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Abstract This paper presents a new single-parameter local
search heuristic named step counting hill climbing algorithm
(SCHC). It is a very simple method in which the current cost
serves as an acceptance bound for a number of consecutive
steps. This is the only parameter in the method that should be
set up by the user. Furthermore, the counting of steps can be
organised in different ways; therefore, the proposed method
can generate a large number of variants and also extensions.
In this paper, we investigate the behaviour of the three basic
variants of SCHC on the university exam timetabling prob-
lem. Our experiments demonstrate that the proposed method
shares themain propertieswith the late acceptance hill climb-
ing method, namely its convergence time is proportional to
the value of its parameter and a non-linear rescaling of a
problemdoes not affect its search performance.However, our
new method has two additional advantages: a more flexible
acceptance condition and better overall performance. In this
study, we compare the new method with late acceptance hill
climbing, simulated annealing and great deluge algorithm.
The SCHC has shown the strongest performance on the most
of our benchmark problems used.
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1 Introduction

A single-parameter local search metaheuristic called late
acceptance hill climbing algorithm (LAHC) was proposed
by Burke and Bykov (2008). The main idea of LAHC is
to compare in each iteration a candidate solution with the
solution that has been chosen to be the current one several
iterations before and to accept the candidate if it is better.
The number of the backward iterations is the only LAHC
parameter referred to as “history length”. An extensive study
of LAHC was carried in (Burke and Bykov 2012) where
the salient properties of the method have been discussed.
First, its total search/convergence time was proportional to
the history length, which was essential for its practical use.
Also, it was found that despite apparent similarities with
other local search metaheuristics such as simulated anneal-
ing (SA) and great deluge algorithm (GDA), LAHC had the
underlying distinction, namely it did not require a guiding
mechanism like, for example, cooling schedule in SA. This
provided the method with effectiveness and reliability. It was
demonstrated that LAHC was able to work well in situa-
tions where the other two heuristics failed to produce good
results.

Although LAHC is a relatively new algorithm, its unique
characteristics attracted a particular attention of the research
community. A number of authors have published their own
studies on LAHC applied to different problems, such as
lock scheduling (Verstichel and Vanden Berghe 2009), liner
shipping fleet repositioning (Tierney 2013), balancing two-
sided assembly lines (Yuan et al. 2015), travelling purchaser
problem (Goerler et al. 2013), etc. In addition, severalmodifi-
cations of thismethodwere proposed, such as late acceptance
randomised descent algorithm (Abuhamdah 2010) andmulti-
objective late acceptance algorithm (Vancroonenburg and
Wauters 2013). A reheating mechanism was embedded in
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LAHC by Swan et al. (2013). Also, LAHC was hybridised
with other techniques (Abdullah and Alzaqebah 2014) and
was successfully employed in the recently developed hyper-
heuristic approach, see (Özcan et al. 2009) and (Jackson et al.
2013).

Besides its presence in the scientific literature, LAHC
appeared to be beneficial in the scientific competitions and
real-world applications. Thismethodwon the first place prize
in the International Optimisation Competition (http://www.
solveitsoftware.com/competition) in December 2011. Fur-
thermore, this method was employed in entry algorithms by
two research groups (J17 and S5) in ROADEF/EURO Chal-
lenge2012 (http://challenge.roadef.org/2012/en/). Theywon
fourth and eighth places respectfully in their categories.
LAHCwon thefirst place prize inVeRoLogSolverChallenge
2014 in June 2014 (http://verolog.deis.unibo.it/news-events/
general-news/verolog-solver-challenge-2014-final-results).
Also, LAHC is currently employed in at least two real-world
software systems: Rasta Converter project hosted by GitHub
Inc. (US) (https://github.com/ilmenit/RastaConverter) and
OptaPlanner, an open source project byRedHat (http://www.
optaplanner.org).

Motivated by the success of LAHC, the idea of single-
parameter and cooling schedule free local search method-
ology is developed further (Bykov and Petrovic 2013). We
propose a new metaheuristic, which keeps all the good char-
acteristics of LAHC but it is even simpler, more powerful
and offers some additional advantages. Themethod is named
step counting hill climbing algorithm (SCHC). In this study,
we present a comprehensive investigation into the properties
of this algorithm. The evaluation of SCHC is carried out on
the university exam timetabling problem. In the choice of the
problem domain, we followmany previous authors who con-
sider the exam timetabling to be a good benchmark in their
experiments. Over the years almost all metaheuristic meth-
ods were applied to the examination timetabling, such as SA
(Thompson and Dowsland 1996), tabu search (Di Gaspero
and Schaerf 2001), GDA (Burke et al. 2004), evolution-
ary methods (Erben 2001), multi-criteria methods (Petrovic
and Bykov 2003), fuzzy methods (Petrovic et al. 2005) and
grid computing (Gogos et al. 2010). In addition, the exam
timetabling was widely used in the evaluation of different
hybrid methods (Merlot et al. 2003; Abdullah andAlzaqebah
2014), as well as hyper-heuristics (Burke et al. 2007). The
initial study of the late acceptance hill climbing algorithm
was also done on the exam timetabling problems (Burke and
Bykov 2008). More information about the exam timetabling
studies can be found in a number of survey papers, includ-
ing Carter et al. (1996), Schaerf (1999), Burke and Petrovic
(2002) and Qu et al. (2009).

The exam timetabling is usually defined as aminimization
problem. Hence, to make the description of the algorithm
consistent with our experiments in the rest of our paper we

assume a lower value of the cost function the better quality
of a result

The paper is organised as follows: the description of
SCHC is given in the next section. In Sect. 3, we describe our
experimental environment including the benchmark datasets
and experimental software. The investigation into the prop-
erties of our method is presented in Sect. 4, while Sect. 5
is devoted to the performance of SCHC and its comparison
with other techniques. Finally, Sect. 6 presents the compar-
ison of the SCHC results with the published ones, followed
by some conclusions and discussion about the future work.

2 Step counting hill climbing algorithm

2.1 Description of the basic SCHC heuristic

The idea of the SCHC is to embed a counting mechanism
into the hill climbing (HC) algorithm in order to deliver a
new quality to the method. Similar to HC, our heuristic oper-
ates with a control parameter, which we refer to as a “cost
bound” (Bc). The cost bound denotes the best non-acceptable
value of the candidate cost function, i.e. at each iteration the
algorithm accepts any candidate solution with the cost lower
(better) than Bc and rejects the ones whose cost is higher
(worse) than Bc. The acceptance of the candidates with cost
equal to Bc depends on particular situation (see below). From
this point of view, in the greedy HC the cost bound is equal
to the cost of the best found solution, which can be changed
at any iteration. In contrast, the main idea of the SCHC is to
keep the given cost bound not just for one, but for a number
of consecutive iterations.

As other local search heuristics, SCHC starts from a ran-
dom initial solution and the value of Bc is equal to the initial
cost function. Then the algorithm starts counting the con-
secutive steps (nc) and when their number exceeds a given
counter limit (Lc) the cost bound is updated, i.e. we make it
equal to the new current cost while the counter nc is reset to 0.
After further Lc steps Bc is updated and nc is reset again and
this is repeated until a stopping condition is met. Throughout
the search, the algorithm accepts only candidates with the
cost less than the current cost bound, which means that with
each update the value of the cost bound becomes lower and
lower; this guarantees the search progresses towards the best
achievable solution.

The proposed algorithm has only one input parameter and
that is the value of the counter limit Lc, which should be
specified by the user. Apart from that no additional initiali-
sation is required in the method. Our preliminary tests have
shown that in order to guarantee the progress of the search,
SCHC has to accept candidate solutions with the cost only
better (not better or equal) than Bc. However, there is one
exception to this rule; it is worthy to accept the candidates
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with the cost equal to Bc when the current cost is also equal
to Bc, which happens after the update of the cost bound. This
is provided by a combination of the SCHC acceptance rule
with the greedy rule, i.e. a candidate is also accepted if it is
better or equal to the current cost. This enhancement of the
acceptance rule provides an extra effectiveness of the search,
especially at its final stagewhere it helps to avoid the effect of
“premature convergence”. Thus, at each iteration the SCHC
acceptance rule can be expressed by formula (1).

C
(
s∗) < Bc or C

(
s∗) ≤ C (s) (1)

In this formula, C(s) represents the current cost and C(s∗)
the candidate cost, where s and s* are the current and the
candidate solutions, respectively. The complete pseudocode
of the initial variant of the SCHC algorithm, which will be
called in the rest of this study as “SCHC-all” heuristic is
presented in Fig. 1.

2.2 Further variants of SCHC

Apart from the basic counting mechanism introduced in the
previous section there are many other ways to count the steps
during the search. This is a major source of flexibility in the
method. For example, we can make it dependent on the qual-
ity of candidate solutions. Among possible implementations
of this idea, in this study we focus our investigations on three
variants of SCHC, which:

1. Counts all moves (SCHC-all).
2. Counts only accepted moves (SCHC-acp).
3. Counts only improving moves (SCHC-imp).

As two additional SCHC heuristics, SCHC-acp and SCHC-
imp, are different from SCHC-all by their counting mech-
anisms only, we present the pseudocodes of just these
mechanisms. They are depicted in Figs. 2 and 3, which con-
tain only the parts different fromFig. 1, while themain search

Fig. 1 The pseudocode of SCHC-all heuristic

Fig. 2 The counting/acceptance mechanism of the SCHC-acp heuris-
tic

Fig. 3 The counting/acceptance mechanism of SCHC-imp heuristic

loop written in the first eight lines of Fig. 1 is the same for
all variants.

Of course, the variety of potential counting mechanisms
is not limited to the ones discussed above. For example, it is
possible to develop an intermediate heuristic betweenSCHC-
all and SCHC-acp. This can be done when incrementing the
counter nc by 1 at all moves and by 2 at accepted moves.
Also, we can count unaccepted moves or accepted worsen-
ing ones either alone or in any combination. Furthermore,
if overlooking the single-parameter conception, we can pro-
pose SCHC allowing Lc to vary. For example, we can select
two different values of the counter limit and interchange them
during the search in order to adapt it to some particular search
conditions, or we can increase Lc as the run progresses, for
example, each time the search goes idle. Along with that,
any alternative rule for the variation of Lc could be defined.
Interestingly, the SCHC-acp with fixed Lc can be regarded
as SCHC-all with variable Lc and vice versa. Finally, the
whole counting mechanism can be completely transformed
at any point of the search. Thus, the simplicity of the dynamic
adjustment of the search process suggests that SCHC can
serve as a goodplatform for experimentswith different search
patterns, for investigating the search behaviour and for devel-
oping self-adaptive heuristics.

3 The experimental environment

3.1 Exam timetabling problem

The university exam timetabling problem, on which we eval-
uate the proposed SCHC algorithm, is a difficult NP-hard
problem. It represents mathematically a real-world task of
assigning university exams to timeslots and usually rooms.
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Generally, these problems contain a high variety of hard and
soft constraints. Thehard constraints shouldnot beviolated in
a feasible solution, while the violations of the soft constraints
should beminimised.The remainingnumber of the violations
of soft constraints in a solution denotes its quality, measured
by a cost function. The most common hard constraint is that
no students should sit two exams in the same time. Other
hard constraints reflect the limitations on room capacities,
the utilisation of specific equipment, pre-defined sequences
of exams, etc. The soft constraints represent students, exam-
iners and administration preferences, such as time intervals
between student’s exams, additional time for marking large
exams, etc.

Although the exam timetabling requirements are different
in different institutions, in this study we use the specification
given in the examination track of the Second International
Timetabling Competition ITC2007 (http://www.cs.qub.ac.
uk/itc2007/). This site contains a collection of 12 real-world
exam timetabling instances, which we use as benchmarks
in our experiments with SCHC. Also, this site provides an
online validator of the results and a complete description
of the hard and soft constraints, which is also published in
(McCollum et al. 2010). The characteristics of the instances
are presented in Table 2 in Sect. 4.3, in order to facilitate a
study into relation between the problem characteristics and
the results of our experiments.

3.2 Application details

In this study we adopted software, which was used in experi-
ments with LAHC and described in (Burke andBykov 2012).
It is developed in Delphi 2007 and run on PC Intel Core i7-
3820 3.6 GHz, 32 GB RAM under OS Windows 7 64 bit.

The search algorithm starts from the generation of a feasi-
ble initial solution. The exams are assigned to timeslots using
the Saturation Degree graph colouring heuristic. At the same
time the exams are randomly assigned to rooms. If the solu-
tion is not feasible, then some exams are rescheduled and the
initialization procedure starts again. After the generation of
the initial solution the heuristic search is run where at each
iteration a candidate solution is produced using four types of
moves:

• Room move a random exam is moved into a different,
randomly chosen room within the same timeslot.

• Shift move a random exam is moved into different, ran-
domly chosen timeslot and room. If this move generates
an infeasible solution, the algorithm tries to restore the
feasibility using the Kempe Chain procedure, which was
studied for Graph Colouring Problem by Johnson et al.
(1991).

• Swap move the algorithm selects two random exams and
swaps their timeslots. The rooms again are chosen ran-

domly, while the Kempe Chains are used in case of
infeasibility.

• Slot move two randomly chosen timeslots are inter-
changed including all their exams and rooms.

These four types ofmoves are selected randomly in equal pro-
portions. If the move produces an infeasible candidate, it is
just rejected and a new iteration is started. The iteration loop
is terminated when no further improvement is possible, i.e. at
the convergence state. This state is detected when the number
of non-improving (idle) moves since the last improvement
reaches at least 1% of the total number of moves. Also the
number of idle moves should be greater than 100 in order to
prevent the termination at the beginning. The reason of the
use of this stopping condition is discussed in the next section.

4 The investigation into the properties of SCHC

4.1 Cost drop diagrams with different Lc

The study of the properties of SCHC starts from the analy-
sis of the algorithmic response to the variation of its single
parameter. Hence, in our first experiment, we investigate the
algorithm’s cost drop diagrams. To produce these diagrams
we run each variant of SCHC three times with different val-
ues of Lc = 2000, 10000 and 20000. Each second the current
cost was depicted as a point on a plot where the horizontal
axis represents the current time and the vertical axis repre-
sents the current cost. An example of such a diagram for
Exam_1 problem produced by SCHC-all heuristic is given
in Fig. 4. The diagrams produced for other instances by all
three studied SCHC heuristics are similar to the presented
one. The difference between these diagrams is just in their
time and cost scales and that will be discussed in detail in the
next section.

The diagram in this figure demonstrates two major prop-
erties of SCHC:

Fig. 4 The cost drop diagramof SCHC-all heuristic applied toExam_1
problem with different values of Lc
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Table 1 The average results of
SCHC with Lc = 0 and
Lc = 200

Instance Lc = 0 (HC) Lc = 200

SCHC-all SCHC-acp SCHC-imp

Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s)

Exam_1 6664 0.655 5961 1.27 4866 9.2 4777 11.1

Exam_2 972 0.218 794 0.53 700 1.2 684 1.33

Exam_3 12967 1.65 11082 3.18 10006 7.78 9867 8.34

Exam_4 18183 0.494 16585 0.97 14673 14.9 14276 20.4

Exam_5 4007 0.392 3444 0.99 3321 1.54 3220 2.0

Exam_6 27456 0.116 26814 0.242 26457 0.75 26434 0.84

Exam_7 6501 0.775 5811 1.69 5057 6.04 5012 6.6

Exam_8 10115 0.414 9267 0.826 8086 7.08 7999 7.52

Exam_9 1392 0.054 1284 0.097 1179 0.24 1176 0.26

Exam_10 14070 0.1 13590 0.185 13415 0.344 13384 0.377

Exam_11 37253 2.44 32305 5.06 29431 13.1 28956 14.0

Exam_12 5707 0.024 5559 0.038 5436 0.074 5429 0.08

1. This algorithm converges, i.e. the heuristic search proce-
dure lowers the cost until a certain value, after which it
does not provide any further improvement. This property
is the same as for other local search methods includ-
ing HC, SA, LAHC, etc. The presence of this property
suggests the use of a common termination condition for
such a technique; the search should be stopped exactly at
the moment of convergence (the earlier or later termina-
tion reduces the effectiveness of the method (see Burke
andBykov (2012)). The identification of the convergence
state can be done by a well-established procedure avail-
able in the literature described in the previous section, i.e.
when the number of idle moves exceeds a given limit.

2. The variation of Lc affects the convergence time. The
larger the counter limit the slower the current cost drops
and it takes longer time to reach the convergence state.
Having a search that is automatically terminated at the
point of convergence, a user can regulate the total search
time by varying Lc. This property has also similarities
with other methods. For example, in LAHC the history
length also affects the convergence time while in SA the
search time can be regulated by the user-defined cooling
schedule.

4.2 The comparison of SCHC with hill climbing

An analysis of the second property of SCHC suggests that its
search time can be prolonged to any extent with the increase
of the counter limit, i.e. the value of Lc has no theoretical
upper bound. However, it has the lower bound, which is 0. In
this case, the counter is updated at each iteration and all three
proposed variants of the method degenerate into greedy Hill
Climbing. The same effect will be achieved when assigning

any negative value to Lc. This is the fastest variant of SCHC,
so the increase of the counter limit does make sense only if
this allows to achieve better final results than HC.

To demonstrate that, in the next series of experiments we
have applied the discussed above termination rule and run
SCHC with Lc = 0, which is the equivalent to HC, and all
three variants with Lc = 200. Each variant was run on each
benchmark instance 50 times. The average results and run
times are presented in Table 1.

In this table all results produced by either variant of SCHC
with Lc = 200 are better than that of HC, although to a dif-
ferent extent. In SCHC-all the search time is approximately
twice longer than in HC, which causes a modest improve-
ment of the results. However, in SCHC-acp and SCHC-imp
the increase of the search time is relatively higher and, cor-
respondingly, the improvement of the results is even more
distinct.

4.3 The investigation into Lc-diagrams

In our next series of experiments, the time-related properties
of SCHC are investigated more deeply by analysing Lc-
time and Lc-cost diagrams. To construct these diagrams, we
run the three studied variants of SCHC on each benchmark
instance large number of times (over 1500) while randomly
varying Lc. At each run, the specified counter limit and the
resulting run time and cost were recorded. After completing
the calculations, the experimental data were aggregated in a
form of diagram. Figure 5 demonstrates the dependence of
the run time on Lc for Exam_1 dataset solved by SCHC-all
heuristic. Here each point represents the result of a single
run, and its position corresponds to the specified Lc (in the
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Fig. 5 The dependence of the run time on Lc for Exam_1 dataset with
SCHC-all heuristic

horizontal axis) and the resulting run time T (in the vertical
axis).

Although the points on this diagram are relatively scat-
tered, which is typical to any stochastic method, their general
distribution forms more or less a straight line. This suggests
that the convergence time is approximately proportional to
the value of the algorithmic parameter Lc. This property of
SCHC is similar to the LAHC one studied by Burke and
Bykov (2012), where the authors mentioned its high practi-
cal importance, i.e. when the angle coefficient (ratio T/Lc)
of the distribution is known, the complete search procedure
can be fitted into a given available time. The importance of
the pre-definition of the search timewas underlined in (Burke
et al. 2004) especially for long-time searches, which are prac-
ticed in pursuit for a higher quality of results.

Our further experiments reveal that the above property
is common for SCHC. Although Fig. 5 presents the linear
behaviour of SCHC-all variant applied to Exam_1 instance,
in all other diagrams for three variants of SCHC and 12
benchmark instances the points are also distributed linearly.
The diagrams differentiate only by the angles of the produced
distributions, i.e. the angle coefficients T/Lc are highly dif-
ferent for different instances and variants of SCHC.However,
our preliminary observations have revealed certain tenden-
cies in the values of these coefficients. In particular, the
highest values are typical for SCHC-imp, slightly lower for
SCHC-acp andmuch lower for SCHC-all heuristics. Consid-
ering a single variant of SCHC, a certain dependency of the
coefficients on the size of a dataset can be also noticed. The
general tendency is the following: the larger the instance, the
larger the angle coefficient. The coefficients together with
the main characteristic of our benchmark instances sorted by
the number of exams are shown in Table 2.

In this table, the proposed tendency of the dependence of
T/Lc on the instance size can be observed for the majority of
problems. However, there are a number of exceptions to this
rule. For example, the coefficients for Exam_2 instance are

much smaller than for the other problems of the same or even
lower size. Another anomaly is in Exam_4 problem. This
dataset has only one room, so the “room moves” described
in Sect. 3.2 are not applicable here. De facto, we are dealing
here with a different problem formulation. The oddity of this
problem is also seen in its coefficients. The coefficient for
SCHC-all fits into the above tendency, but coefficients for
both SCHC-acp and SCHC-imp are much higher than can
be expected for a problem of this size. In addition, Exam_3
and Exam_11 instances represent the same dataset where
Exam_11 is just a more constrained variant, i.e. it should be
scheduled into a less number of timeslots and rooms. Cor-
respondingly, we see the different values of T/Lc for these
problems in Table 2.

This tendency was also observed in LAHC by (Burke and
Bykov 2012), who proposed that some other factors, together
with the size of problems, could also affect the values of the
angle coefficients, such as constraints, conflict density, etc. If
assuming that the amount of these factors somehow defines
the hardness of a problem, then the angle coefficient might
reflect, to some extent, this “bulk” hardness. The investiga-
tion into the hardness of different problems represents an
important area of combinatorial optimisation studies. There
are a number of theoretical publications, where the authors
investigate the hardness based on the analysis of problem
characteristics, for example (Smith-Miles and Lopes 2012).
However, the idea proposed here suggests an alternative way,
i.e. to use a heuristic measure of the hardness of different
problems. This means that a heuristic algorithm can serve
not just for solving a problem, but also as a tool for measur-
ing its hardness.

To advocate the importance of the investigations into the
hardness of optimisation problems, we analyse Lc-cost dia-
grams of the datasets. These diagrams are plotted using the
previous experimental data, which were already used in the
diagram in Fig. 5, but now the diagrams show the dependence
of the final cost on the specified Lc. The example of such a
diagram for SCHC-all heuristic applied to Exam_1 problem
is shown in Fig. 6. Here, once again, the result of each run is
depicted as a point, whose horizontal coordinate represents
Lc and the vertical coordinate represents the final cost.

This diagram demonstrates a clear dependence of the final
cost on Lc and correspondingly on the total run time as the
time is linearly dependent on Lc, i.e. the larger the counter
limit (the longer the search)—the better the result. For exam-
ple, despite the scatter, any, even the worst one, result with
Lc = 50000 is guaranteed better than any of the results with
Lc = 5000. Obviously, this diagram confirms the opinion of
Johnson et al. (1989) for SA that “up to a certain point, it
seems to be better to perform one long run than to take the
best of a time-equivalent collection of shorter runs”.

However, an opinion exactly opposite to the Johnson’s
ones is present in the literature. Many authors consider to
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Table 2 The characteristics of
the ITC2007 instances and their
T/Lc coefficients

Instance Number
of exams

Number of
timeslots

Number
of rooms

Density Coefficient T/Lc
(×10−3

)

SCHC-all SCHC-acp SCHC-imp

Exam_12 78 12 50 0.18 0.105 0.23 0.28

Exam_9 169 25 3 0.078 0.26 0.99 1.12

Exam_10 214 32 48 0.05 0.47 1.17 1.35

Exam_6 242 16 8 0.062 0.64 3.4 3.8

Exam_4 273 21 1 0.15 1.72 56 73

Exam_8 598 80 8 0.046 3.1 36 42

Exam_1 607 54 7 0.5 4.2 59 65

Exam_2 870 40 49 0.012 1.94 4.8 5.5

Exam_3 934 36 48 0.026 8.7 29 31

Exam_11 934 26 40 0.026 12.8 47 53

Exam_5 1018 42 3 0.0087 3.5 7.1 7.6

Exam_7 1096 80 15 0.019 6.3 28 33

Fig. 6 The dependence of the final cost on Lc for Exam_1 problem
with SCHC-all heuristic

be more effective to produce a number of short runs while
employing various “multi-start” or “reheating” strategies and
then to pick up the best result. For example, Boese et al.
(1994) indicated that “several studies have shown greedy
multi-start superior to simulated annealing in terms of both
solution quality and run time”.

Having two so contrasting opinions from the trusted
sources we can assume that the origin of such a dilemma is
in the diversity of the studied problems. For example, in our
exam timetabling collection the shape of Lc-cost diagrams is
not the same for all benchmark datasets in contrast to the Lc-
time diagrams, which are quite similar. As an illustration,
Fig. 7 depicts the Lc-cost diagram for Exam_10 problem,
whose shape is quite different from Fig. 6.

Except for the very small values of Lc, this diagram does
not expose a sensible dependence of the final cost on the
value of the counter limit, i.e. the average and the best costs
are almost the same either with smaller Lc or with larger
Lc, although the latter causes a longer search time. In this

Fig. 7 The dependence of the final cost on Lc for Exam_10 problem
with SCHC-all heuristic

situation, a more effective strategy is to produce multiple
short runs and pick up the best result among them.

However, the idea of the selection of the best search strat-
egy by plotting the Lc-cost diagrams has no practical value.
First, this diagram can be obtained only after running the
algorithm a large number of times, which incurs huge com-
putational expenses (in our experiments it took around 4 days
of continuous runs for each diagram). Second, after all these
runs the problem is already solved and the best search strat-
egy is identified just post-factum.

In this study, we propose an idea of how to overcome
this handicap and to bring the above reasoning close to
the practice. Our hypothesis is that the research into the
problem hardness could help us to make the choice of
a suitable optimisation method with far less efforts. To
support this hypothesis, we have analysed the Lc-cost dia-
grams for all our instances. They are not presented in this
paper in order to avoid a cumbrousness but all of them
are available in the journal’s online supplement. The gen-
erated diagrams can be classified by their shapes into two
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groups. Diagrams, which follow the pattern shown in Fig. 6,
are characteristic to 6 out of 12 datasets: Exam_1, Exam_3,
Exam_5, Exam_7, Exam_8 and Exam_11. For the remaining
6 datasets: Exam_2, Exam_4, Exam_6, Exam_9, Exam_10
and Exam_12 the shapes are close to the one given in Fig. 7.
When comparing these two groups with Table 2, we can
observe quite a strong correlation between the shape of the
diagram and the value of T/Lc. The problems with the larger
values of T/Lc (harder ones) have more distinct dependence
of cost on Lc, i.e. the shapes are close to Fig. 6, while the
diagrams with the shape shown in Fig. 7 are more typical
to the problems with the smaller values of T/Lc, which are
presumably less hard ones. It seems that the revealed con-
nection between the shape of the Lc-cost diagram and the
T/Lc coefficient is stronger than the connection between the
shape of the diagram and the size of a problem.

Although this study presents experiments with 12
instances and three SCHC heuristics only, the results have
demonstrated that for at least these datasets we can already
skip the awkward diagram building stage and identify the
best search strategy based just on the value of T/Lc, which
is obtainable by a single short-time run, i.e. if this value is
relatively low, then amulti-start approach is preferred. Other-
wise, if this value is relatively high, a single long run will be
more effective. Of course, the justification of this hypothesis
and its practical implementation require much more exten-
sive study on a larger number of benchmark problems and
with other SCHC heuristics. However, our preliminary tests
with the travelling salesman and grid scheduling problems
have revealed the same algorithmic behaviour. Therefore,
we believe that this represents a very promising direction of
a future research.

4.4 Cost drop diagrams of different variants of SCHC

The question about the choice of the best search strategy is
not limited to the above example. The investigations in this
field are especially relevant to SCHC, which supposes a large
number of variants and extensions where it is necessary to
make a choice between them. In this situation, it is important
to estimate the difference in the search behaviour between
different heuristics. Hence, the following series of experi-
ments are designed to analyse search strategies employed by
our three variants of SCHC. Similar to the first experiment
we do that by plotting their cost drop diagrams. Moreover,
taking into consideration the T/Lc coefficients we can now
tune our SCHC heuristics in order to provide the same con-
vergence time for each of the variants. The value of Lc can be
calculated by dividing the required time by the T/Lc coeffi-
cient from Table 2. In our test, the three heuristics were run
with Exam_1 dataset for 100 s, hence the calculated values
of Lc were: SCHC-all: 23800, SCHC-acp: 1695 and SCHC-

Fig. 8 The cost drop diagrams of different SCHC heuristics with
Exam_1 instance

imp: 1538. The resulting cost drop diagrams are presented in
Fig. 8.

The analysis of these diagrams gives an idea about the
difference in search strategies between these heuristics.
SCHC-imp jumps quickly into the region of low-cost solu-
tions and then spends themost of the search time in this region
while slowly improving the quality of result. The SCHC-acp
heuristic does the same, but slightly smoother; it goes into
the region of low-cost solutions more slowly and spends less
time staying there. In contrast, the SCHC-all heuristic pays
much more attention to exploring the high-cost solutions. It
spends in that region about a half of the search time while
the time spent for the final improvement is much shorter.

The convergence time in these diagrams is the same
for each heuristic so the quality of a final result might be
dependent on how the particular search strategy fits into the
problem’s landscape. Our experiments presented in the next
section show that there is no general preference to any of the
heuristics. Their performance is highly problem-dependent
and different problems acquire different best performed
strategies. However, together with the shapes of the diagrams
some other internal properties of these variants could affect
their performance on different instances. This issue warrants
a further investigation.

5 A comparison of SCHC with other methods

The developed variants of SCHC were compared with SA,
GD and LAHC algorithms. Firstly, we test the performance
of these methods on original ITC2007 problems. Secondly,
we test the reliability of these methods using an artificially
created non-linear optimisation problem.

5.1 A performance test

In Sect. 4.3 we have demonstrated that the performance of
SCHC can be represented in the form of time-cost diagrams
depicted in Figs. 6 and 7. Such diagrams show that for some
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problems there could be an evident dependence of the quality
of results on the total search time. Moreover, the final results
produced by SCHC even in the same CPU time are scattered
within certain cost interval. Obviously a good comparison
method should take into consideration such a behaviour of
SCHC as well as the behaviour of the other methods.

To investigate that, we repeated the experiment described
in Sect. 4.3 with the methods selected for the comparison,
i.e. we run them many times (around 500) while randomly
varying their time-related parameters: cooling factor in SA,
decay rate in GDA and history length in LAHC. The random
variation of the parameters was organised in such a way,
that we got uniform time-cost diagrams similar to the ones
presented in Figs. 6 and 7. An interested reader can found
these diagrams for all benchmark datasets produced by SA
together with the ones for SCHC in the journal online supple-
ment. A visual comparison of these diagrams indicates that
for each dataset the diagram shapes of SA and SCHC are
quite similar, which implies the similar behaviour of these
methods. The same is also relevant to GDA and LAHC.
As an illustration, the time-cost diagrams produced by SA
for Exam_1 and Exam_10 problems are presented in Figs. 9
and 10. When comparing them with Figs. 6 and 7, respec-
tively, we can see that for the same instances the shapes of the
diagrams are very similar even being produced by different
methods.

Fig. 9 The time-cost diagram produced by SA for Exam_1 problem

Fig. 10 The time-cost diagram produced by SA for Exam_10 problem

When different algorithms show similar behaviour in
respect of computing time, the differences between them
should be evaluated to make conclusions about their perfor-
mance. To rely only on the visual comparison of noisy curves
is not satisfactory, so in order to get a more detailed infor-
mation we apply a “cut-off” approach proposed in (Burke
and Bykov 2012). To explain this method, we divided the
diagrams in Figs. 9 and 10 by vertical gridlines into equal
segments of 20 s length, which gives in total 10 segments.
When observing these segments separately, the distribution
of points within each of them gives an idea about the perfor-
mance of themethod being runwithin the corresponding time
boundaries. For example, the points in segment (160,180)
in Fig. 9 show that SA being run on Exam_1 problem for
160–180 s is able to achieve final cost values approximately
between 3850 and 4150, which is on average 4000. The cut-
off approach employs a usual evaluation of average costs but
takes into account the computing time. In this method, the
average performance of an algorithm is represented by a set
of average values calculated for all segments. This enables
the sets produced by different methods to be compared in a
table.

In our experiments, we have produced the cut-off sets for
SA, GDA, LAHC and the three studied variants of SCHC for
all our benchmark instances. To ensure the adequate perfor-
mance of SA, we use general suggestions from the literature
for its parameterization. We employ a geometric cooling
schedule while the initial temperature is set up in such a way
so that in the initial phase of the search the algorithm accepts
85% of non-improving moves. In contrast, GDA, LAHC and
SCHC do not require any special initialization procedure.
Table 3 presents the resulting cut-offs for Exam_1 dataset,
where the best results over six heuristics are highlighted in
bold.

This table demonstrates the clear superiority of two vari-
ants of SCHC (acp and imp) over the other methods on runs
longer than 20 s. On shorter runs LAHC performs better,
but both LAHC and SCHC-all slightly underperform on the
longer runs. Nevertheless, SA performs much inferior to
both LAHC and all variants of SCHC on the runs of any
length. Finally, GDA has the worst performance than any
other method.

We produced the same tables for all benchmark instances,
which show quite problem-dependent performance of dif-
ferent methods. They are not included in the paper, but are
available in the online supplement. To give an idea about this
performance, in Table 4, a compilation of the collection of
cut-offs for all datasets for the middle interval of 100–120 s
is presented.

In the given running time, the three variants of SCHChave
produced in total 8 over 12 best results, LAHC has got just 2
overall best results, but for 7 problems it performs better than
at least one variant of SCHC. The general performance of SA
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Table 3 The cut-offs for SA,
GDA, LAHC and SCHC (all,
acp, imp) for Exam_1 dataset

CPU time (s) SA GDA LAHC SCHC-all SCHC-acp SCHC-imp

0–20 4879 5224 4640 4646 4656 4711

20–40 4513 4804 4305 4330 4276 4286

40–60 4342 4593 4190 4150 4147 4129

60–80 4228 4496 4084 4061 4066 4053

80–100 4175 4439 4029 4029 4007 3985

100–120 4109 4358 3986 3978 3927 3952

120–140 4087 4335 3939 3924 3906 3900

140–160 4041 4300 3912 3890 3872 3863

160–180 3982 4251 3899 3869 3851 3859

180–200 3996 4213 3864 3852 3809 3819

Table 4 The cut-offs for SA,
LAHC and SCHC (all, acp, imp)
for other ITC2007 datasets

Instance SA GDA LAHC SCHC-all SCHC-acp SCHC-imp

Exam_2 392 436 405 404 401 405

Exam_3 8177 8750 7967 7945 7916 7987

Exam_4 12982 13496 12705 12746 13297 13291

Exam_5 2598 2903 2591 2581 2569 2575

Exam_6 25445 25566 25388 25455 25447 25465

Exam_7 4015 4334 3877 3905 3859 3855

Exam_8 7119 7688 6901 6899 6951 6916

Exam_9 958 999 958 951 953 944

Exam_10 13008 13081 12996 12992 12985 12995

Exam_11 25525 26926 24782 24535 24825 24791

Exam_12 5156 5216 5189 5179 5190 5195

is considerably weaker, namely on 8 problems its results are
worse than results of either LAHC or SCHC and only on two
instances SA performs the best. Once again, GDA has the
worst performance over six methods.

To further study the general tendencies in the performance
of the compared methods on different datasets, we present
another compilation of the cut-off results for all instances.
For each instance we count the number of segments over the
whole time interval where each method performs the best.
Table 5 presents such numbers for all 12 datasets, where the
largest numbers of the “winning” segments are highlighted
by bold.

The analysis of this table confirms a distinctive good per-
formance of SA on Exam_2 and Exam_12 problems. In
both cases it wins in 9 over 10 time segments. For other
10 problems, different variants of SCHC perform the best
across segments. For example, SCHC-all has a distinctive
performance on Exam_6, Exam_8 and Exam_11 problems,
SCHC-imp has a distinctive performance on Exam_9, while
SCHC-acp and SCHC-imp both have a good performance
on Exam_1, Exam_7 and Exam_10 problems. Finally, on
Exam_3 all three variants of SCHC have approximately the
same performance.

In our analysis, of a particular interest is the comparison of
the results given in Tables 4 and 5 with the values of T/Lc in
Table 2, which seems to reflect the problem hardness. First,
SCHCwins on all six relatively harder problems. Second, SA
shows a good performance just on datasets that are to some
extent uncommon. For example, Exam_12 is exceptionally
small problem; Exam_2 problem has disproportionally low
values of T/Lc (see Sect. 4.3). The oddity of Exam_4 prob-
lem was also discussed previously. It could happen that the
performance of SCHCwith the single-room problem is more
dependent on the shape of cost drop diagram (see Fig. 8) than
with other ones.

5.2 A reliability test

In their study of the LAHC algorithm, Burke and Bykov
(2012) concluded that the absence of a cooling schedule
made LAHC more reliable than the cooling schedule-based
local search methods. This was demonstrated by evaluat-
ing the performance of different algorithms on a specially
designed artificial problem whose cost function is non-
linearly rescaled. This approach is adopted for the evaluation
of theSCHCalgorithm. In this series of experiments,Exam_1
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Table 5 The numbers of
winning segments of SA, LAHC
and SCHC (all, acp, imp) for all
datasets

Instance SA GDA LAHC SCHC-all SCHC-acp SCHC-imp

Exam_1 – – 1 – 4 5

Exam_2 9 – – – 1 –

Exam_3 – – – 4 3 3

Exam_4 1 – 3 6 – –

Exam_5 – – – 1 7 3

Exam_6 – – 2 7 2 –

Exam_7 – – 1 – 6 4

Exam_8 – – 4 7 – –

Exam_9 – – – 1 1 8

Exam_10 – – – 1 5 4

Exam_11 – – 1 9 – –

Exam_12 9 – 1 – – –

dataset was used with transformation (2) applied to its cost
function. Thus, in the new problem, the cost function C res is
represented as a cubical polynomial of the original cost C .

C res = C3 − 48000×C2 + 770×106×C (2)

Expression (2) represents a monotonically increasing func-
tion because its first derivative is a quadratic polynomial
with a positive first coefficient and a negative discriminant,
and therefore, this derivative is always positive. Hence, all
original local and global optima are preserved in the new
problem, i.e. when solution A has a higher cost than solution
B in the original problem, it holds true in the new prob-
lem also. The new and the original problems are the same
from the point of view of dominance relations between solu-
tions, while the rescaling differentiates only the distances
between solutions (usually called as “delta costs”). Conse-
quently, rescaling expressed by (2) affects the performance
of algorithms which evaluate delta costs, such algorithms are
SA or GDA. However, it has no effect on algorithms which
employ the ranking of solutions such as HC or LAHC. With
the same initial randomization, the search paths of these algo-

rithms is the same for the original and the rescaled problems
and they will achieve the same final results. The proposed
SCHC is also based on the solution ranking and does not
evaluate delta costs (see pseudocodes in Figs. 1, 2, 3), there-
fore a monotonic rescaling of the cost function should not
affect the performance of the algorithm.

To verify empirically this proposition, we run the same
experiment as in Sect. 5.1 on the rescaled problem. Apart
from the new problem formulation, all other experimental
conditions remain the same as explained. Only the initial
temperature of SA was tuned again in order to comply with
the literature suggestion that there is 85% of non-improving
moves at the beginning. The results of this test are shown
in Table 6. To simplify an assessment of these results, we
present in this table their non-rescaled values.

The results confirm that the rescaling given by (2) con-
siderably deteriorates the performance of SA and to the
less extent GDA but does not affect any studied variant of
SCHC in the same way as LAHC. This example supports
a contention that SCHC is more reliable than SA. In this
experiment, we resort to a highly non-linear artificial prob-
lem specially designed for the purpose of enhancing the effect

Table 6 The cut-offs for SA,
GDA, LAHC and SCHC (all,
acp, imp) for Exam_1 dataset
with the rescaled cost function

CPU time (s) SA GDA LAHC SCHC-all SCHC-acp SCHC-imp

0–20 5487 5526 4636 4671 4657 4663

20–40 5227 5089 4307 4322 4277 4285

40–60 5091 4893 4152 4138 4116 4096

60–80 5013 4792 4073 4071 4029 4033

80–100 4977 4773 4003 4027 3958 3943

100–120 4929 4710 3953 3973 3922 3934

120–140 4907 4604 3921 3910 3885 3892

140–160 4892 4574 3891 3875 3862 3858

160–180 4852 4495 3854 3864 3828 3839

180–200 4845 4445 3828 3827 3794 3808
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Table 7 The comparison of our
best results with ITC2007 and
post-competition ones

Instance ITC2007
web best

Muller
2008

McCollum
2009

Gogos et al.
2010

SCHC-acp

Exam_1 4370 4356 4633 4128 3647

Exam_2 400 390 405 380 385

Exam_3 10049 9568 9064 7769 7487

Exam_4 18141 16591 15663 13103 11779

Exam_5 2988 2941 3402 2513 2447

Exam_6 26585 25775 25880 25330 25210

Exam_7 4213 4088 4037 3537 3563

Exam_8 7742 7565 7461 7087 6614

Exam_9 1030 – 1071 913 924

Exam_10 14778 – 14374 13053 12931

Exam_11 34129 – 29180 24369 23784

Exam_12 5264 – 5693 5095 5097

of the non-linearity on the search process. However, when the
non-linearity of a problem is not so distinct, the deterioration
of the SA performance might be less clear, although it is still
present. If we assume that the presence of a high number
of hard constraints, which exclude infeasible solutions from
the search space, somehow provides a non-linear effect, then
this could explain the underperformance of SA also on the
original problems.

6 Comparison with published results

To complete the evaluation of SCHC performance, we com-
pare its results with the actual best ITC2007 results and with
the results presented in pre-competition (Muller 2008) and
post-competition publications: McCollum et al. (2009) and
Gogos et al. (2010). In this series of experiments, we respect
the ITC2007 restrictions on the maximum run time and the
number of independent runs. The maximum run time was
calculated using the ITC2007 benchmarking application; for
our experimental PC it was 204 s. Also, the best result was
selected over 10 independent runs on each benchmark prob-
lem. Our best results together with the published ones are
presented in Table 7 where the best results are highlighted in
bold. All our best results are verified using the online valida-
tor provided by ITC2007 organisers.

In this comparison, we use SCHC-acp variant because
in our previous experiments it has shown the strongest per-
formance (see Table 4). To provide the convergence of the
algorithm exactly in the given time, the value of Lc was cal-
culated for each instance based on the values of T/Lc from
Table 2. In such a waywe employ some beforehand collected
information about the algorithmic behaviour on benchmark
instances and therefore we do not claim that this series of
experiments mimics our participation in the competition.
The most of the post-competition studies do not pursue that

goal either which is in line with the discussion byMcCollum
et al. (2009) that adherence to the competition rules in any
post-competition publication is rather artificial becausemany
additional factors should be taken into account. The results
of Gogos et al. (2010) can be considered as the best up to
date; however, the authors indicated that they were produced
“under no hardware or time limit”, i.e. without following
ITC2007 rules at all. Hence, in this comparison, we have an
advantageous position over the actual ITC2007 results, the
samepositionwithMuller (2008) andMcCollumet al. (2009)
but the position of Gogos et al. (2010) is more advantageous
than ours.

This table once again demonstrates the strong perfor-
mance of our proposed method. For eight benchmark
problems SCHC has achieved results better than the best
previously published ones. Although for four remaining
problems our results are inferior to Gogos et al. (2010), they
are still very competitive. It is interesting to observe that
Exam_2 and Exam_12 are among the instances on which the
method by Gogos et al. (2010) performed better, which com-
plies with the discussions provided in the previous sections.

7 Conclusions

In this study, we proposed a new local search algorithm:
SCHC and investigated its behaviour. The exam timetabling
problem was chosen as benchmark. Our experiments have
revealed that SCHC shares a number of properties with
LAHC:

• SCHC has a strong performance on the benchmark prob-
lems.

• SCHC operates with a single input parameter, counter
limit Lc, which affects the search/convergence time.
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• The search time is approximately proportional to Lc and
the coefficient of proportionality is usually larger for the
problems, which seemed to be harder.

• SCHC does not employ any type of cooling schedule.
• SCHC ismore reliable than cooling schedule basedmeth-
ods (e.g. SA), i.e. it works well on specific problems
where SA fails to produce good results.

However, SCHC has several additional distinct properties:

• The countingmechanism can be implemented in a variety
of ways. So, for each particular problem we can find the
most suitable variant of SCHC.

• The counting mechanism in SCHC is very flexible. Dur-
ing the search, the value of the counter limit can be
easily adjusted at any iteration to respond to the obtained
results. Moreover, the whole counting mechanism can
be changed throughout the search. Therefore, SCHC can
serve as a good platform for developing various self-
adaptive methods.

• SCHC is a very simple and transparent method, easy to
understand and implement. Hence, it has a high potential
in the education area. By studying SCHC as a first meta-
heuristic, the students could quicker get into theABC’s of
searchmethodologies. For this purpose,wehave included
SCHC into our “Multi-Heuristic Solver” software appli-
cation, which is available for download from http://www.
yuribykov.com/MHsolver/.

The main emphasis of this paper is on the investigation into
the behaviour of the proposed algorithm. Some observed
dependencies in this behaviour motivated the hypothesis that
in addition to the solving optimisation problems SCHC can
be also used as a tool for heuristic measuring their hardness.
Wehaveproposed that the research into thehardness of differ-
ent problemsmight help to identify an optimal search strategy
for a particular dataset. The results of our experiments pro-
vide some empirical support for our ideas. However, the
justification of these hypotheses requires further and much
wider investigations with different problems and variants of
SCHC. Apart from that, the research into the further prop-
erties of SCHC, its behaviour with different problems and
themodifications of this method (especially the self-adaptive
ones) as well, as its practical and educational applications is
also seen as a quite interesting subject of a future work.
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