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A B S T R A C T

Image registration under challenging realistic conditions is a very important area of research. In this paper,
we focus on algorithms that seek to densely align two volumetric images according to a global similarity
measure. Despite intensive research in this area, there is still a need for similarity measures that are robust
to outliers common to many different types of images. For example, medical image data is often corrupted
by intensity inhomogeneities and may contain outliers in the form of pathologies. In this paper we propose
a global similarity measure that is robust to both intensity inhomogeneities and outliers without requiring
prior knowledge of the type of outliers. We combine the normalised gradients of images with the cosine
function and show that it is theoretically robust against a very general class of outliers. Experimentally,
we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our similarity
measures within a proof-of-concept extension of the Lucas–Kanade algorithm for volumetric data. Finally,
we embed our measures within a popular non-rigid alignment framework based on free-form deformations
and show it to be robust against both simulated tumours and intensity inhomogeneities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Image registration is an important procedure in many areas of
computer vision for both 2D and volumetric 3D images. Given its
relevance, there is a large body of prior work concentrating on
methodologies for performing accurate registration. In this paper, we
are most interested in techniques that attempt to densely align two
images according to a global similarity measure. Many global simi-
larity measures have been proposed, yet only a few focus on being
robust to the presence of outliers and systematic errors. We consider
a similarity measure to be robust if it is not biased by the presence
of noise and/or occlusions within the image to be registered. Gener-
ally, if a similarity measure is biased by noise or occlusions, this will
manifest as a failure to accurately register the images.

� This paper has been recommended for acceptance by Ioannis A. Kakadiaris, PhD.
* Corresponding author.

E-mail addresses: p.snape@imperial.ac.uk (P. Snape),
stefan.pszczolkowskiparraguez@nottingham.ac.uk (S. Pszczolkowski),
s.zafeiriou@imperial.ac.uk (S. Zafeiriou), yorgos.tzimiropoulos@nottingham.ac.uk
(G. Tzimiropoulos), christian.ledig@imperial.ac.uk (C. Ledig),
d.rueckert@imperial.ac.uk (D. Rueckert).

In the case of 2D images, systematic errors and outliers are com-
mon in the form of illumination variance and occlusions, which
naturally occur in so called “in-the-wild” images. Although 2D image
alignment is a broad field, much of the existing work focuses on aug-
menting existing efficient algorithms with improved robust proper-
ties. For example, one of the first algorithms to describe a 2D image
alignment approach was the Lucas–Kanade (LK) algorithm [1]. The
LK algorithm concentrates on recovering a warp that best maximises
a similarity measure between two images. Numerous extensions to
the LK algorithm have been proposed [2,3,4] and most are based on
�2 norm minimisation [3,5,6,7]. Most notably, the inverse compo-
sitional framework proposed by Baker and Matthews [5] provides
a computationally efficient framework for solving the least squares
problem.

For volumetric, or 3D images, outliers can occur in the form
of pathologies, and systematic errors are commonly seen as inten-
sity inhomogeneities caused by image acquisition artefacts such as
bias fields [8]. Several methods have been proposed for registra-
tion of medical images with mismatches, focusing on robustness [9],
tumour models [10] or Bayesian models [11]. However, previous
methods [12] all require prior knowledge of what constitutes a mis-
match in order to detect and ignore them. Additionally, a number of

http://dx.doi.org/10.1016/j.imavis.2016.05.006
0262-8856/© 2016 Elsevier B.V. All rights reserved.
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methods based on mutual information have been proposed to reduce
the effect of intensity inhomogeneities in the registration [13,14,15].

To the best of our knowledge, no existing similarity measure pro-
vides robustness against both outliers and intensity inhomogeneities
for registration of 3D images without prior knowledge of the type of
dissimilarity. However, the 2D similarity measure recently proposed
in Ref. [16], has been shown to be robust against both general occlu-
sions and illumination variance. This measure is formulated as the
cosine of normalised gradient orientations and is simple and effi-
cient to compute. For 3D images, we seek to provide a similarity
measure that can utilise the robust properties of the cosine func-
tion. This requires calculating a similarity between the two images
being aligned that can be represented as an angle. In this work, we
provide two separate methodologies of measuring angular similarity
between 3D images.

We clarify that when we state 3D images, we are referring to vol-
umetric data where it is valid to compute gradients along all 3 of the
principle axes. This may be in contrast to other usages of the term
“3D” when referring to data sources such as range images or mesh
data. In this case, we would refer to these data sources as 2.5D data,
as the computation of the gradient for the depth axis is non-trivial.
In fact, as mentioned by Baker et al. [17], the inverse compositional
algorithm is no longer valid when extended to 2.5D data due to the
representation of the data as a surface. Therefore, given that the
treatment of 2.5D data is totally different from the 3D volumetric
images that we use here, we do not further consider it.

It is important to note that there is a large amount of exist-
ing work on using gradient information for image registration on
volumetric data. The concept of normalised image gradients was
introduced to the field of medical image registration by Pluim et
al. [18]. In Ref. [18], normalised mutual information (NMI) [19] is
weighted voxelwise by the normalised image gradients in order to
incorporate spatial information. After this initial work, the first sim-
ilarity based solely on normalised gradients was proposed by Haber
and Modersitzki [20]. This similarity measure is based on the squared
cosine of the normalised gradients and is equivalent to minimising
the squared inner product. In contrast, our proposal is to use the cosine
of the normalised gradient orientations and is equivalent to minimis-
ing the inner product. This seemingly small difference, the squaring
of the cosine, causes outliers to bias the similarity measure and thus
affects the robustness. Despite these properties of the squared cosine
measure, it has been successfully utilised in the literature [21,22,23]
for registering images that do not contain outliers.

Preliminary work on the cosine of orientations has been shown in
our previous work [24,25]. In Ref. [24], we gave preliminary results
that show that the cosine of normalised gradient orientations repre-
sents a robust similarity measure in the presence of both occlusions
and intensity inhomogeneities. We extend this work in two major
areas:

Firstly, we note that that there are two separate angular measures
that can be defined in order to compute the cosine of normalised gra-
dient orientations between two images. These orientations are based
on the spherical coordinates of the gradients and the inner prod-
uct between the gradients. As a proof of concept, we directly extend
the methodology of Ref. [16] to provide evidence that our similar-
ity measures are robust to occlusions and intensity inhomogeneities.
Although the extension of LK-type algorithms to 3D is simple and
was proposed in Ref. [17], no previous investigation has been done
on how similarity measures perform when extended to 3D. Since
no previous work has investigated the use of 3D Lucas–Kanade for
robust registration, we chose to extend existing robust 2D meth-
ods into 3D. These extended state-of-the-art 2D methods are then
compared against using a synthetic dataset.

Secondly, in order to show that our similarity measures compete
with state-of-the-art techniques, we embed them within a widely
and successfully used non-rigid registration framework based on

free-form deformations (FFD) [26]. This FFD registration framework
differs from our LK example as it is a local deformation model and
thus contains many thousands of parameters. This large parame-
ter space makes Gauss–Newton optimisation infeasible due to the
memory requirements of inverting the Hessian matrix. For this rea-
son, registration techniques that focus on local deformations are
generally solved using gradient descent algorithms that incorpo-
rate line searches [26]. We compare against the NMI measure [19],
DRAMMS [27] and the cosine squared measure [20] and confirm
the robustness of the proposed similarity measures on simulated
pathological data from a tumour database. Secondly, we provide
more extensive evaluation into the robust properties of the cosine of
normalised gradient orientations when applied to volumetric data.

The remainder of the paper is organised as follows. In Section 2
we discuss relevant related works and consider the advantages of our
proposed measures. In Section 3 we give a thorough explanation of
the theory behind our work and empirically verify its robustness on
our chosen data. In Section 4 we describe the application of our sim-
ilarity measure within the Lucas–Kanade algorithm and in Section 5
we show its application within the non-rigid framework of Rueck-
ert et al. [26]. Experimental results within both rigid and non-rigid
alignment are given in Section 6. Finally, we draw conclusions in
Section 7.

2. Related work

In this paper we are most interested in similarity measures
that have been proposed for parametric image alignment. This is
primarily due to the fact that parametric image alignment meth-
ods are often very computationally efficient. In particular, we are
interested in approaches that show robustness to both intensity
inhomogeneities and occlusions.

Within 2D image registration there has been a large body of
work that focuses on illumination invariance. Within the most
popular parametric image alignment framework, the Lucas–Kanade
algorithm (LK), one of the the earliest attempts was by Hager and
Belhumeur [28]. In Ref. [28], the authors incorporate a linear appear-
ance basis that models illumination variance and excelled in the
area of object tracking. However, this requires prior knowledge of
the type of object under consideration so that the appearance basis
can be precomputed. There is a large amount of existing literature
about incorporating prior knowledge via linear bases within the LK
algorithm. However, we do not consider them here, as we are most
interested in modelling unseen structured variation via robust simi-
larity measures and thus prior knowledge is generally not available.

Within the LK framework, a number of robust measures have
been proposed. Black and Jepson [29] proposed incorporating robust
statistics into the LK framework and showed their effectiveness
in the presence of illumination variance. Dowson and Bowden [3]
incorporated the mutual information (MI) measure within the LK
framework and found it to be superior to an SSD based measure for
illumination variance. However, using mutual information as a sim-
ilarity measure requires updating the Jacobian and Hessian matrices
at each iteration. For this reason, the MI measure is unable to make
use of more computationally efficient LK algorithms such as the
inverse compositional (IC) method proposed in Ref. [5]. Although
the authors do give an ad hoc solution that involves fixing the val-
ues of the Jacobian and Hessian matrices, it is still a more complex
implementation than the original inverse compositional algorithm.
Evangelidis and Psarakis [6] provide a correlation measure between
images and a computational framework that is invariant to illumina-
tion differences. This is a great strength of the algorithm, however,
the correlation measure is still grossly affected by outliers. Lucey et
al. [4] propose a method of weighting the LK fitting with a large
bank of filters in a computationally efficient manner. This is a very
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Fig. 1. An illustration of the spherical coordinate system as described in this paper.

effective technique and is largely illumination invariant, however, it
gives little benefit when presented with occlusions.

For 3D images, robust registration is a very active area of research.
The most commonly used techniques for multi-modal registration
are based on mutual information (MI) [30]. These techniques are
highly effective at registration of objects with inherent structure
such as anatomy but are very sensitive to global corruption such as
intensity inhomogeneities. To overcome this, gradient information
is often utilised and in particular was incorporated into a MI frame-
work by Pluim et al. [18]. In particular, gradient information helps
capture the local structure within an image which is not described by
general MI-based registration techniques. Gradient information has
also been successfully used in a number of other works [31,32,33].
However, these works focus on capturing local structure and not on
robustness to artefacts such as pathologies caused by tumours. The
most related work is that of Haber and Modersitzki [20], which pro-
poses a similarity measure based on the square of the cosine (inner
product squared). We conduct a thorough comparison with this
technique and show that it is biased by the presence of occlusions.

Finally, the work of Tzimiropoulos et al. [16] introduced the first
similarity measure based on the cosine of normalised gradients. We
would stress that although our work is inspired by Ref. [16], the
calculation of the orientations for our proposed similarities is very
different. In particular, it is important to note that calculating an ori-
entation in 3D is more complex than the 2D case due to the extra
degree of freedom. In this work, we give a detailed explanation of
how to calculate these orientations in 3D and how to optimise them
for use in image registration.

3. Cosine of normalised gradients

In this section, we describe the concept of the cosine of nor-
malised gradients and specify how they represent a robust measure
of similarity. In this work, we consider a similarity measure to be
robust if it suppresses the contribution of comparisons between
image areas that are unrelated. More specifically, we seek a measure
that, when given two images that are visually dissimilar, will cal-
culate zero correlation between them. For example, consider Fig. 3
which shows cross sections of a brain containing a tumour. When
registering this corrupted image with an image of a healthy brain, the
ideal registration would not be biased by the presence of the tumour,
as it does not share relevant anatomical structures with the healthy
brain. To this end, Tzimiropoulos et al. [16,34] proposed the cosine
of orientation differences between two images, which we describe in
detail below.

3.1. Cosine similarity in 2D

Assuming that we are given two 2D images, denoted as Iii ∈ {1, 2},
we define Gi,x = Fx ∗ Ii and Gi,y = Fy ∗ Ii as the gradients obtained
by convolving Ii with differentiation approximation filters Fx and Fy

respectively. We denote the lexicographical vectorisation of Gi,x as
gi,x and define an index k into the vector, gi,x(k). We define an iden-
tical vector for Gi,y as gi,y. We also define gi(k) as the vector formed
by concatenating the x and y gradients together. Trivially, we can
define the normalised gradient as g̃i(k) = gi(k)

‖gi(k)‖ where ‖gi(k)‖=√
gi,x(k)2 + gi,y(k)2. We also define similar vectors for the x and y

components separately, with g̃i,x being the x components concate-
nated in lexicographical ordering and g̃i,y being the y components.
Finally, g̃i is the vector of concatenated normalised gradients for
image Ii.

Given the normalised gradients, it is simple to parametrise them
within a polar coordinate system with radius ri(k) =‖ g̃i(k)‖= 1,
orientation 0i(k) = arctan

g̃i,y(k)
g̃i,x(k) and pole at the origin. Given ori-

entations from two dissimilar images, it is reasonable to assume
that difference between the orientations, D0(k) = 01(k) − 02(k),
can take any angle between [0, 2p). Intuitively, this implies that
selecting two pixels from dissimilar images is unlikely to yield any
correlation between the images. In Ref. [16], it was experimentally
verified that the orientation differences follow a uniform distri-
bution, D0(k) ∼ U(0, 2p). The fact that the orientation differences
follows a uniform distribution is unsurprising under the assumption
that the two images have absolutely no correlation. However, the
expectation of the cosine of the uniform distribution is zero, which
is a powerful property that can be exploited for image registration. It
is powerful because it means that the expected overall contribution
of uncorrelated areas to any cost function will be zero, meaning that
the uncorrelated areas do not affect the result of the registration.

(a) cos σ tumour area (b) cos σ entire image (c) cos2 σ tumour area

Fig. 2. The distributions of coss and cos2s averaged over 10 subjects from the BraTS simulated images. The images were registered using a rigid transformation prior to com-
putation and only the tumour areas were sampled. (a) shows the distribution of coss in the simulated tumour region. (b) shows the distribution of coss over the entire image.
(c) shows the distribution of cos2s proposed in Ref. [20] in the simulated tumour region.
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Fig. 3. Example images of a T1-weighted brain containing a tumour area. The tumour areas are outlined in yellow in each image. Left: axial view. Middle: coronal view. Right:
sagital view. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Formally, we assume that D0(k) is a stationary random process
y(t) with index t � k ∈ R2, where ∀t ∼ U(0, 2p). We define the ran-
dom process z(t) = cos y(t) and thus ∀t random variable Z = z(t) has
mean value E{Z} = 0. In fact, by assuming mean ergodicity, we find
that

E{Z} ∝
∫

z(t)dt ≡
∫
R2

cos[D0(k)]dk = (1)

This is an important property for a similarity measure to be robust
against occlusions. Since occlusions do not provide useful informa-
tion for alignment, ideally they would be ignored. However, manual
segmentation of occluded areas is time consuming and prone to
error. Therefore, an ideal robust similarity measure would be able
to automatically identify regions of the image that are occluding the
true object of interest. Under the previous definition of robustness,
the cosine similarity naturally represents a robust similarity measure
as it automatically suppresses the contribution of outliers.

Given an image warping function with parameters p, maximising
the sum of the cosine of orientation differences provides the robust
similarity measure:

q =
∑

k

cos (D0(k)[p]) (2)

For more details of the specifics of optimising (2) for image
alignment, we refer the reader to Ref. [16].

3.2. Cosine similarity in 3D

We make very similar assumptions for 3D images as we did in
Section 3.1 for 2D images. We simply extend the previous notation by
including the gradient of the z-axis, denoted as Gi,z = Fz ∗ Ii. We also
redefine the normalised gradient as g̃i(k) = gi(k)

‖gi(k)‖ where ‖gi(k)‖=√
gi,x(k)2 + gi,y(k)2 + gi,z(k)2 and gi(k) is defined as the vector formed

by concatenating the x, y and z gradients together.
Measuring the angular distance between vectors in 3D is more

complex than in 2D, due to the extra degree of freedom. In the fol-
lowing sections, we describe two different measures that can be
used to calculate similarities between vectors within 3D images, the
spherical coordinates and the inner product. In the previous section,
we described in detail how properties of the cosine of a uniform dis-
tribution can be exploited to form a robust measure of similarity. The
most important property was that uncorrelated areas such as occlu-
sions should have no impact registration. This was formalised as the
expectation of the sum of the uncorrelated elements should be zero.
In the case of input to the cosine function, a given distribution must
simply be symmetric over the positive and negative span of outputs

of the cosine. When symmetric over the positive and negative out-
puts, the expectation of the cosine function is zero. In fact, we can
relax the definition of a measure being robust to outliers by stating
that we desire a measure whereby the expectation of the measure
over image areas that are uncorrelated is zero.

In practise, when comparing two images where one image con-
tains occlusions, there will be regions that are correlated and then
the occluded region that is uncorrelated. In this case, the total dis-
tribution of all pixels will be described by a mixture model of the
occluded and non-occluded regions. We desire that the distribution
of the uncorrelated areas has an expectation of zero and thus will not
affect the optimisation of the similarity measure.

In Section 3.2.1 and Section 3.2.2 we describe two measures of
angular difference between 3D images. We investigate the distribu-
tion of these angular measures when combined with the cosine func-
tion and motivate that they are both suitable for use as a similarity
measure between real 3D images.

3.2.1. Spherical coordinates
In 2D, a natural parametrisation of the angle between the two

gradient vectors is the polar coordinate system. In 3D, we have three
gradient vectors and thus require two angles to describe their orien-
tation. Unlike in 2D, where the vectors lie on the unit circle, in 3D
the vectors lie on the surface of a unit sphere. Therefore, it is possi-
ble to parametrise the vectors in terms of the spherical coordinate
system, which is described by two angles: the azimuth angle 0 with
range [0, 2p) and the elevation angle h with range [0,p]. Given the
normalised gradients as vectors with Cartesian coordinates, we can
calculate the spherical angles as follows:

ri(k) =‖g̃i(k)‖= 1

0i(k) = arctan
g̃i,y(k)
g̃i,x(k)

hi(k) = arccos g̃i,z(k)

(3)

An illustration of the spherical coordinate system, as used in this
paper, is given in Fig. 1.

Our proposal is to combine the spherical coordinates with the
cosine function in order to provide a robust similarity measure. Sim-
ilar to the 2D case, we propose the cosine of azimuth differences,
D0 = 01 − 02, and the cosine of elevation differences, Dh = h1 − h2,
as a combined similarity measures. Given a 3D image warping func-
tion with parameters p, the spherical coordinates form a similarity
measure as follows:

q =
∑

k

cos (D0(k)[p]) +
∑

k

cos (Dh(k)[p]) (4)

Optimisation of Eq. (2) is described in detail in Section 4.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision
Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006

Original text:
Deletion
,

http://dx.doi.org/10.1016/j.imavis.2016.05.006


U
N

C
O

R
R
E
C
T
E
D

P
R
O

O
F

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

P. Snape, et al. / Image and Vision Computing xxx (2016) xxx–xxx 5

ARTICLE IN PRESS

(a) (b)

Fig. 4. The mean distribution of D0 of the BraTS simulated images. The images were registered using a rigid transformation and only the tumour areas were sampled. (a) The
distribution of D0 in the simulated tumour region. (b) The distribution of D0 over the entire image. It also shows the Laplacian distribution that best fits the data.

Experimentally, we verified that D0 approximates a symmetric
distribution for simulated tumour data taken from the Multimodal
Brain Tumor Image Segmentation (BraTS) challenge, as shown in
Fig. 4. Fig. 4a shows the distribution of D0 between the tumour area
circled in yellow in Fig. 3 and a healthy brain. The images were reg-
istered using a rigid transformation before D0 was computed. The
azimuth angle is analogous to the angle studied in Ref. [34] and
follows the same uniform distribution, D0 ∼ U(0, 2p).

When the entire region of the rigidly registered brain images is
considered, we find that the distribution of D0 is clearly a mixture
of two separate models, one for the occluded area and one for the
rigidly registered area. Fig. 4b shows the distribution of D0 calcu-
lated over the entire image region of each image and a Laplacian
distribution that best fits the data. Thus, our experimental evidence
suggests that the total distribution of D0 over the entire image region
is a mixture model between a uniform distribution and a Laplacian
distribution with approximately zero mean.

3.2.2. Inner product
A more general angular measure between two vectors is the inner

product. Unlike in Ref. [16] or Section 3.2.1, the inner product is a sin-
gle angle and not the difference between two angles. Practically, the
inner product measures the projection error between two vectors
and is defined as:

coss = g̃	
1 g̃2 (5)

In Ref. [34], the authors reasonably propose that the angle
between the gradients of dissimilar images can take any value in
[0, 2p) with equal probability. Similarly, the relationship between the
gradient vectors of two dissimilar 3D images could feasibly be in any
direction with equal probability. Therefore, the distribution of inner

products between two unrelated vectors can take the values [−1, 1]
with equal probability. Due to the expected range of inner product
values, we would expect that coss follows a uniform distribution,
coss ∼ U(−1, 1). Note that this is a different assumption to that made
in Ref. [34], which assumes that the azimuth angle itself, D0, follows
a uniform distribution. However, it is merely sufficient that the total
sum of values from the dissimilar vectors is zero. Therefore, since
E{U(−1, 1)} = 0, the inner product of normalised gradients satisfies
our definition of being robust to outliers. In Fig. 2a, we show that
this assumption holds for the simulated tumour data taken from the
BraTS challenge.

When the entire region of the rigidly registered brain images is
considered, we find that the distribution of coss is clearly a mixture
of two separate models, one for the occluded area and one for the
rigidly registered area. Fig. 2b shows the distribution of coss calcu-
lated over the entire image region. In this case, the distribution of
the inner product appears to be a mixture model between a uniform
distribution and a zero mean Laplacian distribution. However, due to
the ambiguity in the inner product in terms of orientation, the angle
of the inner product is only defined in the range [0,p] and thus only
the positive tail of the Laplacian appears.

In Fig. 2c we also show the distribution of the similarity measure
proposed by Haber and Modersitzki [20]. In Ref. [20], the authors
propose the inner product as a similarity measure, which looks very
similar to the measure we proposed in Eq. (5). However, Haber and
Modersitzki [20] maximise the square of the inner product using a
least squares Gauss–Newton optimisation. As we have shown, the
inner product is related to the cosine between the vectors. Haber and
Modersitzki [20] proposed the inner product squared as a similarity,
which is equivalent to the square of the cosine. As we can see in Fig. 2c,
the cosine squared does not represent a symmetric distribution and
therefore is not a robust similarity measure by our definition.

Fig. 5. Axial view of a T1-weighted brain images utilised for intensity inhomogeneity simulation. Left: original. Middle: with simulated bias field applied. Right: bias field.
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4. Robust Lucas–Kanade

Little work has been published on the applications of 3D Lucas–
Kanade (LK), despite the extension of LK into 3D being trivial [17].
Given the relative efficiency of Lucas–Kanade and other similar algo-
rithms, and their potential accuracy under challenging conditions,
we propose to investigate using LK for robust affine alignment in
voxel images. To the best of our knowledge, this is the first such com-
parison of using state-of-the-art LK fitting algorithms for voxel data.
Given the similarity measures defined in Section 3, we propose novel
LK algorithms that directly maximise the measures.

When referring to the operations performed by the LK algorithm
we will use the following notations. Warp functions W(xi; p) =
[Wx(xi; p),Wy(xi; p),Wz(xi; p)] express the warping of the ith 3D
coordinate vector xi = [xi, yi, zi]	 by a set of parameters p =
[p1, . . . , pn]	, where n is the number of warp parameters. We extend
the previously defined linear index k in to a coordinate vector, x =
[x1, y1, z1, . . . , xD, yD, zD] that represents the concatenated vector of
coordinates, of length D, which allows the definition of a single warp
for an entire image, W(x; p) = [ Wx(x1; p),Wy(x1; p),Wz(x1; p), . . . ,
Wx(xD; p),Wy(xD; p),Wz(xD; p) ]. We assume that the identity warp
is found when p = 0, which implies that W(x; 0) = x. We abuse
notation and define the warping of an image I by parameter vec-
tor p as I(p) = I(W(x; p)), where I(p) is a single column vector of
concatenated pixels.

In the following sections we describe the details of relevant
LK algorithms. We begin with the original forward additive LK
algorithm [1,5]. We then describe the enhanced correlation coeffi-
cient (ECC) algorithm [6] which was shown to be robust to inten-
sity inhomogeneities. We conclude the existing algorithms with a
description of the efficient inverse compositional algorithms for both
the original LK method [35] and the ECC method [6]. Following the
existing literature, we present our proposed LK algorithms. The first
of which is a variation of the ECC method for normalised gradients
and the second involves a traditional inverse compositional method.
Both of the proposed algorithms take the inverse compositional form
due to its computational efficiency.

4.1. Forward additive LK fitting

The original forward additive �2 LK algorithm [1,5] seeks to min-
imise the sum of squared differences (SSD) between a given template
image and an input image by minimising the sum of the squared
pixel differences:

argmin
p

‖I(p) − T(0)‖2 (6)

where T(0) is the unwarped reference template image. Due to the
non-linear nature of Eq. (6) with respect to p, Eq. (6) is linearised by
taking the first order Taylor series expansion. By iteratively solving
for some small Dp update to p, the objective function becomes

argmin
p

‖I(p) + ∇I
∂W
∂p

Dp − T(0)‖2 (7)

where ∇I is the gradient over each dimension of I(p) warped into the
frame of T by the current warp estimate W(x; p). ∂W

∂p
is the Jacobian

of the warp and represents the first order partial derivatives of the
warp with respect to each parameter. ∇I ∂W

∂p
is commonly referred

to as the steepest descent images. We will express the steepest
descent images as ∂ I(p)

∂p . Eq. (7) is now solvable by assuming the

Gauss–Newton approximation to the Hessian, H =
[

∂ I(p)
∂p

	 ∂ I(p)
∂p

]
:

Dp = H−1 ∂ I(p)
∂p

	
[T(0) − I(p)] (8)

Eq. (8) can then be solved by iteratively updating p ← p + Dp until
convergence.

4.2. ECC LK fitting

The enhanced correlation coefficient (ECC) measure, proposed by
Evangelidis and Psarakis [6], seeks to be invariant to illumination
differences between the input and template image. This is done by
suppressing the magnitude of each pixel through normalisation. In
Ref. [6], they provide the following cost function

argmax
p

I(p)	T(0)
‖I(p) ‖‖ T(0)‖ (9)

Assuming a delta update as before and linearising in a similar manner
to Eq. (7) results in

argmax
p

T̂
I(p) + ∂ I(p)

∂p Dp

‖I(p) + ∂ I(p)
∂p Dp‖

(10)

where T̂ = T(0)
‖T(0)‖ . Evangelidis and Psarakis [6] give a very com-

prehensive proof of the upper bound of Eq. (10), which yields the
following solution for Dp

Dp = H−1 ∂ I(p)
∂p

	 [
‖I(p)‖2 − I(p)	QI(p)

T̂	I(p) − T̂	QI(p)
T̂ − I(p)

]
(11)

where Q is an orthogonal projection operator on the Jacobian, J =
∂ I(p)
∂p , defined as Q = J(J	J)−1J	.

In fact, the Dp update given in Ref. [6] is more complex than
Eq. (11), as it seeks to find an upper bound on the correlation
between the two images. However, in the case where Eq. (11) does
not apply, it is unlikely that the algorithm is able to converge. For this
reason, we only consider the update equation presented in Eq. (11).

4.3. Inverse compositional LK

The inverse compositional algorithm, proposed by Baker and
Matthews [35], performs a compositional update of the warp and
linearises over the template rather than the input image. Lineari-
sation of the template image causes the gradient in the steepest
descent images term to become fixed. The compositional update of

the warp assumes linearisation of the term ∂W(x;0)
∂p , which is also

fixed. Therefore, the entire Jacobian term, and by extension the Hes-
sian matrix, are also fixed. Similar to the �2 SSD algorithm described
in Section 4.1, we pose the objective function as:

argmin
p

‖T(Dp) − I(p)‖2 (12)

where we notice that the roles of the template and input image have
been swapped. Assuming an inverse compositional update to the
warp, W(x; p) ← W(x; p) ◦ W(x; Dp)−1 and linearisation around the
template, Eq. (12) can be expanded as:

argmin
p

‖I(p) − ∂T(0)
∂p

Dp − T(0)‖2 (13)
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Solving for Dp is identical to Eq. (8), except that the Jacobian and
Hessian have been pre-computed

Dp = H−1 ∂T(0)
∂p

	
[I(p) − T(0)] (14)

The ECC can also be described as an inverse compositional algorithm,
by performing the same update to the warp and simply swapping
the roles of the template and reference image. In short, solving ECC
in the inverse compositional case becomes

Dp = H−1 ∂ T̂
∂p

	 [
‖T̂‖2 − T̂	QT̂

I(p)	T̂ − I(p)	QT̂
I(p) − T̂

]
(15)

where Q is as before, except J = ∂ T̂
∂p . Any term involving T̂ is fixed

and pre-computable, so the reduction of calculations per-iteration is
substantial.

It is worth noting that not every family of warps is suitable for
the inverse compositional approach. The warp must belong to a
family that forms a group, and the identity warp must exist in the
set of possible warps. For more complex warps, such as piecewise
affine and thin plate spline warping, approximations to the inverse
compositional updates have been proposed [36,37].

4.4. Inner product ECC LK

Given the inner product similarity measure as described in
Section 3.2.2, we seek to embed it within the LK framework in order
to present a robust parametric alignment algorithm. Therefore, we
begin by restating our cost function:

argmax
p

∑
k

cos (s(p)) (16)

with an abuse of notation for the parameters which are hidden
within the cosine function. Expanding Eq. (16) reveals the parame-
ters and makes the relationship between our inner product similarity
and the ECC framework clear:

argmax
p

g̃I(p)	g̃T (0) (17)

which yields our forward additive algorithm.
However, unlike in ECC where the vectors represent concatenated

normalised intensities, we are considering normalised gradients.
Since gradients have three separate components we must consider
the derivatives when linearising gI. Since gI is composed of multiple
components, there will be extra derivatives to calculate via the chain
rule. Formally, linearising Eq. (17) with respect to gI yields

argmax
p

g̃T
g̃I(p) + JgDp

‖g̃I(p) + JgDp‖ (18)

where Jg is the matrix formed by correctly computing the derivative
of gI with respect to each component of gI. For example, given that
gI,x(p) is a vector formed of the x-components of the gradients and
g̃I,x(p) is a vector formed of g̃I,x(p)[k] = gI,x(p)[k]

‖gI(p)[k]‖ , the true derivative
of g̃I,x(p) is

∂ g̃I,x(p)
∂p

=
∂ g̃I,x(p)
∂gI,x(p)

∂gI,x(p)
∂p

∂ g̃I,x(p)
∂gI,x(p)

=
gI,y(p)2 + gI,z(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

(19)

where ∂gI,x(p)
∂p is equivalent to ∂ I(p)

∂p in the original ECC equations. The
y and z derivatives are given in a similar fashion as

∂ g̃I,y(p)
∂gI,y(p)

=
gI,x(p)2 + gI,z(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

∂ g̃I,z(p)
∂gI,z(p)

=
gI,x(p)2 + gI,y(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

(20)

However, ∇gI,x, formally the image gradient, represents the gradient
over only the x-component, and is equivalent to the second order
derivative of the gradients with respect to x.

Since ∂gI,x(p)
∂p is a matrix and ∂ g̃I,x(p)

∂gI,x(p) is a vector, we multiply the
two using a Hadamard product, denoted by the  operator. How-
ever, ∂ g̃I,x(p)

∂gI,x(p) must first form a matrix, Jx, of size D × p by repeating the
vector p times to form columns within the matrix. Finally the total
x-component Jacobian is given by Jg,x = Jx  ∂gI,x(p)

∂p .
Given that Jg,i∀i ∈ {x, y, z} have been calculated, the total deriva-

tive term is given by Jg = [Jg,x, Jg,y, Jg,z]	. Solving for Dp is now
identical to the ECC formulation:

Dp = H−1Jg

[
‖gI(p)‖2 − gI(p)	QgI(p)

g̃	
T gI(p) − g̃	

T QgI(p)
g̃T − gI(p)

]
(21)

Since the update step is identical to the one given in Eq. (15) it is
simple to reformulate the inner product ECC in an inverse composi-

Q3
tional form by following a derivation identical to Section 4.3. In the
Experiments section, we consider the inverse compositional form of
the algorithm.

4.5. Spherical SSD LK

In contrast to the inner product derivation in the previous section,
the spherical representation requires the optimisation of the sum-
mation of two cosine correlations. In theory, it would be possible
to solve for each correlation separately in a manner similar to that
proposed by Tzimiropoulos et al. [16]. This would be suboptimal
as it would require an alternating optimisation scheme. Therefore,
in the interest of solving a single objective, we note the following
relationship between the two summations:

argmax
p

∑
k

cos (D0(p)) +
∑

k

cos (Dh(p)) (22)

is equivalent to the minimisation of

argmin
p

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

cos0I(p)
sin0I(p)
cos hI(p)
sin hI(p)

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

cos0T (0)
sin0T (0)
cos hT (0)
sin hT (0)

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

�

argmin
p

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

g̃I,x(p)
g̃I,y(p)
g̃I,z(p)√

1 − g̃2
I,z(p)

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

g̃T,x(0)
g̃T,y(0)
g̃T,z(0)√

1 − g̃2
T,z(0)

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥

2

(23)

where sin h∗( • ) =
√

1 − g̃2∗,z( • ) where * denotes either the template

or the input image. For notational simplicity, let s̃z( • ) =
√

1 − g̃2
z ( • ).

We define the forward additive objective function as

argmin
p

‖ ĝI(p) − ĝT (0)‖2 (24)
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where ĝI(p) =
[
g̃I,x(p), g̃I,y(p), g̃I,z(p), g̃I,sz(p)

]	 and ĝT (0) =[
g̃T,x(0), g̃T,y(0), g̃T,z(0), g̃T,sz(0)

]	, the concatenated vectors of each
normalised component.

Similar to the derivation in Section 4.4, the Jacobian must be taken
over each component and thus linearising around ĝI(p) yields

argmin
p

‖ ĝI(p) + ĴgDp − ĝT (0)‖2 (25)

where Ĵg =
[
Ĵg,x, Ĵg,y, Ĵg,z, Ĵg,sz

]	
. Unlike in Section 4.4, the calculation

of each Jacobian is not identical due to the different normalisation
procedure taken for each component. Given that we can split the par-
tial derivative Jg,x = Jx  ∂gI,x(p)

∂p , we define the component specific
Jacobian, Ji∀i ∈ {x, y, z, sz} as:

Jx =
gI,y(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

Jy =
gI,x(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

Jz =
gI,x(p)2 + gI,y(p)2(

gI,x(p)2 + gI,y(p)2 + gI,z(p)2
)3/2

Jsz = −
gI,z(p)

(
gI,x(p)2+gI,y(p)2

gI,x(p)2+gI,y(p)2+gI,z(p)2

)3/2

gI,x(p)2 + gI,y(p)2
(26)

Now, given the definitions of the correct Jacobians per component,
we can solve Eq. (25) as:

Dp = H−1 Ĵ	g
[
ĝT (0) − ĝI(p)

]
(27)

Given that the update in Eq. (27) is identical to that of Eq. (8), it would
be trivial to formulate an inverse compositional form of this residual
by following the steps described in Section 4.3.

5. Robust nonrigid alignment

Non-rigid registration is the term generally used to describe an
alignment algorithm that utilises a non-rigid warp. A non-rigid warp
is generally achieved via a motion model that allows for smaller
scale local deformations than can be achieved under models such
as affine or similarity. For example, Rueckert et al. [26] proposed
free-form deformations (FFD) as a motion model that gives a smooth
spline-based transition between neighbouring control points. How-
ever, due to the local nature of non-rigid alignment algorithms, they
require many more parameters. In the case of FFDs there may be
many thousands of parameters depending on the resolution of the
FFD chosen. Unfortunately, due to the complexity of the parameter
space, this causes Gauss–Newton algorithms such as those described
in Section 4 to be infeasible. This is primarily due to the fact that the
size of the Hessian matrix is defined by the number of parameters
and a large Hessian matrix may be non-invertible under reasonable
memory requirements.

Therefore, we augment the FFD algorithm given in Ref. [26] to
use our similarity measure. The local transformation described by a
FFD consists of a mesh of control points, 0i,j,k, separated by a uniform
spacing. The FFD is then given as in Ref. [26], as a 3-D tensor product
of 1-D cubic B-splines

W(x; p)local =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)0i+l,j+m,k+n (28)

where Bl describes the lth basis function of the B-spline, B0(u) =
(1 − u)3/6, B1(u) = (3u3 − 6u2 + 4)/6, B2(u) = (−3u3 + 3u2 + 3u +
1)/6, B3(u) = u3/6 and i, j and k are control point indices over the x,
y and z axis respectively. We then perform a simple gradient descent
algorithm, which terminates when a local minima is reached.

Typically, the total cost function for the FFD algorithm consists of
a similarity term that depends in the data and a regularisation term
that enforces smoothness on the local transformation. In this work
we seek to improve the performance of the similarity term in the
presence of systematic errors.

Let us assume that the parameters of the FFD are V = {0i,j,k}.
We replace the normalised mutual information similarity measure
C(V)Similarity from the original FFD algorithm with our new robust
similarity. For example, for the inner product similarity as described
in Section 3.2.2 we define C(V)IP as

C(V)IP = g̃I(V)	g̃T (0) (29)

The parameters, V, can then be updated in gradient descent form as
follows:

V = V + l
∇VC(V)IP

‖∇VC(V)IP‖ (30)

where ∇VC(V)IP is the gradient of the similarity measure.

5.1. Numerical stability

As discussed in Ref. [20], it is not possible to use normalised
gradient fields directly due to discontinuities in differentiation. We
thus regularise the normalised gradient fields using the technique
presented in Ref. [23].

C(V)IP =
∑
k∈Y

gI(V)[k]	gT (0)[k] + 3t

‖gI(V)[k]‖3‖gT (0)[k]‖t (31)

where ‖ • ‖∗ =
√〈 • , • 〉 + ∗2 and Y is the set of indices correspond-

ing to the target image support. In this work 3 and t require only a
single parameter, as opposed to the user specified regularisation val-
ues chosen in Ref. [23]. Explicitly, 3 and t are computed following an
automatic choice based on total variation

3 =
g

VI

∑
k∈YI

gI(V)[k], t =
g

VT

∑
k∈YT

gT (0)[k] (32)

where g> 0 is a parameter for noise filtering and V* is the volume of
interest in the image domain Y*.

5.2. Robustness against bias fields

In this section we provide a formal proof of the robustness of our
cost functions to bias field corruption. Consider an image signal M
with no intensity inhomogeneities and a smooth signal Q, represent-
ing a multiplicative bias field [38,39]. We assume Q to be constant
within a small neighbourhood, N(k) = (DkxDkyDkz). Therefore, for
Dkx, we have

I(k) = M(k)Q(k) + 4

I(k + Dkx) = M(k + Dkx)Q(k + Dkx) + 4 (33)
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where 4 is an additive error term. Given that Q is constant within N

∂ I(k)
∂x

≈ lim
Dkx→0

I(k + Dkx) − I(k)
Dk

≈ lim
Dkx→0

Q(k)(M(k + Dkx) − M(k))
Dk

= Q(k)
∂M(k)

∂x
(34)

Using Eq. (34), we show our proposed cost function to be robust to
locally constant bias fields, since

∂ I(k)
∂x√(

∂ I(k)
∂x

)2
+

(
∂ I(k)
∂y

)2
+

(
∂ I(k)
∂z

)2

≈ Q(k) ∂M(k)
∂x√(

Q(k) ∂M(k)
∂x

)2
+

(
Q(k) ∂M(k)

∂y

)2
+

(
Q(k) ∂M(k)

∂z

)2

≈
∂M(k)

∂x√(
∂M(k)

∂x

)2
+

(
∂M(k)

∂y

)2
+

(
∂M(k)

∂z

)2
(35)

Eqs. (33)–(35) are analogous for Dky and Dkz. Therefore,

∇I(k)
‖∇I(k)‖ ≈ ∇M(k)

‖∇M(k)‖ (36)

which demonstrates the invariance of our cost functions with respect
to Q.

6. Experiments

We assessed the performance of our similarity measures within
two separate experimental frameworks. For the LK experiments, we
used data from the Visible Human project [40] and demonstrate the
robustness of our proposed measures to both a simulated bias field
and artificial occlusions.

For the non-rigid registration experiments, we demonstrate the
robustness of our similarity measures to intensity inhomogeneities
in the form of a bias field as well as simulated pathologies. The
pathologies are introduced in the form of simulated brain tumours
provided by the BraTS MICCAI 2012 challenge1 image database. We
also used MR brain images from the OASIS dataset [41] and traumatic
brain injury MR images from Turku University Hospital.

6.1. Intensity inhomogeneity implementation

Robustness to intensity inhomogeneities relaxes the necessity
of an explicit intensity correction step in the registration pipeline,
which can be time consuming and a potential source of errors,
especially for non-brain images. Any similarity measure that can
accurately align images containing intensity inhomogeneities is of
great benefit for data sources such as MRI data where bias field cor-
ruption is very common. Bias field corruption is a low-frequency
and very smooth signal that corrupts MRI images, especially those
produced by older MRI machines.

To introduce intensity inhomogeneities into the images, we sim-
ulate several two-dimensional complex-valued MRI sensitivity maps
using a MATLAB tool.2 For each image, we simulate the effect of 8
coils uniformly placed according to the software implementation.

1 http://www2.imm.dtu.dk/projects/BRATS2012/.
2 bigwww.epfl.ch/algorithms/mri-reconstruction.

Then, we randomly select one of the 8 generated sensitivity maps
as the final map S for the image. Since the sensitivity maps are two-
dimensional, we apply them to every 2D slice of the image along the
Z-axis in a weighted fashion. Hence, if we denote the original image
as M, then the simulated image with intensity inhomogeneities I is
constructed according to

I( • , • , z) = R (w(z)⊗ ‖ S( • , • , z) ‖ ⊗M( • , • , z)) ,

z ∈ [1, NZ],

where Nz corresponds to the number of image slices in the Z direc-
tion, R( • ) is the function that rounds the argument to the nearest
integer, ⊗ is the voxelwise multiplication and w(z) is given by

w(z) = 1 +
10√
2ps2

e
−

(
z− Nz−1

2

)
2s2

For all the simulations we use s = 0.15 • (Nz − 1). Fig. 5 shows an
example image with and without intensity inhomogeneities.

6.2. 3D affine registration using LK

For the LK experiments, the data used was from the Visible
Human project [40]. This data has an image structure that differs
from other common 3D image sources such as MR images. Each voxel
in an image is formed from physical slices that were taken from the
body of a cadaver. Therefore, the gradient information across the x, y
plane is incredibly rich as it represents a true 2D-image. However,
the 3D nature of the data is still maintained as each image along the
z-axis represents another slice acquired from the body.

In all experiments an affine motion model was used and per-
formance was measured within an extension of the evaluation
framework proposed in Ref. [5]. We used the Oral section from the
Visible Human dataset [40] as the target image. We selected 10 dif-
ferent regions of interest and parametrised the regions as a set of
points representing the bounding cube of the region. These points
were then perturbed using Gaussian noise of standard deviation s .
Using the affine warp defined between the original and perturbed
points, we generate a distorted image. Then, given a warp estimate,
we compute the new template points and calculate the root mean
square error (RMSE) between the estimated and correct locations.
The performance metric used to assess the algorithms is the aver-
age convergence rate for each fixed s = [1, 10], over each of the 10
regions of interest. An algorithm was considered to have converged
if it had a final RMSE of less than 2.0 pixels after 30 iterations. For
each template, 100 convergence tests were performed. Each image
was smoothed using Gaussian smoothing with s = 2.0 and kernel
size 5 × 5 × 5, before the calculation of derivatives. All algorithms
were implemented using the inverse compositional form.

To provide a competitive assessment of our similarity measures,
we extended recent state-of-the-art 2D algorithms for use with 3D
images. We concentrated on algorithms that aim to provide robust-
ness against outliers, particularly in the form of intensity inhomo-
geneities. Therefore, we provide comparisons against the enhanced
correlation coefficient (ECC) [6] and the Fourier LK algorithm with
Gabor filter banks (GaborFourier) [7]. As a baseline, we also compare
against the standard LK algorithm and the iteratively re-weighted
least squares algorithm (IRLS) also proposed by Baker et al. [2].

We also compare against the most related technique that utilises
the cosine squared measure (CosineSquared) [20]. Our implementa-
tion of CosineSquared is equivalent to the Gauss–Newton methodol-
ogy described within Ref. [20].

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision
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6.2.1. Experiments without corruption
In this subsection, we present our performance evaluation

results obtained without applying any corruption to the 3D images.
We compared the performance of the inverse-compositional LK
algorithm (IC) with both forms of our algorithm, InnerProduct and
Spherical and the related method CosineSquared. This experiment
is designed as a baseline that presents the performance of robust
measures in data that is known to contain no outliers.

As Fig. 6a shows, the IC algorithm outperforms the other meth-
ods for this experiment. This result is unsurprising, as the distorted
image is generated directly from the original image without any out-
liers. Since both of our proposed methods discard information in the
form of the gradient magnitude, they inevitably perform worse than
the LK algorithm. However, the difference between our two algo-
rithms is negligible, which is expected given that they both discard
the same amount of information. The larger deformations signifi-
cantly decrease the performance of the CosineSquared algorithm.
This is likely due to the bias created by squaring the inner product of
the images.

6.2.2. Experiments with corruption
In this subsection, we present three separate experiments:

images with a simulated bias field, with an occlusion and with an
occlusion and a simulated bias field. The bias field was generated
as described in Section 6.1 and an example is shown in Fig. 7b.
Occluded sections were created synthetically by randomly plac-
ing image sections taken from another random area of the body,
and putting them into every slice of the 3D image, as shown in
Fig. 7a.

Fig. 6b shows that our proposed techniques are competitive with
the state-of-the-art for bias field corruption. The LK and IRLS algo-
rithms are not able to cope with the intensity variation caused
by the bias field. GaborFourier copes reasonably well with this
type of corruption due to the illumination invariant properties
described in Ref. [7]. ECC performs very well, which is unsurpris-
ing as the enhanced correlation coefficient performs a normalisation
of the image pixels, which reduces the effect of the bias field. The
CosineSquared algorithm performs well for smaller deviations, but
quickly diminishes in performance.

Fig. 6. Average frequency of convergence vs point standard deviation for the Visible Human dataset. (a) Simulated bias field, (b) occlusions, (c) occlusions + bias field. Cosi-
neSquared: black-�. ECC: black-�. GaborFourier: black-x. IC: blue-x. IRLS: blue-+. InnerProduct: red-*. Spherical: red-o. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Examples of images from the Visible Human project [40] used in the LK experiments. (a) Artificially occluded image. The occlusion appears as the white square in the top
right. (b) Image with simulated bias field.

Table 1
Images with pathology: mean (median) overlap measures and standard deviation for white matter (WM), grey matter (GM) and ventricular cerebrospinal fluid (CSF) labels
propagated using on-rigid registration.

WM GM CSF Overall

NMI [19] 78.1(78.1) ± 0.03 79.0(78.0) ± 0.03 88.4(88.9) ± 0.02 81.8(81.3) ± 0.02
DRAMMS [27] 73.7(74.2) ± 0.02 79.0(79.5) ± 0.03 78.4(81.2) ± 0.11 77.1(78.6) ± 0.05
Proposed similarity (g = 0.1) 78.1(78.1) ± 0.00 76.4(76.6) ± 0.01 83.4(84.5) ± 0.03 79.3(79.9) ± 0.01
Haber and Modersitzki [20] (g = 0.1) 74.2(74.4) ± 0.01 75.1(75.0) ± 0.01 80.9(82.2) ± 0.03 76.8(77.2) ± 0.02
Proposed similarity (g = 1) 80.9(80.8) ± 0.00 79.1(79.3) ± 0.01 88.1(89.1) ± 0.03 82.7(83.3) ± 0.01
Haber and Modersitzki [20] (g = 1) 81.2(81.2) ± 0.00 79.6(79.7) ± 0.01 88.4(89.0) ± 0.03 83.1(83.7) ± 0.01

Fig. 6c shows that our proposed similarity measures are also
the most robust to occlusions. IRLS performs better under these
situations as it is able to discard some of the outliers that
bias the alignment. The normalisation step in ECC has no ben-
efit in suppressing this sort of bias, and so it performs very
similarly to the non-robust IC algorithm. GaborFourier still per-
forms well as the Gabor filter banks suppress the contribution
of the outliers. The CosineSquared performs well under smaller

deformations but is heavily biased under large deformations as the
squaring of the cosine fails to suppress the contribution of the
occlusions.

Finally, in Fig. 6d we see that even under occlusion and global illu-
mination variation, our proposed measures perform with relatively
high accuracy. This is a challenging experiment which demonstrates
the power of our proposed similarity measure. Despite the large
amount of outliers, our proposed measures are still able to perform

REF NMI PROPOSED COS 2 DRAMMS

Fig. 8. Reference and propagated labels using g = 0.1. REF denotes the reference labels, NMI is normalised mutual information, PROPOSED is the proposed similarity, COS2 is
Haber and Modersitzki [20], DRAMMS is the method of Ref. [27]. The first row is the axial view, second row is the coronal view and final row is the sagital view. Boundaries of the
tumours and image are provided for visualisation. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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Fig. 9. Example images of a BraTS subject in axial and coronal view. First and second columns depict subjects with high-grade gliomas. Third and fourth columns depict subjects
with low-grade gliomas.

accurate alignment with a higher success rate than any of the other
algorithms considered.

6.3. 3D non-rigid registration using FFDs

As previously mentioned, we incorporate the proposed inner
product measure into a B-Spline FFD algorithm [26]. For comparison,
we also incorporate the cosine squared similarity [20] and nor-
malised mutual information (NMI) [19] into our framework. We also
compared our FFD-based non-rigid registration on images containing
pathologies with a recent work, DRAMMS [27]. DRAMMS attempts to
reduce matching ambiguities through a multi-scale and multi- orien-
tation Gabor filters. These extracted filters are then weighted during

registration using a function dubbed “mutual-saliency” designed
to improve matching uniqueness. DRAMMS has been shown to be
effective on a wide range of data sources. However we show that
whilst not failing completely on images containing pathologies, our
FFD-based similarity measure yields superior performance.

We concentrate on two separate experiments, images with inten-
sity inhomogeneities and images with pathologies. In all the con-
ducted experiments within the FFD framework, we utilise the thin-
plate bending energy of the deformation field with a weight of
a = 0.002 as a regularisation term and optimise using conjugate
gradient descent. We use the same regularisation weight for every
similarity since the empirical range of values that they take using
our experimental image datasets are of very similar width for all of
them.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision
Computing (2016), http://dx.doi.org/10.1016/j.imavis.2016.05.006
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Fig. 10. Mean pairwise similarity index per image per label for the OASIS data [41].

6.3.1. MR images with intensity inhomogeneities
Here we evaluate the performance of our proposed similarity

measure against intensity inhomogeneities. This relaxes the neces-
sity of an explicit intensity correction step in the registration pipeline
(e.g. Ref. [42]), which can be time consuming and a potential source
of errors, especially for non-brain images. To evaluate the proposed
similarity measure for non-rigid registration, we perform the 30 ×
29 = 870 pairwise registrations with control point spacings of 20,
10, 5 and 2.5 mm, using the 35 original preprocessed T1-weighted
MR brain images from the OASIS dataset [41]. We subsequently
introduce different smooth intensity inhomogeneities individually to
all the images according to the procedure described in Section 6.1
and repeat the registrations again using the original images as target
and the affected ones as source.

We compare the gradient-based similarity measures with noise
parameter g set to 0.1 against NMI in their ability to produce a defor-
mation field able to accurately propagate the manual segmentation
labels. We measure the registration accuracy using the similarity
index (SI), both for the original images and the images with bias
field applied. We compute the mean and standard deviation of the
SI values calculated on the propagated and reference labels for all
870 propagations. We differentiate between the 98 cortical and 36
subcortical labels. The results are shown in Fig. 13. We observe that
NMI performs well when there are no intensity inhomogeneities in
the images. On the contrary, it is severely affected by the presence
of intensity inhomogeneities. Conversely, both gradient-based simi-
larity measures show similar performance for registrations with and
without intensity inhomogeneities, demonstrating their robustness.

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision
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Fig. 11. Angle 0 and histograms of cos0 and cos20 using (a) g = 0.1 and (b) g = 1 between a healthy subject and the BraTS simulated images in the tumour areas. The means are
0.031 and 0.296 respectively for g = 0.1 and 0.548 and 0.410 respectively for g = 0.1,g = 1.

Nevertheless, the proposed similarity measure performs slightly
better that cosine squared, and the differences are statistically signif-
icant according to a paired Wilcoxon signed rank test (p < 10−5). To
complement the analysis, we show the same results for each of the
images and each label in Fig. 10. It is important to note that in the
case where no intensity inhomogeneities are present, the proposed
method has a lower performance than NMI. The conducted analyses
suggest that, when using normalised gradient fields, the registra-
tion of MR images is more difficult than the alignment of scans from
other imaging modalities as in Refs. [21,22,23]. We observe that in
the particular case of MR brain images, the discrimination between
noise and structure related gradients is very challenging, especially
in cortical areas.

6.3.2. MR images with pathologies
Registration of images depicting pathology is a challenging pro-

cedure, since the images may exhibit strong structural differences
that cannot be matched. Here, we show that our similarity mea-
sure is capable of handling images with areas of mismatches, e.g.,
areas of pathology, without any prior knowledge nor any subsequent
correction step.

We use a dataset of 10 simulated MR images of the brain depict-
ing tumours. These images are taken from the BraTS MICCAI 2012
challenge.3 Half of these images show high grade gliomas and the

3 http://www2.imm.dtu.dk/projects/BRATS2012/.

other half have low grade ones. The images are labelled into white
matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and 2 fur-
ther labels for the tumour areas. All the images are skull stripped,
and have 256 × 181 × 256 voxels with an isotropic resolution of
1 mm. A visualisation of all the subjects from this dataset is pro-
vided in Fig. 9. For a quantitative evaluation, a labelled image of a
healthy subject is registered to all 10 images in our BraTS dataset
using NMI and both normalised gradient field based similarity mea-
sures. The registrations using either the cosine or cosine squared
similarity measure were run in two settings. In the first setting, the
noise parameter g is set to 0.1. In the second, we set the value of
g to 1. We measure registration accuracy using SI over three labels,
namely WM, GM and CSF. We ignore the two available tumour labels
as there is no equivalent in the healthy scan. A good overlap for
non-tumour labels is an indicator that the similarity measure is not
biased by the presence of pathology. We also include the registra-
tion result of DRAMMS [27], which shows that FFD registration is still
highly competitive with more recent state-of-the-art works. Over-
lap results for non-rigid registration are shown in Table 1. It can be
observed that for the case where g = 0.1, the proposed similarity
measure yields a worse alignment than NMI (p = 0.0098). How-
ever, when compared to the cosine squared similarity, a much better
result is obtained for the proposed similarity measure (p = 0.002).
Further visual results for this comparison are shown in Fig. 8. The
main areas where the registration using cosine squared similarity
measure is affected by the tumour presence are highlighted by a red
ellipse. Although Table 1 suggests that higher values of the parameter

Please cite this article as: P. Snape, et al., A robust similarity measure for volumetric image registration with outliers, Image and Vision
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Baseline Follow-up

NMI PROPOSED COS2

Fig. 12. Visual comparison of the proposed similarity (PROPOSED), normalised mutual information (NMI) [18] and cosine squared (COS2) [20] for TBI data. Top row: vaseline and
follow-up images. Second row: transformed follow-up isolines of the registration results overlaid on the baseline image. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)

g provide superior overlap measures this is not necessarily the case.
Given Eqs. (31) and (32), we can clearly see that g has the effect
of suppressing the contribution of the gradients within the similar-
ity measure. Therefore, g can be thought of as a filtering parameter
that will benefit any normalised gradient field similarity measures by
decreasing the effect of noise. However, as demonstrated in Fig. 11,
larger values of g also effect the distribution of 0 in the occluded
areas. As g is increased, the gradient values are suppressed towards
0 and thus the distribution of cos0 ceases to approximate a uniform

distribution. Therefore, although g = 1 provides superior results for
the experiment in Table 1, we focus our results on g = 0.1 whereby
our assumption of the uniform distribution of outliers is not vio-
lated. This is clearly demonstrated by Fig. 11 for the BraTS simulated
images in the tumour areas when g = 0.1. Fig. 11 differs from Fig. 2
in its application of the noise filtering as no filtering is applied in
Fig. 2. This can be seen as equivalent to g = 0 which was used to val-
idate that the difference between two visually dissimilar areas does
indeed approximate a uniform distribution for the cosine.
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Fig. 13. Mean similarity index and standard deviation over cortical and subcortical labels for all 30 × 29 = 870 registrations in the OASIS dataset [41].
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In addition to the BraTS experiments, we perform registrations
using NMI, the proposed similarity measure and cosine squared simi-
larity measure on traumatic brain injury (TBI) data. The imaging data
was acquired at Turku University Hospital, Finland in the course of
the TBIcare project.4 One image corresponds to a baseline scan and
the other is the follow-up scan taken after 4 months and 19 days at
Turku University Hospital. Both images have 176 × 240 × 256 voxels
with an isotropic resolution of 1mm.

We utilise the baseline image as a target and the follow-up image
as a source. For the gradient-based similarity measures we set g to
0.1. Visual results are given in Fig. 12. The main observation is that, in
contrast to NMI and the cosine squared similarity measure, the pro-
posed measure is able to recover most of the underlying changes in
shape within the pathology area (as pointed out with a red arrow).
This is because the registration inside the area of pathology affects
the value of both NMI and cosine squared similarity measure signif-
icantly, causing the optimisation to converge very quickly. On the
other hand, the proposed similarity is almost unaffected by the forces
in the area of pathology, allowing the optimisation to continue until
good alignment is achieved.

7. Conclusion

In this work, we have provided a set of novel global similarity
measures based on the cosine of the orientation between normalised
gradients. We have shown that these measures are theoretically
robust to a very general class of outliers that includes intensity
inhomogeneities and systematic errors such as occlusions. We have
empirically verified that our measures are robust for various sources
of brain MRI data.

We have provided a proof-of-concept investigation as to the
effectiveness of our similarity measures within the popular Lucas–
Kanade algorithm. Despite the popularity of Lucas–Kanade algo-
rithms for 2D images, little work has been done on its performance
for voxel data. In fact, to the best of our knowledge, no previous work
exists that extends the current state-of-the-art Lucas–Kanade algo-
rithms in to 3D. We provide a thorough experimental analysis on
both our proposed measures and extensions of state-of-the-art 2D
methods in Section 6.

We also embedded our similarity measures within a popular
non-rigid alignment framework based on free-form deformations.
We demonstrated the effectiveness and robustness of our similar-
ity measure on images with simulated bias fields and on simu-
lated pathological images. We showed superior robustness in these
scenarios compared to NMI and the cosine squared measure of
Haber and Modersitzki [20]. We also demonstrate superior perfor-
mance on images containing pathologies when compared against
DRAMMS [27].

The main contribution of this paper is that our similarity mea-
sures relax the need for bias field correction, which can be time
consuming and prone to errors. They can also register images in
the presence of pathologies, since they do not rely on any par-
ticular deformation model and do not require segmentation of
outliers. Our similarity measures are very efficient and simple to
compute and compare very favourably with current state-of-the-art
methodologies.
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