Iodine binding to Humic Acid

Bowley H.E.^{1,2}, Young S.D.^{1,*}, Ander E.L.², Crout N.M.J.¹, Watts M.J.² & Bailey E.H.¹

¹ University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, Leics,

LE12 5RD UK.

² Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey,

Keyworth, Nottingham, NG12 5GG, UK.

*Corresponding Author

1 **1 Abstract**

2 The rate of reactions between humic acid (HA) and iodide (I) and iodate (IO₃) have been 3 investigated in suspensions spiked with ¹²⁹l at concentrations of 22, 44 and 88 µg L⁻¹ and stored at 4 10°C. Changes in the speciation of 129 I, 129 IO₃ and mixed (129 I+ 129 IO₃) spikes were monitored over 77 5 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In 6 suspensions spiked with 129 I 25% of the added I was transformed into organic iodine (Org- 129 I) 7 vithin 77 days and there was no evidence of 129 IO₃ formation. By contrast, rapid loss of 129 IO₃ and 8 increase in both 129 I and Org- 129 I was observed in 129 IO₃-spiked suspensions. However, the rate of 9 Org-¹²⁹I production was greater in mixed systems compared to 129 IO₃-spiked suspensions with the 10 same total 129 concentration, possibly indicating IO_3 —I redox coupling. Size exclusion 11 chromatography (SEC) demonstrated that Org- 129 was present in both high and low molecular 12 weight fractions of the HA although a slight preference to bond with the lower molecular weight 13 fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the 14 native 127 pool. Iodine transformations were modelled using first order rate equations and fitted 15 rate coefficients determined. However, extrapolation of the model to 250 days indicated that a 16 pseudo-steady state would be attained after \sim 200 days but that the proportion of 129 incorporated 17 into HA was less than that of 127 I indicating the presence of a recalcitrant pool of 127 I that was 18 unavailable for isotopic mixing.

19 Keywords: Humic acid; iodine; kinetics; speciation; iodine-129; soil.

20 **2 Introduction**

21 Iodine is an essential micro-nutrient for all mammals, with a recommended daily dietary intake of

 $-$ 100-150 μg d⁻¹ for humans (Johnson, 2003). Iodine deficiency diseases (IDDs) are a global health 23 problem, estimated to affect up to one third of the world's population (WHO, 2004). They are a significant social and economic stress on developing countries and an area of concern for developed countries (WHO 2008). Mechanisms that control the transfer of iodine from the terrestrial 26 environment to the food chain are a poorly understood component of global iodine cycles (Johnson 2003a).

28 Soil iodine concentrations in the UK are typically within the range 0.5 – 100 mg kg⁻¹ (Whitehead, 1984, Johnson, 2003b). Seawater is considered to be the largest source of iodine to the terrestrial biosphere (Muramatsu and Wedepohl, 1998, Fuge and Johnson, 1986) therefore higher soil concentrations tend to occur in coastal areas. High soil iodine concentrations are also often associated with high organic matter content, with humus the primary reservoir of soil iodine (Dai et al., 2009, Smyth and Johnson, 2011, Xu et al., 2011b). In general, a larger soil iodine concentration generally results in greater iodine uptake by plants (Weng et al., 2008, Dai et al., 2006), however iodine associated with organic matter appears to be relatively unavailable for plant uptake (Keppler et al., 2003, Xu et al., 2011b, Xu et al., 2012).

 Humic acid (HA) is the colloidal fraction of humus, containing both aliphatic and aromatic moieties, depending on the degree of humification and the original vegetation source of the organic matter. Its large surface area and significant presence in soil organic matter mean that it is highly influential in determining soil iodine dynamics (Xu et al., 2011b, Yamada et al., 2002, Francois, 1987, Hansen et al., 2011, Allard, 2006). Although the composition of HA varies between soils, the functional groups 42 present are similar and therefore understanding iodine interactions with HA contributes significantly to understanding its dynamics in soil (Schlegel et al., 2006, Warner et al., 2000, Saunders et al., 2012). A few authors have investigated reactions between HA and iodine (e.g. Christiansen and Carlsen, 1991, Reiller et al., 2006, Choung et al., 2013) but the majority of studies involve other reaction components, often in complex media such as aerosols; the rate of reaction between I and HA has generally not been explicitly considered. Iodination of HA is thought to occur mainly via 48 reduction of IO₃ to produce reactive intermediate species, such as I₂ or HOI, followed by electrophilic substitution reactions with electron donor groups on the HA (Francois 1987). Whitehead (1974) identified weakly acidic phenolic and amino acid groups as the most likely reaction sites. Christiansen and Carlsen (1991) concluded that HA reacted with a transient iodine 52 species resulting from reaction between I, peroxidase enzymes and hydrogen peroxide over 20 minutes, although they were unable to determine whether the transient species was an enzyme-54 iodine complex or HOI/I₂ produced by action of the peroxidase on Γ . They suggested three possible

 types of sites in the HA were available for reaction: primary sites where I was weakly bonded, secondary sites susceptible to nucleophilic iodide-iodide substitution and tertiary electrophilic sites. They also observed that iodine appeared to be uniformly distributed across all molecular size fractions. Schlegel et al. (2006) used Extended X-ray Absorption Fine Structure (EXAFS) to investigate naturally iodinated marine-derived humic substances with 10% iodine by weight and concluded that iodine was covalently bonded, primarily to aromatic rings, but probably present as more than one type of organic species. Preferential bonding of iodine to polycyclic aromatic moities in black carbon was also demonstrated by Choung et al. (2013).

The objectives of this work were to (i) measure and model the dynamics of the reaction between IO₃ 64 and I⁻ and HA (ii) establish whether HA contains a recalcitrant (unreactive) pool of iodine and (iii) investigate whether iodine exhibits preferential association with high or low molecular weight moieties in HA. This directly addresses our currently poor understanding of the interaction of iodine with soil organic matter.

3 Materials and methods

3.1 Preparation and characterisation of humic acid solutions

70 Humic acid (HA) was extracted from a coniferous plantation soil, Leicestershire, UK (52 $^{\circ}$ 42' N, 1 $^{\circ}$ 14' W; 195 m) by shaking for twelve hours with 0.1 M NaOH, followed by centrifugation (10,000 g, 15 min) and acidification to pH 2 of the supernatant, using concentrated HCl. Humic and fulvic fractions were separated by centrifugation and the HA was purified using dialysis against 1 %v/v HCl and HF then deionised water; the resultant HA was then freeze dried and finely ground (Marshall et al., 1995). A portion of dried, ground HA was dissolved in 0.016 M NaOH and adjusted to pH 7.0 76 using NaOH to give a final concentration of 7.18 mg HA mL⁻¹. A neutral pH value was chosen to be 77 close to typical arable soil conditions and avoid volatilization of I₂. Dissolved organic carbon in the HA solution was determined using a Shimadzu TOC-VCPH analyser. Each sample was acidified to pH 2-3 79 using HCl to remove inorganic carbon, before the remaining (organic) carbon was detected as $CO₂$ by non-dispersive infrared detection after heating the sample to 720 °C with a platinum-coated alumina 81 catalyst. Samples were quantified against standards of 2.125 g L^{-1} potassium hydrogen phthalate (C 82 concentration = 1000 mg L⁻¹), diluted to appropriate concentrations with Milli-Q water (18.2 M Ω cm). Total iodine concentration in the HA suspension was measured by ICP-MS (Thermo-Fisher S4 Scientific X-Series["]) using internal detector cross-calibration with Rh and Re (10 μ g L⁻¹) as internal 85 standards. Stock standards for were prepared at iodine concentrations of 1000 mg L⁻¹ from oven-dried KI and KIO3, and stored at 4 °C in 1 % tetra methyl ammonium hydroxide (TMAH).

87 Iodine-129 was obtained as a solution of sodium iodide (129 I) from the American National Institute of Standards (NIST, Gaithersburg, Maryland, USA; CRM 4949C, 0.004 mol L⁻¹ Na¹²⁹l, 3451 Bq mL⁻¹). 89 Iodate-129 (129 IO₃) was prepared by oxidation of 129 I with sodium chlorite using a method adapted 90 from Yntema and Fleming (1939). Successful oxidation to IO_3 was confirmed by ICP-MS with in-line 91 chromatographic separation using HPLC (Dionex, ICS-3000) operated in isocratic mode with an anion 92 exchange column (Hamilton PRP-X100; 250 x 4.6 mm, 5 μ m particle size). The mobile phase (1.3 mL 93 min⁻¹) was 60 mmol L⁻¹ NH₄NO₃, 1 x 10⁻⁵ mmol L⁻¹ Na₂-EDTA, 2% methanol; pH was adjusted to 9.5 94 with TMAH.

95 Triplicate aliquots of HA solution (pH 7) were spiked with 129 I and/or 129 IO₃ on 8 occasions to give 96 incubation times of 26, 79, 155, 328, 596, 992, 1404 and 1855 hr. Samples were stored in the dark 97 at 10 °C, the average annual soil temperature measured at Armagh Observatory, Northern Ireland 98 (Garcia-Suarez and Butler, 2006). Final concentrations of spiked iodine were 22.1 , 44.1 and 99 88.2 µg L⁻¹ (Table 1). The CRM 4949C contained ¹²⁷l equivalent to 12 % of the ¹²⁹l concentration; this 100 was accounted for as described in Electronic Annex A so that, for simplicity, all iodine added in the 101 spike $(1^{29}I + 1^{27}I)$ is referred to as $1^{29}I$ and native iodine is described as $1^{27}I$.

102 **3.2 Iodine speciation**

103 Iodine species were separated using HPLC (Dionex, ICS-3000), with a Superose 12 10/300 GL size 104 exclusion chromatography (SEC) column (GE Healthcare), linked to ICP-MS. A sample injection 105 volume of 25 µl and isocratic elution with 0.1 M Tris (Tris(hydroxymethyl)aminomethane) adjusted 106 to pH 8.8 using 50 % Trace Analysis Grade (TAG) HNO₃ at a flowrate of 1 mL min⁻¹ was used. The 107 HPLC was controlled using Chromeleon software (Dionex, version 6.80SR12) and sample processing 108 was undertaken using Plasmalab software. Working standards of 127 I and 127 IO₃, at iodine 109 concentrations of $0 - 100 \mu g L^1$, were used. Species-specific quantification was carried out with 110 standards of 127 I, 127 IO₃, 129 I and 129 IO₃ prepared in Milli-Q water and mean, isotope-specific, 111 sensitivity values (signal (integrated CPS) per ppb) calculated from iodide and iodate standards were 112 used to quantify HA-bonded iodine (HA-I); drift correction was applied by analysis of repeated standards through the experimental run. Limits of detection were 0.047 μ g L⁻¹ for ¹²⁷l and 0.014 μ g L⁻ 113 114 ¹ for ¹²⁹l. Humic acid controls, spiked with Milli-Q water, were analysed alongside ¹²⁹l-spiked samples 115 to determine the equilibrium speciation of native 127 I.

116 A correction factor for ¹²⁹Xe was determined for each run and applied to all ¹²⁹I results, according to 117 Equation 1:

$$
118 \t 129S = 129S_{\text{meas}} - (k \times 131S_{\text{meas}}) \t (1)
$$

119 where 129 S = corrected signal (CPS) for 129 I; 129 S_{meas} = measured signal at m/z = 129; k = a factor 120 determined by iteration for each run (typically 1.08) to give an average 129 S baseline of zero; 131 S_{meas} 121 = measured signal for ¹³¹Xe. Matrix matching and standard addition were used to calculate mean 122 sensitivity for all samples in each run, from which concentrations of 129 I and 127 I in each peak were 123 quantified.

124 **3.3 Modelling**

125 Iodine-129 transformations were represented as simultaneous ordinary differential equations (Fig. 126 1):

$$
\frac{d[IO_{3}]}{dt} = -(k_{1}+k_{4})[IO_{3}]+ k_{5}[Org-1]
$$
 (2)

128
$$
\frac{d[i^{\dagger}]}{dt} = -k_3[I^{-}] + k_1[IO_3^{*}] + k_2[Org-1]
$$
 (3)

$$
\frac{d[0rg-1]}{dt} = -(k_2 + k_5)[Org-1] + k_4[IO_3] + k_3[1]
$$
\n(4)

130 Where k_1 , k_2 , k_3 , k_4 and k_5 are unknown rate coefficients (hr¹) estimated by fitting the model to the 131 observed concentrations of 129 IO₃⁻, 129 I⁻ and Org- 129 I.

132 The differential equations were solved using $4th$ order Runge-Kutta and fitting was performed using a Marquardt procedure (Press et al, 1986) implemented in OpenModel (Tarsitano et al 2011, http://openmodel.info/) to minimize the residual sum of squares (RSS) between modelled and observed values over all the time points and different spike combinations. Alternative model structures were considered, the arrangement described (and shown schematically in Fig. 1) provided 137 the best fit to the data.

138 **4 Results and discussion**

139 **4.1 Iodine dynamics**

140 Measured characteristics of the HA are given in Table 2. Concentrations of 127 species represent

iodine in equilibrium with HA suspensions with median values of 98.0 ug L⁻¹ of Org-¹²⁷l and 15.1 ug L⁻¹ 141

 142 ^{1 127}I; iodate (¹²⁷IO₃⁻) was not detected. The C:I mole ratio in the HA was 396,000.

143 Figure 2 shows the change in speciation of spiked 129 over time; model fits to the data are discussed in a later section. In suspensions spiked with I only (Table 1: I₂₂, I₄₄ and I₈₈) a gradual decrease in ¹²⁹I 144 145 concentrations was observed over time with a concomitant increase in Org- 129 I. By the final time

146 point (1855 hr) ~25% of added 129 had been transformed to Org- 129 irrespective of initial spike

147 concentration. No generation of 129 IO₃ was observed. Suspensions spiked with 129 IO₃ (Table 1: IO₂₂, 148 IO_{44} and IO_{88}) showed rapid initial loss of $^{129}IO_3$ with associated increases in both ^{129}I and Org- ^{129}I . 149 Concentrations of 129 I were always greater than Org- 129 I. By the end of the experiment (1855 hr) 150 concentrations of 129 IO₃ in each system were < 5% of the initial concentrations and Org-¹²⁹I 151 accounted for ~40% of the added iodine, again irrespective of initial spike concentration. In mixed 152 systems (Table 1; Mix₂₂, Mix₄₄ and Mix₈₈), where equal concentrations of ¹²⁹I and ¹²⁹IO₃ were added, 153 results were similar to those observed when 129 IO₃ alone was added (Figure 2). Concentrations of 154 129 IO₃ decreased rapidly with both 129 _I and Org- 129 _I increasing over time. Again no concentration-155 dependence was observed, with similar proportions of 129 I and Org- 129 I observed regardless of spike 156 concentration.

157 Humic acid has been reported to both reduce $10₃$ and oxidise I in soils (Yamaguchi et al., 2010), 158 however oxidation of Γ by organic matter to form IO₃ is expected to be much slower than reduction 159 of IO₃ to I (Schlegel et al., 2006) unless Fe^{III} and Mn^{IV} oxides are present which may catalyse the 160 oxidation of I⁻ (Gallard et al., 2009, Allard et al., 2009, Fox et al., 2009). This difference in rate (between I⁻ and IO₃⁻), in the absence of metal oxides, was confirmed by the absence of 129 IO₃⁻ in 129 I⁻ 161 162 spiked systems, in contrast to the rapid production of 129 I in HA solutions spiked with 129 IO₃. 163 Shetaya et al. (2012), selected soils with a range of pH values and concentrations of Fe/Mn oxides 164 and organic matter for incubation with 129 I or 129 IO₃ at 10^oC and 20^oC. In contrast to the current 165 study, and that of Choung et al. (2013), they found that conversion of added 129 I to (humic-bound) 166 Org-¹²⁹l ($t_{\frac{1}{2}}$ = 0.38 – 45 hr) was faster than conversion of ¹²⁹lO₃ to Org-¹²⁹l ($t_{\frac{1}{2}}$ = 9.0 -412 hr). 167 Comparison of these half-life values for whole soil with the data comparing iodide and iodate in Fig. 168 $-$ 2 may indicate the importance of metal oxides in soils in rapidly adsorbing IO₃, and thereby slowing 169 its transformation into Org-I, or possibly enabling oxidation of I to an intermediate species capable 170 of reacting with humus. Additionally the large overall differences in reaction rates seen between 171 soils and HA may reflect enzyme activity in soils which is likely to be absent from isolated HA 172 fractions.

173 The rate of Org-¹²⁹l production was greater in the systems spiked with 129 IO₃ than those spiked with 174 ¹²⁹I at the same concentration (Fig. 2). However, in mixed systems the *initial* rate of Org-¹²⁹I 175 production was greater than in solutions spiked with 129 IO₃ alone, although a slightly lower 176 concentration of Org-¹²⁹l was eventually present after 500 hr incubation (e.g. IO₄₄ and Mix₄₄). 177 However comparison of systems with the same initial concentration of 129 IO₃ (e.g. IO₂₂ and Mix ₄₄) 178 showed that Org- 129 I concentrations were substantially greater in the mixed systems where 129 I was

179 also present compared to the equivalent 129 IO₃-spiked system. This may suggest that redox coupling 180 between 129 I (or 127 I) and 129 IO₃ had occurred in the mixed spike solutions (Eq. 2):

 181 $10_3^{\circ} + 51 + 6H^{\circ} \rightleftharpoons 3I_2 + 3H_2O$ (2)

182 When only ¹²⁹I⁻ was added, its transformation to Org-¹²⁹I did not depend upon concentration (Fig. 3), 183 suggesting its oxidation mechanism was independent of the presence of another species. However, 184 considering the presence of native iodide (¹²⁷I) in the HA solutions, the *relative* rate of ¹²⁹1⁻ production, from 129 IO₃, in the mixed spike system was greater when lower concentrations of 129 IO₃ 185 186 were added (Fig. 3); this result is consistent with faster reduction of IO₃ (to I) at higher 187 iodide/iodate ratios. For the mixed-spike system the ratio of measured iodide to added iodide 188 progressively exceeded 1.0, reflecting the production of Γ from reduction of added IO₃.

189 The *relative* rates of 129 IO₃ loss in both 129 IO₃ and mixed-spike systems were slightly greater at 190 lower IO_3 concentrations with similar rates observed for systems with the same total 129 191 concentration (Fig. 4). Again, this suggests that the rate of iodate reduction is limited, either by the 192 concentration of iodide (Eq. 2) or some other reductive mechanism associated with the HA.

193 Figure 5 compares the concentrations of species measured in systems where a mix of species was 194 added with the *sum* of species from the appropriate 129 I and 129 IO₃ treatments spiked with a single 195 species (e.g. Mix₄₄ compared with I_{22} +IO₂₂). Although it could be argued that this comparison is not 196 completely valid because the ¹²⁹1:HA ratio differed, the rate of 129 I transformation to Org-¹²⁹I (Fig. 3, 197 open symbols) indicated that HA concentration is not a limiting factor. Figure 5 suggests that 198 initially there was less 129 I, and consequently greater concentrations of 129 IO₃ and Org-¹²⁹I, in the 199 mixed spike systems (circles fall below the 1:1 line). However, the difference in species composition 200 between the mixed and single-species systems generally declined with time - eg highest values for 201 iodide (open and closed circles).

- 202 Comparison of the concentrations of the species present in single species spiked systems with 129 I-
- 203 spiked systems at an equivalent total iodine concentration (e.g. $IO_{44} + I_{44}$ compared with I_{88}) also
- 204 show that 129 I was only transformed to Org- 129 I and that this happened faster when 129 IO₃ was
- 205 present, perhaps reflecting the 5:1 ratio in Eq. 2.

206 **4.2 Iodine distribution within the HA**

207 The distribution of iodine within the HA was examined using SEC-ICP-MS. Lower molecular weight 208 (LMW) HA may be expected to react more easily with iodine due to its greater surface area which 209 may provide greater accessibility to reactive sites. Conversely, the greater negative charge density

210 expected on LMW fractions may act to exclude or delay Γ or IO₃ ions from interaction. Xu et al. 211 (2011a), in a study where IO₃ was added to HA at pH 3, observed that the LMW fractions (3 – 50 212 kDa) sorbed more iodine than the > 50 kDa fractions after 72 hr. By contrast, Christiansen and 213 Carlsen (1991) observed no dependence on MW size fraction following a rapid (20 min) reaction of 214 Aldrich HA with I in the presence of peroxidase enzymes. Figure 6 shows the cumulative integrated 215 counts per second (ICPS) for the organic portion of the SEC chromatogram for added 129 I and pre-216 existing ¹²⁷l in the HA after a 77 day incubation of the Mix₈₈ solution. Higher molecular weight 217 (HMW) molecules elute first due to exclusion from the column matrix - shown by the prominent 218 peak around 400 s. The lines representing the cumulative integrated signals for 127 I and 129 I in Figure 219 6 suggest that a greater proportion of 127 I than 129 I was present in larger HA molecules. 220 Approximately 50% of the cumulative integrated signal for 127 I had been detected by 530 s, 221 compared to 600 s for 129 I. This indicates that 129 I had not fully mixed with the pre-existing HA-bound 222 127 and had reacted preferentially with the LMW fractions of HA. It also indicates the presence of 223 recalcitrant iodine (127 I), unavailable to mix with the added 129 I, and with a greater presence in the 224 HMW fractions of HA. Comparison of the Mix₈₈ 77 day chromatogram for ¹²⁷l and ¹²⁹ (Figure 6) also 225 shows a smaller excluded peak maxima compared to the main organic peak for 129 and a shift in the 226 129 peak maxima towards LMW fractions, again suggesting preferential binding of freshly added 227 iodine to LMW fractions of HA in contrast to (native) 127 I.

228 **4.3 Modelling**

229 Fitted model (Fig. 1) predictions are compared to the observations in Fig. 2 and estimated rate 230 coefficients are given in Table 3. Overall the model fit was good (for all data: r^2 = 0.96, p < 0.001), 231 supporting the model structure. The values of the (apparent) rate constants broadly reflect the 232 dynamics of the system. Iodate is rapidly converted to humic-bound forms (k_4 = 2.62 hr⁻¹) but the 233 optimal model fit required a reverse reaction (k_5 = 0.157 hr⁻¹) suggesting an approach to an 234 equilibrium position rather than a zero sink for iodate. The further reduction of iodate to iodide was 235 slower ($k_1 = 4.11 \times 10^{-3}$ hr⁻¹) and both the 'direct' conversion of iodide to humic-bound iodine and the 236 re-mineralisation of iodide were comparatively very slow reactions ($k_3 = 3.16 \times 10^{-4}$ and $k_2 = 4.67 \times 10^{-4}$ $237 \t10^{-4}$ hr⁻¹).

238 In order to investigate the availability of 127 I for mixing with 129 I, modelling was extended to 250 d. At 239 this point a pseudo-steady-state was apparent, with no significant changes in species concentrations 240 from 200 d after spiking. After 250 d contact between 129 I and HA the model predicted that 129 I $^{-}$ 241 /Org- 129 I = 0.24, whereas the measure ratio 127 I /Org- 127 I was lower, at 0.17. Therefore although the 242 model prediction suggested that 129 I was at equilibrium, a greater proportion of 127 I than 129 I existed

243 as Org-I, suggesting the presence of a recalcitrant pool of 127 I, unavailable for isotopic mixing. From 244 the 129 I⁻ /Org-¹²⁹I ratio and measured 127 I in solution, the estimated labile Org-¹²⁷I was 62.9 µg L⁻¹, suggesting that 64% of the HA bound iodine was labile and 36% was incapable of isotopic mixing within 250 d.

 Keppler et al. (2003) and Xu et al. (2011b) suggested that iodination of HA occurs early in the humification of fresh plant material with fewer binding sites available as humification progresses. Steric hindrance by aliphatic chains may also make some aromatic binding sites less accessible to freshly added iodine, while effectively 'fixing' native iodine (Xu et al., 2012). Schwehr et al (2009) also observed, in an experiment where natural sediments were spiked with I⁻, that recently added I⁻ 252 was less strongly sorbed than native iodine, and that greater added concentrations resulted in a smaller proportion bound. Therefore although organic-rich soils may well contain higher total concentrations of iodine much of that iodine may not be readily accessible to plants.

5 Conclusions

Inorganic iodine (both I⁻ and IO₃⁻) reacted with HA to produce Org-I. The reaction was slower with I⁻ compared to systems spiked with IO₃ or a mixture of IO₃ and I. In mixed and IO₃-spiked systems I concentrations increased rapidly and remained higher than Org-I concentrations throughout the duration of the experiment.

260 • Native iodine in the HA solutions was present only as I⁻ and Org-I; no IO₃ was observed. There was evidence that the presence of native 127 allowed more rapid reduction of spiked 129 IO₃, potentially by redox coupling with $\overline{}$. This was supported by the relative rates of reaction of the two species, with a faster reaction observed when a mix of inorganic species (I and IO₃) was added, rather than a 264 single species (I or IO₃ alone). In soils, by contrast, I has been reported to transform to Org-I more 265 guickly than IO₃, possibly due to the presence of metal oxides or enzymatic oxidation. In a 'purified' HA solution the same reaction mechanisms are not available and I oxidation was relatively slow.

267 Size exclusion chromatography showed that 129 I became associated with both high and low molecular weight HA although a slight preference for lower molecular weight fractions was 269 suggested. The native and spiked isotopes were not fully mixed after \sim 2 months of reaction 270 indicating the presence of a recalcitrant pool of 127 I; this was also strongly indicated by modelling 271 over longer timescales.

6 Acknowledgements

- Funding for H. E. Bowley was provided by UoN and the BGS University Funding Initiative (BUFI-S178).
- This work is published with the permission of the Executive Director, British Geological Survey.

7 References

- Allard, B. (2006) A comparative study on the chemical composition of humic acids from forest soil, 278 agricultural soil and lignite deposite. Bound lipid, carbohydrate and amino acid distributions. *Geoderma,* **130,** 77 - 96.
- Allard, S., von Gunten, U., Sahli, E., Nicolau, R. & Gallard, H. (2009) Oxidation of iodide and iodine on birnessite (d-MnO2) in the pH range 4-8. *Water Research,* **43,** 3417-3426.
- Christiansen, J. V. & Carlsen, L. (1991) Enzymatically controlled iodination reactions in the terrestrial environment. *Radiochimica Acta,* **52-3,** 327-333.
- Choung, S., Um, W., Kim, M. & Kim, M-G. 2013. Uptake mechanism for iodine species to black carbon. Environmental Science and Technology 47, 10349 - 10355.
- Dai, J. L., Zhang, M., Hu, Q. H., Huang, Y. Z., Wang, R. Q. & Zhu, Y. G. (2009) Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. *Geoderma,* **153,** 130-135.
- Dai, J. L., Zhu, Y. G., Huang, Y. Z., Zhang, M. & Song, J. L. (2006) Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. *Plant and Soil,* **289,** 301-308.
- Fox, P. M., Davis, J. A. & Luther, G. W. (2009) The kinetics of iodide oxidation by the manganese oxide mineral birnessite. *Geochimica et Cosmochimica Acta,* **73,** 2850-2861.
- Francois, R. (1987) The influence of humic substances on the geochemistry of iodine in nearshore and hemipelagic marine sediments. *Geochimica et Cosmochimica Acta,* **51,** 2417 - 2427.
- Fuge, R. & Johnson, C. C. (1986) The Geochemistry of Iodine a Review. *Environmental Geochemistry and Health,* **8,** 31-54.
- Gallard, H., Allard, S., Nicolau, R., von Gunten, U. & Croue, J. P. (2009) Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide. *Environmental Science & Technology,* **43,** 7003-7009.
- Garcia-Suarez, A. M. & Butler, C. J. (2006) Soil temperatures at Armagh Observatory, Northern Ireland, from 1904 to 2002. *International Journal of Climatology,* **26,** 1075-1089.
- 302 Hansen, V., Roos, P., Aldahan, A., Hou, X. & Possnert, G. (2011) Partition of iodine (¹²⁹l and ¹²⁷l) isotopes in soils and marine sediments. *Journal of Environmental Radioactivity,* **102,** 1096- 1104.
- Johnson C. C. (2003a) The geochemistry of iodine and its application to environmental strategies for reducing the risks from iodine deficiency disorders (idd). Brit. Geol. Surv., DFID kar project R7411, Report CR/03/057N.
- Johnson, C. C. (2003b) Database of the iodine content of soils populated with data from published literature. British Geological Survey Commissioned Report.
- Keppler, F., Biester, H., Putschew, A., Silk, P. J., Scholer, H. F. & Muller, G. (2003) Organoiodine formation during humification in peatlands. *Environmental Chemistry Letters,* **1,** 219-223.
- Marshall, S.J. (1992) The complexation of aluminium by humic acids in fresh waters. PhD Thesis. Agricultural and Environmnetal Sciences, University of Nottingham.
- Marshall, S. J., Young, S. D. & Gregson, K. (1995) Humic acid-proton equilibria: A comparison of two models and assessment of titration error. *European Journal of Soil Science,* **46,** 471-480.
- Muramatsu, Y. & Wedepohl, K. H. (1998) The distribution of iodine in the Earth's crust. *Chemical Geology,* **147,** 201-216.
- Press , W.H., Teukolsky S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press, New York, NY
- Reiller, P., Mercier-BIon, F., Gimenez, N., Barre, N. & Miserque, F. (2006) Iodination of humic acid samples from different origins. *Radiochimica Acta,* **94,** 739-745.
- Saunders, R.W., Kumar, R., MacDonald, S.M. and Plane J.M.C. (2012). Insights into the Photochemical Transformation of Iodine in Aqueous Systems: Humic Acid Photosensitized Reduction of Iodate. Environ. Sci. Technol., **46**, 11854−11861.
- Schlegel, M. L., Reiller, P., Mercier-Bion, F., Barre, N. & Moulin, V. (2006) Molecular environment of 326 iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy. *Geochimica et Cosmochimica Acta,* **70,** 5536 - 5551.
- Schwehr, K. A., Santschi, P. H., Kaplan, D. I., Yeager, C. M. & Brinkmeyer, R. (2009) Organo-iodine formation in soils and aquifer sediments at ambient concentrations. *Environmental Science & Technology,* 43**,** 7258-7264.
- Shetaya, W. H., Young, S. D., Watts, M. J., Ander, E. L. & Bailey, E. H. (2012) Iodine dynamics in soils. *Geochimica et Cosmochimica Acta,* **77,** 457-473.
- Smyth, D. & Johnson, C. C. (2011) Distribution of iodine in soils of Northern Ireland. *Geochemistry-Exploration Environment Analysis,* **11,** 25-39.
- D Tarsitano, D, Young, S.D., Crout, N.M.J. (2011) Evaluating and reducing a model of radiocaesium soil-plant uptake. Journal of Environmental Radioactivity, **102**, 262-269.
- 337 Warner, J. A., Casey, W. H. & Dahlgren, R. A. (2000) Interaction kinetics of I_{2(aq)} with substituted phenols and humic substances. *Environmental Science & Technology,* **34,** 3180-3185.
- Weng, H. X., Weng, J. K., Yan, A. L., Hong, C. L., Yong, W. B. & Qin, Y. C. (2008) Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. *Biological Trace Element Research,* **123,** 218-228.
- Whitehead, D. C. (1974) The infl uence of organic matter, chalk and sequisoxides on the solubility of iodide, elemental iodine and iodate inclubated with soil. *Journal of Soil Science*, **25**, 461-470.
- Whitehead, D. C. (1984) The Distribution and Transformations of Iodine in the Environment. *Environment International,* **10,** 321-339.
- WHO (2004) In Iodine Status Worldwide (eds. B. Benoist, et al.). Department of Nutrition for Health and Development, World Health Organization, Geneva.
- WHO (2008) WHO expert consultation on salt as a vehicle for fortification, Luxembourg, 21-22 March 2007. ISBN 978 92 4 159678 7.
- Xu, C., Miller, E. J., Zhang, S., Li, H.-P., Ho, Y.-F., Schwehr, K. A., Kaplan, D. I., Otosaka, S., Roberts, K. A., Brinkmeyer, R., Yeager, C. M. & Santschi, P. H. (2011a) Sequestration and remobilization of radioiodine (129) by soil organic matter and possible consequences of the remedial action at Savannah River site. *Environmental Science & Technology,* **45,** 9975-9983.
- Xu, C., Zhang, S. J., Ho, Y. F., Miller, E. J., Roberts, K. A., Li, H. P., Schwehr, K. A., Otosaka, S., Kaplan, D. I., Brinkmeyer, R., Yeager, C. M. & Santschi, P. H. (2011b) Is soil natural organic matter a sink or source for mobile radioiodine (¹²⁹ I) at the Savannah River Site? *Geochimica et Cosmochimica Acta,* **75,** 5716-5735.
- Xu, C., Zhong, J., Hatcher, P. G., Zhang, S., Li, H.-P., Ho, Y.-F., Schwehr, K. A., Kaplan, D. I., Roberts, K. A., Brinkmeyer, R., Yeager, C. M. & Santschi, P. H. (2012) Molecular environment of stable iodine and radioiodine (I-129) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations. *Geochimica et Cosmochimica Acta,* **97,** 166-182.
- Yamada, H., HisamorI, I. & Yonebayashi, K. (2002) Identification of organically bound iodine in soil humic substances by size exclusion chromatography/inductively coupled plasma mass spectrometry (SEC/ICP-MS). *Soil Science and Plant Nutrition,* **48,** 379-385.
- YamaguchI, N., Nakano, M., Takamatsu, R. & Tanida, H. (2010) Inorganic iodine incorporation into 367 soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure. *Journal of Environmental Radioactivity,* **101,** 451-457.
- Yntema, L. F. & Fleming, T. (1939) Volumetric oxidation of iodide to iodate by sodium chlorite. *Industrial and Engineering Chemistry-Analytical Edition,* **11,** 0375-0377.

Tables

- Table 1: Summary of added iodine (1291) species in incubated HA solutions.
- Table 2: Measured characteristics of a humic acid (HA) isolated from the Ah horizon of a coniferous plantation soil in Leicestershire (UK); (52[°] 42' N, 1[°] 14' W; 195 m).
- Table 3: Optimised parameter values (first-order rate constants) describing HA-iodine dynamics in the model shown in Figure 1.

Solution	129 added	129 ₁₀₃ added
	129 L ⁻¹) (µg	$(\mu g^{129}l L^{-1})$
I_{22}	22.1	0
I ₄₄	44.1	0
I_{88}	88.2	0
10_{22}	0	22.1
IO ₄₄	0	44.1
IO_{88}	O	88.2
Mix_{22}	11.0	11.0
Mix_{44}	22.1	22.1
Mix_{88}	44.1	44.1

Table 1: Summary of added iodine (¹²⁹I) species in incubated HA solutions.

Table 2: Measured characteristics of a humic acid (HA) isolated from the Ah horizon of a coniferous plantation soil in Leicestershire (UK); (52^o 42' N, 1^o 14' W; 195 m).

*Ash content and total acidity are the mean of two measurements quoted by Marshall (1992).

Measured in HA suspensions

Table 3: Optimised parameter values (first-order rate constants) describing HA-iodine dynamics in the model shown in Figure 1.

Rate constant	Mean (hr^{-1})	S. D.
k1	0.00411	0.00010
k2	0.000467	0.00004
k3	0.000316	0.00002
k4	2.62	0.00000
k5	0.157	0.00003

Figures

Figure 1: Conceptual model describing transformations of spiked 129 I in the presence of HA. Rate constants $k_1 - k_5$ describe first-order rate equations.

Figure 2: Modelled (lines) and measured (symbols) change in ¹²⁹l concentrations with time following spiking with ¹²⁹l at a range of concentrations and species compositions. Species measured included 129 ⁻ (black circles \bullet , black lines), 129 IO₃⁻ (open squares \Box , dashed lines) and Org- 129 I (grey triangles, grey lines). Error bars show standard error of triplicate measurements.

Figure 3: Change in the ratio of measured iodide to added iodide over time, following addition of iodide (*open* symbols) and mixed iodide/iodate 129 I spikes (*closed* symbols). Total concentrations of 129 I added were: 22.1 µg L⁻¹ (circles), 44.1 μ g L⁻¹ (squares) and 88.2 μ g L⁻¹ (triangles).

Figure 4: Change in ratio of measured iodate to added iodate over time, following addition of iodate (*open* symbols) and mixed iodide/iodate ¹²⁹I spikes (*closed* symbols). Total concentrations of ¹²⁹I added were: 22.1 µg L⁻¹ (circles), 44.1 μ g L⁻¹ (squares) and 88.2 μ g L⁻¹ (triangles).

Figure 5: Comparison of total concentrations of iodine-129 species in solution in mixed and single spiked systems at total iodine concentrations of 44 μ g L⁻¹ (*open* symbols) and 88 μ g L⁻¹ (*closed* symbols). Dashed line = 1:1, square symbols = iodate, circles = iodide, triangles = Org-I.

Figure 6: Cumulative ICPS (integrated counts per second) as a percentage of total counts, from size exclusion chromatograph of 129 I (thick black line) and 127 I (thick grey line); 25%, 50% and 75 % of cumulated ICPS are indicated by circles, squares and diamonds, respectively. The Org-I section of ¹²⁷I (thin black line) and ¹²⁹I (thin grey line) SEC chromatograms (2[°] Y-axis) are also shown. All data are for the Mix₈₈ solution (Table 1) after 77 days incubation.

Figure 1: Conceptual model describing transformations of spiked 129 I in the presence of HA. Rate constants k_1 – k_5 describe first-order rate equations.

Figure 2: Modelled (lines) and measured (symbols) change in ¹²⁹I concentrations with time following spiking with ¹²⁹I at a range of concentrations and species compositions. Species measured included ¹²⁹I⁻ (black circles \bullet , black lines), ¹²⁹IO₃⁻ (open squares \square , dashed lines) and Org-¹²⁹I (grey triangles \blacktriangle , grey lines). Error bars show standard error of triplicate measurements.

Figure 3: Change in the ratio of measured iodide to added iodide over time, following addition of iodide (*open* symbols) and mixed iodide/iodate ¹²⁹I spikes (*closed* symbols). Total concentrations of ¹²⁹I added were: 22.1 µg L⁻¹ (circles), 44.1 μ g L⁻¹ (squares) and 88.2 μ g L⁻¹ (triangles).

Figure 4: Change in ratio of measured iodate to added iodate over time, following addition of iodate (*open* symbols) and mixed iodide/iodate ¹²⁹I spikes (*closed* symbols). Total concentrations of ¹²⁹I added were: 22.1 µg L⁻¹ (circles), 44.1 μ g L⁻¹ (squares) and 88.2 μ g L⁻¹ (triangles).

Figure 5: Comparison of total concentrations of iodine-129 species in solution in mixed and single spiked systems at total iodine concentrations of 44 µg L-1 (*open* symbols) and 88 µg L-1 (*closed* symbols). Dashed line = 1:1 relationship, square symbols = iodate, circles = iodide, triangles = Org-I.

Figure 6: Cumulative ICPS (integrated counts per second) as a percentage of total integrated counts, from size exclusion chromatograph of ¹²⁹I (thick black line) and ¹²⁷I (thick grey line); 25%, 50% and 75 % of cumulated ICPS are indicated by circles, squares and diamonds, respectively. The Org-I section of ¹²⁷I (thin black line) and ¹²⁹I (thin grey line) SEC chromatograms (2[°] Y-axis) are also shown. All data are for the Mix₈₈ solution (Table 1) after 77 days incubation.

Electronic Annex A: Correction applied for the presence of ¹²⁷l in the ¹²⁹I SRM 4949C:

All measured ¹²⁹l concentrations had a correction applied to nominally ascribe *all* iodine added in ¹²⁹l spikes (¹²⁹l + 127]) to 129 , for ease of description:

$$
^{129}I = {}^{129}I_{\text{meas}} \times 1.12 \times (127/129) \tag{A1}
$$

Where ¹²⁹I = 'corrected' concentration of I from the spike in solution (µg L⁻¹) i.e. (¹²⁹I + ¹²⁷I present in the spike), 129 I_{meas} = measured concentration of ¹²⁹I (µg L⁻¹), 1.12 corrects for the presence of 12 % ¹²⁷I in the ¹²⁹I and (127/129) is a gravimetric correction. The corresponding correction was also applied to measurements of ¹²⁷I, according to Eqn. A2:

$$
^{127}I = {}^{127}I_{\text{meas}} - (0.12 \times {}^{129}I_{\text{m}})
$$
 (A2)

Where 127 I = 'corrected' concentration of 127 I in solution (µg L⁻¹) i.e. 127 I minus the 127 I present as a result of the spiking, and $^{127}I_{meas}$ = measured concentration of ^{127}I (μ g L⁻¹).