I. Matthews, Equivalence and efficiency of image alignment algorithms, CVPR, IEEE. 2001, pp. 1090–1097.
- [36] I. Matthews, S. Baker, Active appearance models revisited, Int. J. Comput. Vis. (2004)
- [37] G. Papandreou, P. Maragos, Adaptive and constrained algorithms for inverse compositional active appearance model fitting, CVPR, 2008. pp. 1–8. ISSN 1063-6919.

Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

[38] J.G. Sled, A.P. Zijdenbos, A.C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging 17 (1) 2444 (1998) 87–97.
 [20] C.P. Muure, P.H. Pland, L. Pine, Patrographic correction of intensity inhome. 2445

- [39] C.R. Meyer, P.H. Bland, J. Pipe, Retrospective correction of intensity inhomogeneities in MRI, IEEE Trans. Med. Imaging 14 (1) (1995) 36–41.
- [40] V. Spitzer, M.J. Ackerman, A.L. Scherzinger, D. Whitlock, The visible human male: a technical report, J. Am. Med. Inform. Assoc. 3 (2) (1996) 118–130.
 2448
- [41] D.S. Marcus, T.H. Wang, J. Parker, J.G. Csernansky, J.C. Morris, R.L. Buckner, Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults, J. Cogn. Neurosci. 19 (9) (2007) 1498–1507.
- [42] N. Tustison, B. Avants, P. Cook, Y. Zheng, A. Egan, P. Yushkevich, J. Gee, N4ITK: improved N3 bias correction, IEEE Trans. Med. Imaging 29 (6) (2010) 1310– 1320.