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Abstract 8 

Geochemical maps provide invaluable evidence to guide decisions on issues of mineral exploration, 9 

agriculture, and environmental health. However, the high cost of chemical analysis means that the 10 

ground sampling density will always be limited. Traditionally, geochemical maps have been 11 

produced through the interpolation of measured element concentrations between sample sites 12 

using models based on the spatial autocorrelation of data (e.g semivariogram models for ordinary 13 

kriging). In their simplest form such models fail to consider potentially useful auxiliary information 14 

about the region and the accuracy of the maps may suffer as a result. In contrast, this study uses 15 

quantile regression forests (an elaboration of random forest) to investigate the potential of high 16 

resolution auxiliary information alone to support the generation of accurate and interpretable 17 

geochemical maps. This paper presents a summary of the performance of quantile regression forests 18 

in predicting element concentrations, loss on ignition and pH in the soils of south west England using 19 

high resolution remote sensing and geophysical survey data. 20 

Through stratified 10-fold cross validation we find the accuracy of quantile regression forests in 21 

predicting soil geochemistry in south west England to be a general improvement over that offered 22 

by ordinary kriging. Concentrations of immobile elements whose distributions are most tightly 23 

controlled by bedrock lithology are predicted with the greatest accuracy (e.g. Al with a 24 

cross-validated R2 of 0.79), while concentrations of more mobile elements prove harder to predict. 25 

In addition to providing a high level of prediction accuracy, models built on high resolution auxiliary 26 

variables allow for informative, process based, interpretations to be made. In conclusion, this study 27 

has highlighted the ability to map and understand the surface environment with greater accuracy 28 
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and detail than previously possible by combining information from multiple datasets. As the quality 29 

and coverage of remote sensing and geophysical surveys continue to improve, machine learning 30 

methods will provide a means to interpret the otherwise-uninterpretable.       31 
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1. Introduction 41 

The value of geochemical maps to mineral exploration (e.g. Hawkes and Webb, 1962; Levinson, 42 

1974; Beus and Grigorian, 1977; Xuejing and Xueqiu, 1991; Xu and Cheng, 2001; Johnson et al., 43 

2005), agriculture (e.g. Webb et al., 1971; Jordan et al., 1975; Reid and Horvath, 1980; Lewis et al., 44 

1986; White and Zasoski, 1999; Reimann et al., 2003), and studies of environmental and human 45 

health (e.g. Thornton and Plant, 1980; Bowie and Thornton, 1985; Alloway, 1990; Appleton and 46 

Ridgway, 1993; Thornton, 1993; Fordyce, 2013) is well established. Surficial geochemistry should be 47 

considered an essential component of any comprehensive description of the natural environment 48 

(Darnley, 1990). In these times of increasing environmental concern, there is a need for increasingly 49 

effective geochemical mapping techniques to support the making of good evidence-based decisions 50 

about our interactions with the natural environment. 51 

Geochemical maps are produced by the regional interpolation of element concentration data 52 

obtained from samples of surface media such as stream sediments, soil or water (e.g. Salminen et 53 

al., 1998). The sampling density is often limited by the relatively high cost of sample collection and 54 

chemical analysis, resulting in large expanses between sample sites in which there is much 55 

uncertainty about concentrations of elements. Traditionally, the interpolation of element 56 

concentrations has been based on the spatial autocorrelation of the data, as in ordinary kriging 57 
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(Cressie, 1988) which uses semivariogram models. While these spatial models are considered 58 

optimal for univariate interpolation in regions where no other information is present, their 59 

ignorance of auxiliary information makes them suboptimal for use in regions for which auxiliary 60 

variables have been measured. For geochemical mapping auxiliary variables might include anything 61 

that provides insight into surface-subsurface conditions, for example airborne gamma spectrometry 62 

and magnetic survey data. 63 

Spatial autocorrelation based models such as ordinary kriging can be adapted to make use of 64 

auxiliary information, either by combination with regression models, as in regression-kriging or 65 

kriging with external drift approaches (e.g. Hengl et al., 2003), or by co-kriging (e.g. Knotters et al., 66 

1995). However, the importance of considering spatial autocorrelation in predictive models 67 

decreases as the explanatory power of the auxiliary variables increases: eventually the spatial 68 

autocorrelation of the target variable is entirely captured within the auxiliary variables. Models 69 

which do not rely on spatial autocorrelation information are desirable as they greatly improve the 70 

interpretability of the resultant maps. The predicted element concentrations are no longer the 71 

product of a crude distance-weighted blend of geographically neighbouring measurements, but 72 

instead can be explained by the context of the prediction point within the more informative, process 73 

related, feature space of the auxiliary variables. The residuals of such models are useful as they 74 

indicate the degree to which samples have been subject to atypical processes. 75 

Thanks in part to the Tellus South West airborne geophysical survey (Beamish et al., 2014), south 76 

west England is now one of the most thoroughly surveyed areas of Great Britain, and possesses a 77 

wealth of quantitative high resolution geoscientific data. It is therefore an ideal study area in which 78 

to investigate the ability of the available high resolution data to explain the variations of measured 79 

element concentrations in soils. There are many possible regression techniques with which to model 80 

soil element concentrations from auxiliary geoscientific data, however, to account for the lack of 81 

independence and normality in both predictor and target variables, nonparametric ‘machine 82 

learning’ techniques are advantageous. Interpretability is also a priority; in order to have impact, the 83 
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resultant models and maps must be explainable to policy makers. Random forest (Breiman, 2001) is 84 

a machine learning technique which has been demonstrated to be highly accurate, adaptable and 85 

interpretable. The technique uses an ensemble of decision trees, and is capable of both classification 86 

and regression. It is gaining popularity for use in predictive mapping in various fields; for example 87 

species distribution mapping (e.g. Lawrence et al., 2006; Cutler et al., 2007; Evans et al., 2011), land-88 

cover classification (e.g. Gislason et al., 2006; Rodriguez-Galiano et al., 2012), geological mapping 89 

(Cracknell and Reading, 2014) , digital soil mapping (e.g. Henderson et al., 2005; Wiesmeier et al., 90 

2011) and mineral prospectivity mapping (e.g. Carranza and Laborte, 2015; Harris et al., 2015; 91 

Rodriguez-Galiano et al., 2015). 92 

In this study quantile regression forests (Meinshausen, 2006) – an uncertainty-conscious elaboration 93 

of random forest (Breiman, 2001) – are utilised to model the concentrations of elements in the soils 94 

of south west England using high resolution geophysical and remote sensed data. The ability of 95 

quantile regression forests to use these auxiliary variables to produce high resolution, interpretable 96 

geochemical maps with quantified prediction intervals is demonstrated. This approach has 97 

important implications for future geochemical survey planning procedure. Additionally, interrogation 98 

of the underlying models facilitates improved understanding of the geochemical environment of 99 

south west England and has implications for decisions about our interaction with the natural 100 

environment.   101 

2. Materials 102 
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2.1 Study area 103 

The study area, south west England, is located at the southwestern tip of the British Isles (Fig. 1). A 104 

wealth of high resolution geoscientific data has been collected across south west England owing to 105 

complex and economically significant geology. In brief summary, the geology of the region consists 106 

of a suite of metasedimentary facies originally deposited in a series of Devonian-Carboniferous east-107 

west trending basins (Shail and Leveridge, 2009). The granites of the Cornubian Batholith were then 108 

emplaced following basin inversion during the late Carboniferous to early Permian Variscan Orogeny 109 

(Charoy, 1986; Floyd et al., 1993), and have provided a heat source for extensive hydrothermal 110 

activity. The result of this hydrothermal activity is that the region is both rich in polymetallic 111 

mineralisation (Dines, 1956; Willis-Richards and Jackson, 1989) and complex in terms of mapping 112 

and understanding element distributions (e.g. Colbourn et al., 1975; Alderton et al., 1980; Smedley, 113 

1991; Kirkwood et al., 2016). 114 

2.2 Target variables - soil geochemical data 115 

The soil geochemical data used in this study is derived from samples collected across south west 116 

England during the summer field campaign of 2012 by the British Geological Survey following 117 

standard Geochemical Baseline Survey of the Environment (G-BASE) methods (Johnson et al., 2005).  118 

A total of 568 samples were collected within the study area at an average sampling density of one 119 

sample per 12.2 km2 (Fig 1). Samples were collected at random, but exclude coverage of the Tamar 120 

Valley area which was sampled in 2004. The Tamar Valley data is not used in this study due to 121 

inferior lower limits of detection as a result of advancements in analytical procedure between the 122 

years of 2004 and 2012. The soil samples were collected from a depth of 5-20cm and sieved to 123 

<2mm grain size before being dried, ground and pelletised prior to analysis by XRF for 48 major and 124 

trace elements according to standard G-BASE procedures (Johnson et al., 2005). The 5-20cm 125 

sampling depth is intended to target the A horizon of typical soils, with material from the O horizon 126 

being excluded with the topmost 5cm. However, soil horizon representation within each sample 127 

varies according to local soil profiles. The pH and loss on ignition (LOI) of each sample was also 128 



6 
 

measured. Data quality was assured by the inclusion of duplicate samples, replicate samples, and 129 

certified reference materials within the analytical runs. 130 

Total concentrations of the following elements were determined along with pH and LOI: Ag, Al, As, 131 

Ba, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, I, K, La, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Rb, Sb, 132 

Sc, Se, Si, Sm, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. The major elements (Al, Ca, Fe, K, Mg, 133 

Mn, Na, P, Si, Ti, Zr) were assumed to exist as their common oxides, and were each appended with 134 

the appropriate additional mass of oxygen so that the sum of all element concentrations for each 135 

sample approached 100%, or in the units of the study, 1 million milligrams per kilogram. For most 136 

samples though, the chemical analyses do not sum to 100%. This ‘remainder’ (referred to as ‘R’) is 137 

included in the study, to see if it too could be modelled and explained. 138 

 139 

140 
Fig. 1. Locations of 2012 field season G-BASE soil samples within the study area in south west England. The inset map 141 
shows the study area (cross-hatched) in reference to the rest of Great Britain. The granites of the Cornubian Batholith are 142 
shown as they form prominent geological and geochemical landmarks within the region.    143 

2.3 Auxiliary variables – high resolution geophysics and remote sensed data 144 

In order to provide the quantile regression forest models with as much information as possible from 145 

which to make predictions, all available regional geophysics and remote sensed data sets were 146 
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utilised. The available data sets comprise airborne magnetic and radiometric surveys from the Tellus 147 

South West project (Beamish et al., 2014), aerial elevation survey from NEXTMap (Intermap 148 

Technologies, 2007), land gravity survey from the British Geological Survey et al. (1968), and Landsat 149 

8 satellite imagery (Roy et al., 2014). All these auxiliary variables and their derivatives (Table 1) were 150 

resampled from their original data grids to a regular 100 m grid covering the study area using 151 

bilinear interpolation. 152 

The 61,000 line-km of airborne geophysical data collected for the Tellus South West project, and the 153 

processing undertaken to produce the original magnetics and radiometrics data grids, is described by 154 

Beamish and White (2014). The survey used a N-S line separation of 200 m and a magnetic data 155 

sampling of 20 Hz providing a mean along-line sampling of 3.6 m. Radiometric data were sampled at 156 

1 Hz  intervals providing a sampling of 71 m. Data grids were generated using bicubic spline 157 

interpolation (magnetic) and minimum curvature (radiometric). The land gravity survey data were 158 

gridded using minimum curvature.  159 

Table 1  160 
Explanations of the geophysical and remote sensed variables used in the modelling. 161 

Variable name Explanation 

Elevation NEXTMap Britain Digital Terrain Model 

Slope Terrain slope angle 

Wetness_index Terrain wetness index  

Topographic_position_index Terrain topographic position index 

Plan_curvature Terrain plan curvature 

Profile_curvature Terrain profile curvature 

Landsat_B1 Landsat 8 band 1 – Coastal Aerosol (0.43-0.45 µm) 

Landsat_B2 Landsat 8 band 2 – Blue (0.45-0.51 µm) 

Landsat_B3 Landsat 8 band 3 – Green (0.53-0.59 µm) 

Landsat_B4 Landsat 8 band 4 – Red (0.64-0.67 µm) 

Landsat_B5 Landsat 8 band 5 – Near Infrared (0.85-0.88 µm) 

Landsat_B6 Landsat 8 band 6 – Short Wave Infrared  1 (1.57-1.65 µm) 

Landsat_B7 Landsat 8 band 7 – Short Wave Infrared 2 (2.11-2.29 µm) 

Landsat_B8 Landsat 8 band 8 – Panchromatic (0.50-0.68 µm) 

Landsat_B10 Landsat 8 band 10 – Thermal Infrared 1 (10.60-11.19 µm) 

Landsat_B11 Landsat 8 band 11 – Thermal Infrared 2 (11.50-12.51 µm) 

Regional_bouguer_anomaly Gravity survey bouguer anomaly 
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Residual_bouguer_anomaly Gravity survey high pass filtered bouguer anomaly 

TMI_IGRF International Geomagnetic Reference Field corrected TMI  

TMI_IGRF_1VD 1
st

 vertical derivative of TMI_IGRF 

TMI_IGRF_AS Analytical signal of TMI_IGRF  

TMI_IGRF_REDP Reduction to the pole of TMI  

Radiometrics_uranium Uranium counts from gamma ray spectrometry 

Radiometrics_thorium Thorium counts from gamma ray spectrometry 

Radiometrics_potassium Potassium counts from gamma ray spectrometry 

Radiometrics_total_count Total count of unmixed gamma ray signal 

3. Methods 162 

3.1 Quantile regression forests 163 

Quantile regression forests (Meinshausen, 2006) are an elaboration of random forest (Breiman, 164 

2001); an ensemble model based on the averaged outputs of multiple decision trees (Breiman et al., 165 

1984). Where random forest takes the mean of the outputs of the ensemble of decision trees as the 166 

final prediction, quantile regression forests also take specified quantiles from the outputs of the 167 

ensemble of decision trees, providing a quantification of the uncertainty associated with each 168 

prediction. 169 

The decision trees themselves are constructed through recursive partitioning starting with a root 170 

node which contains all the data provided to the tree. The root node is split by defining an optimal 171 

threshold in whichever auxiliary variable works best to provide two resulting data partitions each 172 

with the greatest purity (the least variation in the target variable). This process is then repeated 173 

successively on child partitions until the terminal nodes (‘leaves’) are reached, at which point each 174 

partition contains just a single sample (or specified small number of samples) whose target variable 175 

value (or mean value) is explained by a series of increasingly precise “if-then” conditional statements 176 

referring to the context of the sample in the auxiliary variable feature space. 177 

If all of the decision trees were grown from the same training data there would be no point in using 178 

an ensemble – the trees would all grow identically and the resultant model would be highly liable to 179 

overfit the data. Breiman’s (2001) random forest overcomes the problem of overfitting decision 180 
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trees by using bootstrap aggregation, or bagging (Breiman, 1996), to grow each tree from a separate 181 

subsample (roughly two thirds) of the full training dataset, thus reducing the chance of fitting to 182 

noise when the outputs of the multiple trees are averaged. In addition to bagging, random forest 183 

also provides only a random subset of the auxiliary variables on which to make each split in each 184 

tree, which reduces the chance of the same very strong predictors being chosen at every split, and 185 

therefore prevents trees from becoming overly correlated. The resulting algorithm is recognised as a 186 

highly competitive machine learning technique  (e.g. Liu et al., 2013; Rodriguez-Galiano et al., 2015).  187 

One drawback of the random forest method is that, as a consequence of each prediction being 188 

equivalent to a weighted average of the target variable values in the training data set (Lin and Jeon, 189 

2006), predictions towards the limits of the training data values are increasingly biased towards the 190 

mean. This results in a tendency for low value predictions to exhibit positive bias, and high value 191 

predictions to exhibit negative bias (Zhang and Lu, 2012). To correct for this all random forest 192 

models were appended with a linear transformation defined by a robust linear model (iterative 193 

reweighted least squares; Venables and Ripley, 2013) of observations against random forest 194 

predictions during their training phase. This process effectively stretches the predictive range of the 195 

random forest in order to correct for central tendency bias. 196 

All modelling was conducted in R (R Core Team, 2014) with a framework developed around the 197 

randomForest package (Liaw and Wiener, 2002). The models each used 1001 decision trees - a 198 

sufficient number to allow convergence of error to a stable minimum. The odd number of trees 199 

prevents possible ties in variable importance. Each tree was grown until the terminal nodes 200 

contained 8 samples in order to reduce overfitting to outliers. The default number of variables to try 201 

at each split – one third of the number of features – was used. The mean of the outputs of the 202 

ensemble of decision trees was used as the predicted value, and for each prediction the 2.5th and 203 

97.5th percentiles of the ensemble were used as the lower and upper limits of a 95% prediction 204 

interval.   205 
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3.2 Model validation 206 

The training dataset was constructed by joining the auxiliary variable data at each soil sample site to 207 

the geochemical data for each soil sample, using bilinear interpolation, in order to form a single 208 

table of both geochemical and auxiliary variable values for each sample site. A stratified 10-fold 209 

cross validation process was then used, in which the training data was randomly split into 10 equal 210 

folds of approximately equal mean (Kohavi, 1995). Then, for each element, a quantile regression 211 

forest model was constructed using the data in 9 of the folds before being tested by predicting the 212 

measured element concentrations in the remaining fold. The folds were cycled through and the 213 

modelling process repeated so that, in the course of the full 10-fold cross validation, every sample 214 

was used as test data. This process allows the accuracy of the model’s predictions and prediction 215 

intervals (uncertainty estimates) to be assessed for each element, which is visualised in this study 216 

using scatter plots of the predicted against observed values. The prediction interval accuracies are 217 

assessed for each model on the basis of how closely the percentage of samples that are observed to 218 

fall within the prediction interval match the expected percentage (according to the specified 219 

prediction interval). In the case of this study we use a 95% prediction interval and therefore expect 220 

that 95% of samples will fall within it during cross-validation.   221 

To allow the quality of each element’s model to be compared, cross-validated R2 values, root-mean-222 

square error (RMSE) and range-normalised RMSE values were derived according to the relationship 223 

between each model’s predictions and the actual measurements. In addition, Moran’s I (Moran, 224 

1950) was also calculated on each element’s residuals to provide a measure of residual spatial 225 

autocorrelation. The Moran’s I scale runs from -1 (perfect dispersion) to 1 (perfect correlation), with 226 

values close to zero indicating spatially random phenomena and suggesting that model performance 227 

would not be increased by directly taking spatial autocorrelation into account. 228 

In order to provide some context to the prediction accuracy of the quantile regression forest models, 229 

ordinary kriging (using the R package ‘automap’; Hiemstra et al., 2009) was run in parallel to the 230 
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quantile regression forest modelling during the 10-fold cross validation, from which cross-validated 231 

R2 values were derived. 232 

3.3 Regional geochemical map production 233 

The geochemical maps for each element were produced using a quantile regression forest model 234 

constructed on the full 568 sample training dataset. For each element, both concentration and 235 

uncertainty maps were produced. The value assigned to each grid cell in the concentration map is a 236 

prediction based on the measured values of the auxiliary variables. The value assigned to each grid 237 

cell in the uncertainty map is the width of the 95% prediction interval associated with each 238 

concentration prediction. No further measurements of soil geochemistry are used to test the map, 239 

but the results of the 10-fold cross validation form an acceptable approximation of the performance 240 

of each element’s model (and therefore the quality of each element’s map)(Kohavi, 1995; 241 

Vanwinckelen and Blockeel, 2012). For further assessment of model quality, the residuals of the 242 

quantile regression forests were mapped using inverse distance weighted interpolation. This allows 243 

for any spatial patterns within the residuals to be assessed (a more involved alternative to the 244 

Moran’s I metric). Concentration maps were also produced by ordinary kriging to allow visual 245 

comparison with the quantile regression forest maps. However, caution is advised against making 246 

critical comparisons between methods based on the appearance of the maps alone – the image 247 

format encourages far more subjective (and potentially misleading) interpretations than objective 248 

model quality measures such as cross-validated R2. All maps were symbolised using a CubeHelix 249 

continuous colour scale to prevent loss of information when viewing in greyscale (Green, 2011).  250 

3.4 Model interpretation 251 

With the help of the R package forestFloor (Welling, 2015) partial dependence scatter plots were 252 

produced to visualise the contribution of a given variable to the predicted element concentration 253 

(Palczewska et al., 2013). Additionally, each quantile regression forest model provides a measure of 254 

the average ability of each auxiliary variable to increase node purity in child partitions; thus 255 

providing a measure of the importance of each auxiliary variable to the predictions of each element. 256 
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The combination of these outputs provides insight into the controls behind each element’s 257 

distribution. 258 

4. Results and discussion 259 

4.1 Model performance 260 

 261 
Fig. 2. Cross-validated R

2
 values for comparison of quantile regression forest (QRF) model quality between each element 262 

(and R, LOI and pH). The corresponding cross-validated R
2
 values achieved by ordinary kriging (OK) are overlain to provide 263 

some context to the overall quality of predictions. 264 

Comparison of cross-validated R2 values between quantile regression forests and ordinary kriging 265 

reveals that quantile regression forests provide overall improved prediction accuracy for 37 of the 51 266 

target variables modelled (Fig. 2). Aside from Ni and Cr, which are unique in the strength of their 267 

association with the Lizard Ophiolite Complex (the region's southernmost pensinsula; Kirby, 1979; 268 

Kirkwood et al., 2016), the majority of the 14 elements for which ordinary kriging provided better 269 

predictions were minor or trace elements, and poorly predicted by either method. This is an 270 

encouraging result for the validity of geochemical maps produced by quantile regression forests 271 

using this data in south west England. 272 
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Cross-validated R2 values for the quantile regression forest models vary greatly across the range of 273 

elements from 0.79 (Al) to 0 (Te). There appears to be a general inverse relationship between 274 

prediction accuracy and element mobility: elements which are known to be relatively immobile (and 275 

thus reflect the underlying lithology), such as Al, La and Ce are predicted with little error, while 276 

hydrothermally mobile elements such as W,Bi,Te,Ag and As are predicted with higher error. This 277 

discrepancy suggests a relative lack of explanation of hydrothermal processes within the suite of 278 

auxiliary variables. However, the Moran’s I values for the residuals of all quantile regression forest 279 

models (Table 2) only deviate from zero by 0.011 in the worst case (Ge). This suggests that the 280 

auxiliary variables used have successfully captured the spatial dependence of all target variables at 281 

the scale of the predictor grid. Any residual variation in element concentrations which has not been 282 

captured by the models can therefore be attributed to processes which essentially appear to be 283 

spatially random at the scale of the geochemical survey, but which additional high resolution 284 

auxiliary variables may be capable of explaining. This is supported by inspection of variograms of the 285 

residuals of each element (not shown), which appeared to exhibit pure nugget effect. 286 

The limited ability of the auxiliary variables used here to explain the distributions of the more mobile 287 

elements could perhaps be improved by the inclusion of additional variables which provide more 288 

information on spatial context. For example, a measure such as ‘distance to nearest fault’ could 289 

provide valuable context in relation to fluid flow pathways. However, a strength of the modelling 290 

approach in its current state is the consistency, transparency, and fully quantitative nature of the 291 

auxiliary variable datasets; each collected by sensing equipment, thus avoiding the potential 292 

inconsistencies of observations made by multiple geologists in the field. Currently any ‘distance to 293 

nearest fault’ or similar variables would need to be derived from traditional geological maps and 294 

consistency would suffer. However, with sufficient spatial resolution there is no reason why 295 

structural features such as faults would not be recognisable within the data. To make the best use of 296 

such structural information it would become beneficial to use an approach which is capable of 297 

learning higher order context (learning textures and spatial patterns, rather than just point 298 
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properties), perhaps based on artificial neural networks. Such models could potentially learn 299 

processes of soil erosion and accumulation (and hydrothermal mobilisation) from spatial context 300 

without explicitly being provided with contextual derivatives as input variables. However, such deep 301 

learning would increase the effective degrees of freedom within each model, and would require 302 

more training data (perhaps more than would ever be financially viable) in order to produce reliable 303 

results. The combination of quantile regression forests and the auxiliary variables used in this study 304 

therefore represent a promising first step forward given the currently available data and the 305 

requirement for transparent and interpretable models.        306 

Plots of predicted concentrations against measured concentrations from the 10-fold cross validation 307 

of the quantile regression forests allow for more detailed visualisation of model quality. The 308 

examples of La and Sn (Fig. 3), chosen as they provide insight into the models of both immobile (La) 309 

and mobile (Sn) elements, show how the prediction interval (2.5th to 97.5th forest quantiles) is 310 

unique for each prediction. The cross validation has shown these prediction intervals to be a 311 

remarkably accurate (if slightly conservative) probabilistic estimate for all elements (see Table. 2). 312 

This is very useful; even for elements with relatively low prediction accuracies the prediction 313 

intervals still provide reasonable upper and lower limits on predictions, which could be used to drive 314 

further geochemical sampling of areas that are of interest as a result of their probable geochemical 315 

properties. 316 
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317 
Fig. 3. Quantile regression forest predicted concentration vs measured concentration scatter plots for La and Sn. For each 318 

quantile regression forest prediction the 2.5
th

 percentile is shown in blue and the 97.5
th

 percentile shown in red; these are 319 

percentiles of the distribution of the outputs of the individual decision trees in the forest. The range between the 2.5
th

 and 320 

97.5
th

 percentiles forms the 95% prediction interval; a measure of the uncertainty associated with each prediction. 321 

A comparison of the fit of the predicted values between La and Sn reveals how the fit is deteriorated 322 

for the more mobile, highly-skewed, elements; prediction accuracy (and certainty) decreases in the 323 

long tail of the data. This is not explicitly due to the data having a skewed distribution, as random 324 

forest techniques are scale and transformation invariant. Rather, it is the inevitable result of having 325 

fewer data points on which to base the learning of the most ‘extreme’ situations within the context 326 

of the auxiliary variables. In this case, these situations are likely to represent relatively rare spikes of 327 

localised mineralisation. A geochemical sampling strategy designed around the auxiliary variable 328 

feature-space rather than the geographic space would take more samples from the locations of 329 

these ‘extreme’ situations and should improve the learning of the distributions of mobile elements 330 

(or any highly skewed target variable).  331 
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Table 2  
Cross-validated measures of quantile regression forest model quality. 

 

  Target 
variable 

Cross-
validated 

R
2
 

RMSE 
(mg/kg) 

Range-
normalised 

RMSE 

Moran's 
I of 

residuals 

Samples 
in 95% 

prediction 
interval 

(%) 
Ag 0.00 0.24 0.27 0.000 96.3 

Al2O3 0.79 21552 0.10 -0.002 98.2 

As 0.12 87.12 0.25 -0.006 97.7 

Ba 0.76 52.57 0.13 0.001 96.1 

Bi 0.01 4.46 0.11 -0.001 96.8 

Br 0.62 26.58 0.10 0.001 96.7 

CaO 0.01 14932 0.08 -0.003 97.5 

Cd 0.20 0.28 0.24 -0.005 98.4 

Ce 0.73 8.85 0.12 0.000 96 

Co 0.50 7.15 0.14 -0.006 96.5 

Cr 0.41 86.93 0.15 0.001 97.2 

Cs 0.17 15.87 0.23 -0.008 96.7 

Cu 0.24 34.54 0.22 -0.007 97.7 

Fe2O3 0.70 12962 0.14 -0.001 96.7 

Ga 0.67 3.57 0.12 -0.003 97.9 

Ge 0.19 0.49 0.21 0.011 98.1 

Hf 0.27 1.46 0.17 -0.008 97.7 

I 0.13 7.93 0.18 -0.002 97.4 

K2O 0.70 3771 0.11 -0.004 96 

La 0.70 5.38 0.12 -0.004 96.5 

LOI 0.72 71562 0.08 -0.006 97 

MgO 0.53 3610 0.13 -0.006 97.9 

MnO 0.25 1233 0.19 0.000 96.3 

Mo 0.14 0.92 0.19 -0.004 97 

Na2O 0.39 2082 0.17 0.001 98.6 

Nb 0.28 4.22 0.17 -0.004 97.9 

Nd 0.56 6.60 0.17 -0.005 96.1 

Ni 0.46 32.67 0.13 -0.001 97.5 

P2O5 0.28 1091 0.21 0.011 98.2 

Pb 0.14 41.74 0.24 0.003 98.1 

pH 0.48 0.65 0.18 -0.011 97.4 

R 0.76 79204 0.09 -0.005 96 

Rb 0.67 42.57 0.12 -0.002 96 

Sb 0.10 4.86 0.13 0.003 96.3 

Sc 0.69 2.85 0.15 -0.002 97.4 

Se 0.34 0.49 0.16 0.001 96.8 

SiO2 0.61 71748 0.10 -0.005 97.5 

Sm 0.12 1.82 0.23 -0.005 98.8 

Sn 0.38 77.97 0.26 -0.007 97.2 

Sr 0.05 73.40 0.09 -0.002 98.1 

Ta 0.23 1.19 0.16 -0.001 97 

Te 0.00 0.07 0.32 0.001 98.2 

Th 0.65 1.69 0.09 0.002 96.7 

TiO2 0.49 2153 0.14 -0.005 95.4 

Tl 0.44 0.37 0.17 0.002 95.6 

U 0.22 2.49 0.13 0.000 96 

V 0.68 27.58 0.15 -0.005 97 

W 0.05 19.25 0.23 0.001 96.7 

Y 0.47 5.26 0.18 -0.001 97.2 

Zn 0.32 63.29 0.24 -0.001 97.9 

ZrO2 0.37 68.71 0.14 -0.010 98.1 
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4.2 Geochemical maps332 

333 
Fig. 4. Quantile regression forest predicted concentration maps for La and Sn in shallow soils.  334 
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335 
Fig. 5. Quantile regression forest prediction interval maps for La and Sn in shallow soils. 336 



19 
 

337 
Fig. 6. Ordinary kriging predicted concentration maps for La and Sn in shallow soils, for comparison.338 
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 339 
Fig. 7. Quantile regression forest residuals for La and Sn in shallow soils, interpolated using inverse distance weighting.  340 
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The geochemical maps produced using the quantile regression forest method have a spatial 341 

resolution governed by that of the auxiliary variables. Accordingly, with a resolution of 100 m, these 342 

maps are capable of resolving the spatial distribution of the elements in much more detail than 343 

traditional inverse distance weighted or ordinary kriged interpolated geochemical maps, which are 344 

limited by the spatial density of the geochemical sampling. The increased detail is evident when 345 

comparing concentration maps produced by quantile regression forests (Fig. 4) and ordinary kriging 346 

(Fig. 6). In addition, all quantile regression forest concentration maps are accompanied by 347 

uncertainty maps (Fig. 5) in the form of mapped prediction intervals – 95% in the case of this study, 348 

but it is possible to map any chosen quantile or interval for each of the quantile regression forest 349 

predictions. The quantile regression forest model residual maps (Fig. 7) display the lack of spatial 350 

autocorrelation within the residuals in agreement with the Moran’s I results (Table 2). Inverse 351 

distance weighted interpolation, rather than kriging, was used to visualise the residuals as their 352 

variograms exhibited pure nugget, and kriging would therefore have produced maps of flat zero 353 

values. This reinforces the assertion that the quantile regression forest models are accounting for 354 

the spatial autocorrelation of the element concentrations at the scale of the auxiliary variable grid. 355 

The quantile regression forest maps for both example elements – La and Sn (Fig. 4) provide insight 356 

into the geochemistry of the region at a level of detail never before seen. 357 

A traditional geochemical map interpretation would involve qualitative comparison of trends seen in 358 

the map with trends seen in other datasets. For example, geochemical maps might be compared 359 

with geological maps to try to understand the relationships between bedrock geology and surface 360 

geochemistry. The details of south west England’s geology are beyond the scope of this paper, but it 361 

is well summarised by Shail and Leveridge (2009). A traditional interpretation of the quantile 362 

regression forest La map (Fig. 4) might conclude that the concentration of La in soil is strongly 363 

constrained by the underlying lithology, a relationship which the high resolution quantile regression 364 

forest map reveals in detail. Similarly, a traditional interpretation of the quantile regression forest Sn 365 

map (Fig. 6) might conclude that the concentration of Sn in soil is strongly controlled by 366 
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hydrothermal mineralisation and as a result has become concentrated in close proximity to the 367 

granite intrusions, though the relationship is not consistent for all intrusions. However, 368 

interpretation of the quantile regression forest models themselves, rather than just the geochemical 369 

maps, allows the quality of interpretations of the controls on element distributions to be improved 370 

over traditional methods. 371 

4.2 Controls on element distributions  372 

Considering the relative importance of each auxiliary variable to the prediction of each element is a 373 

simple means by which to gain insight into the controls on the distributions of each element. In 374 

addition to this, partial dependence plots provide insight into the nature of the relationship between 375 

each predictor and the target variable. The end user can use this information to devise better 376 

informed interpretations and hypotheses of the controls on an element’s distribution. 377 

For example, the quantile regression forest model for La concentration finds elevation to be the 378 

most important predictor, followed by regional bouguer anomaly, residual bouguer anomaly and 379 

radiometric thorium concentration (Fig. 8). The negative correlation between La and elevation at 380 

elevations above 200 m indicates a close associated with the granites – which are found outcropping 381 

as elevated plateaus at ≤200 m. Furthermore, the association between La and the presence of 382 

granites is also evident in the regional bouguer anomaly – whose signal is dominated by the granites 383 

– as a sharp transition at around -11 mGal, which represents the granite-country rock contact. As can 384 

be expected, the same granite contact is less imposing in the residual bouguer anomaly, which 385 

captures fine scale (shallow depth) gravitational variations that are more influenced by other less 386 

deep-rooted lithologies in the region. More subtle lithological information in the La map appear to 387 

be revealed by the radiometrics data, in particular the relationship between La and Th. The 388 

multimodal appearance of this and other partial relationships is an effect of interaction between 389 

predictor variables. For example the La–Th relationship appears to fork into two probable trends 390 

upwards of 10 ppm of Th. Colouring the points according to elevation reveals that it is an interaction 391 

of Th with elevation (and the inversely correlated regional bouguer anomaly) which separates the 392 
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upper trend from the lower trend. The lower trend, formed of samples of high elevation and low 393 

bouguer anomaly, represents the distinct relationship between La and Th over granites compared to 394 

the steeper and more linear relationship between La and Th on the surrounding rocks of lower 395 

elevation. 396 

In contrast, the quantile regression forest model for Sn concentration finds regional bouguer 397 

anomaly, total magnetic intensity (TMI), radiometrics uranium and elevation to be the most 398 

important predictors (Fig. 9). The negative correlation between Sn and regional bouguer anomaly 399 

can be taken as proxy for the relationship between Sn and granite; generally, Sn values are elevated 400 

on and around granite bodies. The gradual transition to the Sn plateau upwards of 10 mGal gives 401 

some indication of the mobility of Sn, whose concentrations at the regional scale form gradational 402 

rather than sharp boundaries. The relationship between Sn and TMI is complex, but there is a strong 403 

negative relationship between Sn concentration and TMI values between -50 and 0 nT, particularly 404 

over granite (low regional bouguer anomaly), although it does not extend beyond this range. 405 

Similarly, there is a strong positive relationship between Sn and radiometric U between 1.9 and 2.1 406 

ppm U which presumably represents the transition onto granite. The broadly negative relationship 407 

between Sn and elevation is heavily influenced by interactions. With the help of a regional bouguer 408 

anomaly based colour scheme it is apparent that this relationship is relatively weak over the 409 

granites, but indicates increased Sn concentrations at lower granite elevations. This may represent 410 

the fact that, on average, the interiors of the granites have lower Sn concentrations than the 411 

perimeters due to differentiation between granite phases, and the influence of hydrothermal 412 

processes. The off-granite relationship is stronger, and shows an almost exponential increase in Sn 413 

concentrations descending towards sea level from an elevation of about 100 m, above which the 414 

influence of elevation on Sn is fairly negligible. This may relate to Sn enrichment of floodplains as a 415 

result of sediment transport from mineralised areas. 416 

 417 
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4.3 A note on compositions, LOI and the unmeasured ‘remainder’, R.  418 

Despite not implementing compositional data analysis methods (Aitchison, 1986; Egozcue et al., 419 

2003; Pawlowsky-Glahn and Buccianti, 2011) to intrinsically ensure that modelled element 420 

concentrations sum to 100% at every prediction point (at the cost of computational expense and 421 

additional complexity to interpretations), we find that the sum of predicted concentrations of 422 

measured elements, and the unmeasured ‘remainder’ (R), fall very close to 100% in the vast majority 423 

of situations (Fig. 10). The 95% interval of summed predictions (predicted element concentrations 424 

plus predicted remainder concentration) spans from 96.0% to 105.4%. In addition, we find that R has 425 

a very close relationship with loss on ignition (LOI): their quadratic relationship could be explained 426 

by a discrepancy in calibration between the two measurement methods, but it appears that they are 427 

essentially two separate measures of the same thing (Fig. 11). The models of LOI and R achieved 428 

some of the highest prediction accuracies in the study according to the cross-validated R2 and 429 

normalised RMSE metrics (Table 2). 430 

 431 

 432 
Fig. 8. Variable importance plot and top eight most important partial dependence plots for La, with points 433 
coloured according to elevation (the most important predictor).  434 
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 435 
Fig. 9. Variable importance plot and top eight most important partial dependence plots for Sn, with points 436 
coloured according to regional bouguer anomaly (the most important predictor).  437 

 438 
Fig. 10. Sum of predicted element concentrations + R.                           439 
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 440 
Fig. 11. Relationship between LOI and R in training data. The equation describes a quadratic curve (red line) which fits the 441 
data with an R

2
 of 0.98. 442 

5. Conclusions 443 

The implementation of quantile regression forests to map regional soil geochemistry at high 444 

resolution (100 m) using only information from auxiliary variables has produced very encouraging 445 

results. The major, immobile, elements are modelled with sufficient accuracy to promote the 446 

development of fully quantitative geological mapping using remotely sensed data such as those used 447 

in this study. Immobile elements are modelled with a lesser degree of accuracy due to a combination 448 

of the relative under-sampling of their ‘extreme’ events (which could be improved with a change in 449 

sampling design to target anomalous locations in the context of the available auxiliary variables) and 450 

perhaps a lack of relevant information in existing auxiliary variables. Further developments to 451 

sampling design strategies, sensing technologies, and auxiliary variable derivatives (or the use of 452 

more advanced learners) should be capable of improving the modelling of mobile elements in the 453 

future. 454 

For now, these models are capable of making an interpretable and uncertainty-aware prediction of 455 

the geochemical properties of the soil at any point on the basis of magnetic, gravity, radiometric, 456 
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spectral and topographic information. The prediction process is similar to the decision making 457 

process which might be made by a human, but with the objectivity and accuracy of an optimally self-458 

training algorithm. Allowing the model to consider the spatial dependence of the target variables 459 

might gain improvements in some situations, but the Moran’s I results of the residuals suggest that 460 

the processes controlling the residuals appear to be operating randomly at the scale of the 461 

geochemical survey, and so it is the case that we currently do not have sufficient information to 462 

explain them. 463 

The maps produced by the quantile regression forests are more useful than their spatially 464 

interpolated equivalents, providing increased detail, accuracy, interpretability and uncertainty 465 

awareness. Accordingly, the use of machine learning methods in conjunction with geophysical, 466 

radiometric, spectral and topographic information seems very capable of bringing significant 467 

improvements to geological mapping, agriculture, environmental survey and mineral exploration 468 

practices, and all the policies that surround them. 469 
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