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Abstract—This paper develops a modelling method for robust
stability analysis of non-linear electrical power systems over a
range of operating points and under parameter uncertainties.
Standard methods can guarantee stability under nominal condi-
tions but do not take into account any uncertainties of the model.
In this work, stability is assessed by using structured singular
value (SSV) analysis also known as µ analysis. This method
provides a measure of stability robustness of linear systems
against all considered sources of structured uncertainties. The
aim of this work is to apply the SSV method for robust small-
signal analysis of non-linear systems over a range of operating
points and parameter variations. To that end, a modelling
methodology is developed to represent any such system with
an equivalent linear model that contains all system variabil-
ity, in addition to being suitable for µ analysis. The method
employs symbolic linearisation around an arbitrary operating
point. Furthermore, in order to reduce conservativeness in the
stability assessment of the non-linear system, the approach takes
into account dependencies of operating points on parameter
variations. The methodology is verified through µ analysis of the
equivalent linear model of a 4 kW permanent magnet machine
drive, which successfully predicts the destabilising torque over
a range of different operating points and under parameter
variations. Further, the predictions from µ analysis are validated
against experimental results.

Index Terms—Robust stability analysis, Linear fractional
transformation, Structured singular value, µ analysis.

I. INTRODUCTION

THE More-Electric Aircraft (MEA) is a fast-developing
technological trend in the aircraft industry. The MEA will

have a more complex electrical distribution system with a mul-
tiplicity of power electronics converters interfaced loads [1].
It is well known that these loads, when tightly controlled,
present a negative impedance to the source and thus can
cause severe stability issues within the power system [2]
[3]. Furthermore, the aircraft electrical power system (EPS)
is subject to perturbations such as changes in environmental
conditions or load demand. These uncertainties may lead to
variation in system parameters and operating points which may
further compromise system stability. Therefore it is crucial to
incorporate parameter uncertainties in the stability assessment
of an EPS and ensure system stability under all operating
conditions especially for safety critical applications. However,
due to non-linearities that are inherent in such systems, small-
signal stability assessment may be challenging in the face
of uncertainties. This is due to the fact that small-signal
stability analysis is performed on a linear model about a certain
operating point and depending on the amount of variability

considered in the system, there may be an arbitrarily large
number of linearised models to be generated and assessed.
Hence, in order to apply robust small-signal stability assess-
ment to non-linear systems, this paper develops a modelling
methodology to represent a non-linear system by a generalised
linear model that contains all system variability [4].

To assess small-signal system stability of power electronics
systems, the major classical approaches that are generally
employed are the eigenvalue-based method and the impedance-
based methods such as Middlebrook criterion. Middlebrook
criterion and many of its extensions such as the Gain and Phase
Margin criterion and the Energy Source Analysis consortium
(ESAC) criterion are based on the Nyquist criterion applied
to the ratio of the source and load subsystem impedances [2]
[5] [6]. An important drawback of the classical techniques
is that they do not take into account system uncertainties
such as parameter variations. However, in order to incorporate
uncertainties in stability analysis, classical methods such as the
eigenvalue method are combined with the Monte Carlo simu-
lation. This probabilistic stability assessment approach can be
employed to determine probability density functions of critical
eigenvalues but cannot guarantee to identify the most critical
system scenarios with respect to stability [7] [8]. Additionally,
[9] presents an admittance space stability analysis method that
incorporates uncertainties in the application of the classical
ESAC criterion approach. Yet, the aforementioned methods
involve exhaustive iterations of parameter variations, lineari-
sation at a number of equilibrium points and computation
of eigenvalues or impedances, which can be quite extensive.
Nonetheless, [9] has developed a software to make the process
automatic.

This paper employs the structured singular value (SSV, µ)
approach which is applied to linear fractional transformation
(LFT) based uncertain system models [10] [11] [12]. In
addition to being a deterministic approach, SSV can provide
a direct measure of stability robustness of a system with
respect to its uncertain elements. Furthermore, SSV analysis
is founded on the concept of an uncertain system model
which defines system parameters not only in respect of their
nominal values but also in terms of their possible variation
about the nominal values. Hence, by working directly on an
uncertain model, µ analysis eliminates the burden from a user
of performing exhaustive iterations.

However, the SSV method is generally applied for robust
stability analysis of a linear uncertain model with respect to a
particular operating point. In view of applying the SSV method



to non-linear systems over a range of operating points, a num-
ber of methods have been proposed in the literature [13] [14].
A combined numerical and symbolic linearisation technique
is presented in [13]. Another approach identifies the elements
of state space matrices that vary with changes in operating
conditions and system parameters, and then approximates
those varying elements by polynomial functions [14]. Yet,
these methods, similarly to the classical approach, cannot take
into account dependencies of operating points on parameter
uncertainties and may lead to conservative results. Nonethe-
less, it should be noted that these techniques were proposed
for larger power systems.

The work proposed in this paper is based solely on symbolic
linearisation around an arbitrary equilibrium point. It develops
a general modelling approach to represent a non-linear system
by an equivalent linear state space model in symbolic form
that contains all defined system variability [13]. The approach
explicitly expresses dependencies of operating points on sys-
tem parameters, which can also be modelled as uncertainties.
When compared to the aforementioned modelling approaches
for SSV analysis, the developed modelling approach is less
conservative since it preserves all parameter dependencies. In
addition, it eliminates the need for exhaustive linearisation that
is required by classical techniques.

The proposed modelling approach is applied to assess sta-
bility of a 4 kW permanent magnet (PM) machine drive. The
methodology is validated through µ analysis of the system,
which is used to predict the destabilising torque over a range
of different operating points and under parameter variations.
The stability of the PM machine system was analysed based on
the classical eigenvalue method and also tested experimentally
by the authors in [15]. The experimental results have been used
to validate the predictions from µ analysis, presented in this
paper [15].

II. THEORETICAL BACKGROUND

In this work, the SSV approach is employed to determine
whether a system remains robustly stable in the face of
parametric uncertainties. The system to be analysed must be
expressed in the LFT form prior to SSV analysis. [10] [16].

A. Linear fractional transformation

LFT is a modelling technique which is employed to “pull
out” the indeterminate part from the known part of a system
model and place it in the feedback form. If a general uncertain
parameter P is considered to be bounded in the region
[Pmin,Pmax], it may be represented in its normalised form
δP bounded within [−1, 1]. It is easy to show that P can be
modelled as an LFT in δP in the expression (1) and in the
matrix form in Fig. 1 [11] [12] [16].

P = Po + PoPvarδP , δP ∈ [−1, 1] (1)
where Po = (Pmin + Pmax)/2

and Pvar = (Pmax − Pmin)/(Pmax + Pmin)

Similarly, the model of an entire system with parametric
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Fig. 1: Uncertain Parameter P as an LFT

uncertainties can be represented in the LFT form [16] [17].
For the purpose of illustration, a general uncertain system
expressed in the state space form with input u and output
y, as shown in Fig. 2, is considered. The elements of the state
space matrix (A B

C D ) are functions of either fixed or uncertain
parameters. For instance, element Aij of the state matrix A
can be expressed as Aij = f1(P1, P2...Pm) where P1 to
Pm denote uncertain parameters of the system [14]. Based
on the technique of LFT, it is possible to extract the set of
uncertainties in their normalised form and regroup them in
the diagonal uncertainty matrix ∆ as shown in Fig. 3 where ∆
= diag{δP1, δP2, ..., δPm}. As a result, the initial state space
matrix is expanded to accommodate two sets of inputs namely
u∆ and us and two sets of output y∆ and ys as shown in Fig. 3
[11] [18].
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Fig. 2: The original uncertain system in state space form
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Fig. 3: The uncertain system with indeterminate uncertainties
“pulled” out of the system

The expanded state space matrix can be simplified by
absorbing the “states” through the use of equations (2) - (5).
In this manner, the state space matrix in Fig. 3 is converted
into the N∆ configuration in Fig. 4.

N11(s) = C1(sI −A0)−1B1 +D11 (2)

N12(s) = C1(sI −A0)−1B0 +D12 (3)

N21(s) = C0(sI −A0)−1B1 +D21 (4)

N22(s) = C0(sI −A0)−1B0 +D0 (5)

uy

ys us
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Δ

Δ Δ

Fig. 4: Uncertain system in the N∆ or LFT form



Further, the system matrices in Fig. 4 can be represented
as three distinct equations (6) - (8). By rearranging these
equations to eliminate u∆ and y∆ and expressing the output
ys in terms of the input us, the transfer function of the
system is obtained as (9). The uncertainty matrix ∆ is clearly
distinguishable in (9) and is said to have been “pulled out”
of the original uncertain system. Equation (9) is known as
the upper linear fractional transformation Fu(N,∆). It is
interesting to note that with the disturbance ∆ being zero, the
system is equivalent to N22(s), which is exactly the nominal
transfer function of the uncertain system.

y∆ = N11 u∆ +N12 us (6)
ys = N21 u∆ +N22 us (7)
u∆ = ∆ y∆ (8)

Fu(N,∆) =
ys
us

= N22 +N21∆(I −N11∆)−1N12 (9)

B. Structural singular value

Referring to the general LFT expression (9), it can be
seen that the only source that can cause the system N∆ to
become unstable is the feedback term (I − M∆)−1 where
M = N11 [16]. With the assumption that the closed loop
M∆ is initially stable, the structured singular value (µ∆(M)),
as defined by (10), identifies the smallest uncertainty set,
measured by σ̄(∆), that destabilises the system. At this point,
the closed loop poles, which are given by det(I −M∆), are
at the imaginary axis [11] [19]. The SSV is a frequency-
dependent matrix function which depends on both the system
matrix M(s) and the structure of ∆ [11] [19].

µ∆(M) =
1

min[σ̄(∆) : det(I −M∆) = 0,∆ structured]
(10)

The SSV theory gives necessary and sufficient conditions
for stability robustness [10]. If µ∆(M) is less than 1, it
guarantees stability for the entire uncertainty set. However, it is
computationally hard to obtain the exact value of µ∆(M) [10]
[20] [21]. Hence, lower and upper bounds on the structural
singular value are computed instead. For simplicity, µ∆(M)
will be denoted as µ in the rest of this paper.

III. MODELLING METHODOLOGY

This section describes the methodology for representing a
non-linear system by an equivalent linear model which is valid
for all operating points and parameter variations. The approach
is illustrated by applying it to the PM machine drive system.

A. System structure

The power system under study is depicted by the circuit
representation in Fig. 5. The system represents a hybrid dis-
tribution topology considered for the MEA power system [15].
The engine generator with the generator control unit, which
is assumed to have an infinitely fast controller, is considered
as an ideal 3-phase balanced voltage source. The transmission
line from the power supply to the rectifier is modelled by an
RL circuit. The six-pulse uncontrolled rectifier in Fig. 5, repre-
sents typically employed multiphase autotransformer-rectifier

(ATRU) units of a real on-board system. It provides DC power
to the surface mounted PM machine based electromechanical
actuator (EMA) through an LC filter. The EMA is a standard
vector-controlled PM motor drive depicted in Fig. 6 [15]. The
parameters of the example power system are defined in Table I.
With the assumption that the amplitude of the AC supply
and the DC load current are constant and that commutation
occurs only once during a commutation period, the power
stage in Fig. 5 is modelled by the circuit in Fig. 7 by using the
average-value modelling method [5] [22]. The six-pulse diode
rectifier is modelled by the DC voltage source Ve in series with
the equivalent resistance Re and the equivalent inductance
Le which are given by (11) - (13). The transmission line
inductance causes an overlap angle and hence a commutation
voltage drop which is represented on the DC side by rµ in
(14) [15].

ve =
3
√

3
√

2

π
vs (11)

Re = rµ + rF + 1.824Req (12)
Le = LF + 1.824Leq (13)

rµ =
3wLeq
π

(14)

TABLE I: Nominal values for system parameters

Symbols Units Nominal Description
Values

vs Vrms−ph 223 phase source voltage
w rad/s 2π50 source frequency
Req Ω 0.045 line resistance
Leq µH 60 line inductance
rF Ω 0.2 DC-link inductor resistance
LF mH 24.15 DC-link inductance
rc Ω 0.4 ESR of DC-link capacitor
CF µF 320 DC-link capacitance
wrated rpm 1140 rated speed
w∗

r rpm 800 speed reference
Trated Nm 40 rated load torque
Rs Ω 0.5 stator resistance
Lq mH 2.3 stator leakage inductance
P poles 20 number of poles
Jm kgm2 0.004 moment of inertia
Fm Wb 0.123 constant flux of PM machine
KPim - 4.124 current loop PI constant
KIim - 3632 current loop PI constant
wn,current Hz 200 natural frequency of current loop
KPw - 0.02 speed loop PI constant
KIw - 0.863 speed loop PI constant
wn,speed Hz 10 natural frequency of speed loop
η % 88.83 Efficiency of PM motor

B. Symbolic linearisation

The non-linear equations for the PM machine drive are
given by (15) - (21) where KT = 3PFm/4 and icpl =
3v∗sqmisqm/4vf [15]. The voltage across the DC-link capacitor
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Fig. 7: Averaged model of the system in Fig. 5

is assumed to be equal to vout given that the voltage drop
across the ESR of the capacitor is very small.

didc
dt

= − (rc +Re)

Le
idc +

rc
Le
icpl −

vout
Le

+
ve
Le

(15)

dvout
dt

=
1

CF
idc −

1

CF
icpl (16)

dwr
dt

=
KT

Jm
isqm −

1

Jm
T (17)

disqm
dt

= −PFm
2Lq

wr −
Rs
Lq
isqm +

1

2Lq

v∗sqmvout

vf
(18)

dvf
dt

= − 1

τf
vf +

1

2τf
vout (19)

dv∗sqm
dt

= −KIimisqm +KIimi
∗
sqm −KPim

disqm
dt

+KPim

di∗sqm
dt

(20)

di∗sqm
dt

= −KIwwr +KIww
∗
r −KPw

dwr
dt

+KPw
dw∗

r

dt
(21)

Prior to the linearisation of the system model, the non-linear
equations are converted into a non-linear state space form
where the vectors x, u and y denote system states, inputs
and outputs respectively, and are given as:

x: idc, vout, wr, isqm, vf , v∗sqm, i∗sqm
u: ve, w∗

r , T
y: vout

An arbitrary equilibrium point is defined by Xo and Uo
which denote steady state values of state vector x and input
vector u respectively, and are given as:

Xo: Idco, Vouto, wro, Isqmo, Vfo, V ∗
sqmo, I

∗
sqmo

Uo: Ve, w∗
r , To

The input Ve and w∗
r are constant over all operating points.

The load torque T is denoted as To at steady state. Finally, the
non-linear state space system is linearised around equilibrium
point (Xo,Uo) by using standard linearisation technique.

C. Expressing the state space matrix elements explicitly in
terms of system parameters and inputs

This step involves expressing explicitly all elements of the
resulting linearised state space model as functions of only



system parameters and inputs. Any indeterminate elements in
the system model such as equilibrium points must be expressed
in terms of definable system parameters and inputs.

For the system under study, firstly, Xo, as given by (22) -
(28), is derived by setting (15) - (21) to zero.

Idco = Icplo = 3V ∗
sqmoIsqmo/2Vouto (22)

Vouto = −ReIdco − Ve (23)
wro = w∗

r (24)
Isqmo = To/KT (25)
Vfo = Vouto/2 (26)

V ∗
sqmo = Vsqmo = RsIsqmo + PFmwro/2 (27)
I∗sqmo = Isqmo = To/KT (28)

The steady state variables Idco in (22) and V ∗
sqmo in (27)

are then further rearranged and expressed as (29) and (30).
In addition, Vouto in (23) is expressed as (31) by using the
constant power load equation Idco = Po/Vouto where Po =
Towro/η.

Idco =
(3To/2KT )(RsTo/KT + PFmwro/2)

Vouto
(29)

V ∗
sqmo = RsTo/KT + PFmwro/2 (30)

Vouto =
Ve
2

[1 +

√
1− 4ReTowro

ηV 2
e

] (31)

The flexibility of the linearised model, which now contains
only determinate parameters and inputs in symbolic form,
serves to cater for the system non-linearities.

D. Rational approximation of non-rational terms

Next, all non-rational elements in the linearised system
model are expressed in their rational forms as is required for
the conversion of the system model in its corresponding LFT
configuration. In our case, the non-rational expression of Vouto
in (31) is estimated in its rational form as in (32) by using the
first two terms of the binomial expansion of the square root
term in (31). The expression (32) is a good approximation of
Vouto with respect to variations in torque as shown in Fig. 8.

Vouto−est = Ve −
ReTowro
ηVe

(32)

E. The equivalent linear model

After applying the above steps, the state space model
(A B
C D ), given by matrices (33) - (36), is obtained where V ∗

sqmo,
Vouto−est, Asubs1 and Asubs2 are given by (30), (32), (37) and
(38) respectively. The developed model represents with good
accuracy the system for all operating points and parameter
variations, and is directly suited for µ analysis.
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Fig. 8: Polynomial approximation of the steady state DC-link
voltage Vouto
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C =

 1

Le
0 0 0 0 0 0

0 1 0 0 0 0 0

 (35)

D =
[

0 0 0
]

(36)

Asusb1 = (−KPimKIw +
KPimPFm

2Lq
) (37)

Asubs2 = −KIim −
KPimKPwKT

Jm
+
KPimRs
Lq

(38)

F. The equivalent linear model suitable for µ analysis over a
range of operating points and parameter variations

The equivalent linear model represents the non-linear sys-
tem over a range of operating points and parameter variations.
In order to illustrate this point, in this section, the nominal
values of Re and the speed reference w∗

r , denoted by Reo
and w∗

ro, have deliberately been set to 3.6 Ω and 3000 rpm
respectively. The nominal torque Too is kept at 20 Nm and
the other system parameters are defined as in Table I. These
parameter values introduce more non-linearity in the system
by causing a larger voltage drop in the DC-link voltage vout.
This increase in non-linearity better serves the purpose of
illustration. It is worth noting that in practical systems, it is not
improbable that the value of Re is very high for cases where
the lengths of interconnecting cables and input impedance
of the power supply are more significant. Based on the new
parameter values, the voltage Vouto is now better estimated by
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−
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(33)

the third order binomial approximation, denoted by Voutoest3
and shown in Fig. 9.
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Fig. 9: Polynomial approximation of the steady state DC-link
voltage Vouto with Re = 3.6 Ω and w∗

r = 3000 rpm

Fig. 10 depicts a number of operating points of the system
(Icplo,Vouto−est3) when both To and Re are subject to varia-
tions. With Re, w∗

r and To set to the aforementioned nominal
values and the rest of the system parameters defined as in
Table I, the nominal operating point can be shown to lie at the
point Eq10 in Fig. 10. If Re varies within ± 40% of Reo, say
due to changes in temperature, while To = Too = 20 Nm, the
operating point is seen to move to different positions along
curve 1 in Fig. 10. On the other hand, if To varies within
± 90% of its nominal value while Re = Reo = 3.6 Ω,
the operating point moves between Eq20 and Eq30; Eq20

and Eq30 being the operating points corresponding to the
minimum and maximum torque respectively. Hence, when
both To and Re vary, the operating points will lie between
curves 2 and 3.

Thus, the generalised linear model converts to specific linear
models about distinct operating points depending on the values
assigned to the system parameters and inputs. Furthermore,
the developed system model being linear is now suitable for µ
analysis. Since the µ approach explicitly takes into account all
varying system parameters and inputs, it becomes clear that in
fact it assesses stability robustness of a non-linear system over
all corresponding operating points, as will be demonstrated in
the subsequent section.
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Fig. 10: Operating points with varying torque To and line
resistance Re

IV. ROBUST STABILITY ANALYSIS UNDER LOAD
UNCERTAINTY

In this section, µ analysis is applied to determine stability
robustness of the power system shown in Fig. 5 when it is
subject to uncertainty in load torque. The torque To is con-
sidered to vary within ±90% of its nominal value of 20 Nm
as depicted in Table II, while all other system parameters are
assumed to be constant and equal to their nominal values as
defined in Table I. The system is studied with no DC-link
voltage filter. The destabilising load torque predicted by µ
analysis is verified against experimental results.

TABLE II: Torque Uncertainty

Parameter Average value Range of variation wrt average value
(Too) (Tvar)

Torque (To) 20 Nm ± 90%

A. Application of LFT

The application of µ analysis requires that the equivalent
linear model be first converted in the N∆ or LFT form.
Although the LFT operation can be done manually, the process
can be laborious [12]. Fortunately, the LFT exercise as well
as µ analysis can be performed automatically by employing



specialised software tools. MATLAB R© Robust Stability Tool-
box has been used in this work. The function ‘robuststab(sys,
omega)’ performs both LFT operation and µ analysis on the
state space system model denoted as ‘sys’ over the defined
grid of frequencies denoted as ‘omega’. For this case study,
‘sys’ is given by (33) - (36).

The operation of LFT involves firstly expressing all un-
certain parameters in the system model as LFTs. The torque
To, which is bounded in the interval [2 Nm, 38 Nm], can
be represented as a perturbation in its normalised form δT
bounded within [-1, 1]. Thus, To can be expressed as an LFT
in δT based on (39) and the values in Table II [12] [23].

To = Too + TooTvarδT , δT = [−1, 1] (39)

From Fig. 11, which is an illustration of (39), it can be seen
that when the ‘perturbation’ in torque is absent, δT = 0, the
torque is equal to its average value of To = Too = 20 Nm.
When the ‘perturbation’ is at its maximum, either δT = −1
at the low end of the uncertainty range where To = Tmin =
2 Nm or δT = 1 at the high end of the uncertainty range where
To = Tmax = 38 Nm. The critical torque, as represented
by the point (δTcr

, Tcr) in Fig. 11, will be determined by µ
analysis in the next section.

To (Nm)

 T-1 +1

(-1,Tmin)

Tmax

Tmin

(1,Tmax)

(Tcr,Tcr )

0

Too

Tcr

Tcr

Fig. 11: Relationship between torque and the normalised
disturbance in torque

Based on the LFT operation, all normalised parameters δT
are then extracted from the system model (33) - (36) and
grouped in a diagonal matrix in a feedback form. This results
in the system model being converted in its N∆ form as shown
in Fig. 4. The resulting disturbance matrix is given by (40)
where δT appears 24 times since To appears that number of
times in the uncertain system model.

∆(jw) = δT I24×24 (40)

It is worth noting that the order of an uncertainty matrix is
dependent on the number of uncertain parameters as well as on
the size and complexity of the power system being analysed.
It also depends on the order of polynomial approximation of
certain system elements such as Vouto in (32) for the system
under study. Unfortunately, the higher the order of the un-
certainty matrix, the higher is the computational burden [21].
Nevertheless, there exists some order reduction methods that
can be used to minimise the size of these matrices [24].

B. Application of SSV

By applying SSV analysis to the system in its LFT form, the
smallest disturbance matrix that causes instability is identified.
MATLAB R© Robust stability toolbox has been employed to
compute µ bounds of the system under study [12] [17] [23].
The results of µ analysis, as depicted in Fig. 12, show the peak
values of the lower and upper bounds of µ, which are in this
case the same and equal to 2.38 at the frequency of 57 Hz. The
critical frequency corresponds to the resonant frequency of the
LC filter which can be estimated as 1/(2π

√
LFCF ). Based on

the µ analysis results, the smallest destabilising disturbance
matrix is extracted as in (41), and the robust stability margin
is calculated as min(σ(∆)) = 1/µ = 0.42. The destabilising
torque Tcr, computed from (42) and δTcr

= 0.42, is equal to
27.6 Nm which is equivalent to the critical power of 2.6 kW.

∆cr(j2π57) = δTcr
I24×24 = 0.42 I24×24 (41)

Tcr = Too + TooTvarδTcr
(42)
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Fig. 12: µ chart for the determination of critical torque

The result, µ > 1, indicates that the system is not robustly
stable. The system does not remain stable over the whole
uncertainty set (i.e. within 20 ± 18 Nm) but only from
Tmin = 2 Nm up to Tcr = 27.6 Nm. In this way, µ operates
as a measure of stability robustness.

One known problem with µ analysis, as reported in the
mathematical and engineering literature, is that the function
µ can be discontinuous in cases where all the uncertain
parameters are purely real [16] [17] [20]. This leads to a
problem of convergence in the computation of a lower µ bound
which fails to identify a critical disturbance matrix. It has been
found that one way to solve the convergence problem is to
add a small complex value (α) to the real parameters. This
thus becomes a mixed µ problem instead of a purely real µ
problem. This approach can significantly improve continuity
and convergence of the lower bound. This solution can be
justified from the engineering viewpoint given that some small
dynamics are inherent and inevitable in practical systems [20]
[25]. This problem was encountered at the outset of this study.
Hence, a very small complexity of α = 0.1% was added
to the real parametric uncertainty by using the command
“complexify” in MATLAB R© Robust stability toolbox. This
was sufficient to make the µ lower bound converge [12].



C. Simulation Results

The PM machine drive is modelled in the Simulink R©

environment to enable time-domain verification of the result
from µ analysis. With the speed kept constant at 800 rpm,
three values of torque are applied in steps to the model. At
time t = 4 s, 95% of the critical torque (26.2 Nm) is applied
to the system and the DC-link voltage vout(t) stabilises with
time as can be seen in Fig. 13. At time t = 8 s, application of
the critical torque Tcr = 27.6 Nm causes the system to reach
boundary stability with sustained DC-link voltage oscillations.
This confirms the results from µ analysis which predicted the
critical torque of 27.6 Nm. Applying an additional torque of
5% over its critical value at t = 12s causes the system to
become unstable as shown in Fig. 13.
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Fig. 13: Time domain simulation of DC-link voltage vout(t)
at (i) t=4s, T = 0.95Tcr (ii) t=8s, T = Tcr (iii) t=12s, T =
1.05Tcr

D. Experimental Results

A number of experiments were undertaken on the PM
machine drive test rig that is described in this work and were
reported in [15]. It was found in the experiment that when
the torque was increased to 26.7 Nm at a speed of 800 rpm,
the DC-link voltage showed sustained oscillations as depicted
in Fig. 10 in [15]. This is in very close agreement with the
critical torque of 27.6 Nm determined from µ analysis. Thus,
both experimental and simulation results confirm the validity
of the proposed modelling approach.

E. Discussion

µ analysis directly provides an explicit measure of the
amount of variability that is allowed in uncertain parameters
for the system to remain stable. For the case under study, the
robust stability margin equal to 0.42 implies that maintaining
the normalised torque within 42 % of its nominal value
ensures system stability. This information is very useful and
can directly be employed in the design of the electrical power
systems. For instance, in order to ensure that the system under
study remains stable over the whole uncertainty range, µ
should be less than 1. One way to do this is to limit the
operating range to To = 20 Nm ± 38%. However, if the
operating range is to be maintained within 20 Nm ± 90%,
the input filter parameters LF and CF can be modelled as

uncertainties in order to find their optimal values that will
guarantee stability in the whole operating range.

Furthermore, the SSV method is less demanding for a
user. The only inputs that are to be provided to the software
are firstly nominal values and a variation range of uncertain
parameters, and then an equivalent linear state space model.

In contrast, the classical eigenvalue approach applied in [15]
to determine the critical torque of the PM machine drive is not
direct and involves an extensive process. Firstly, the operating
range is divided into a finite number of points. Then, for
each operating point, numerical linearisation is performed and
eigenvalues are calculated. The iterative process has to be
further refined until the critical parameter value is obtained
to a satisfactory accuracy.

The modelling methodology proposed in this work has been
successfully applied to the power system under study. It is still
to be tested on system-level architectures where source and
load subsystems, of the order of the EPS under consideration,
are interconnected. This aspect of the work is currently being
investigated.

V. EFFECT OF PARAMETER VARIATIONS ON STABILITY
ROBUSTNESS

In the previous section, we found that stability can be guar-
anteed for the system under study up to the maximum power
of 2.6 kW. In this section, the effect of parameter variations on
the destabilising power is investigated by using the µ method
that was described in section IV. In particular this analysis
includes variations in system frequency, bandwidth of the DC-
link voltage filter and natural frequency of the speed loop. All
the other system parameters are kept constant as given in Table
I unless specified otherwise. The results from µ analysis are
verified against experimental results reported in [15].

A. System frequency

Some aircraft power system architectures are known to be
“frequency-wild” with frequency changing in a wide range. It
is important to analyse how stability robustness of the power
system is affected by variations in system frequency. µ analysis
is applied to determine the critical torque that destabilises the
power system for system frequency ranging from 1 Hz to 300
Hz. For every frequency under study, the uncertain torque is
as defined in Table II. The system is investigated with no
DC-link voltage filter. The critical power is then computed
from the critical torque, determined from µ analysis at each
frequency point, based on P = Tcrwr/η. Fig. 14 depicts the
results from µ analysis. Further, a number of experiments were
performed on the system to identify the destabilising power
for frequencies of 50 Hz, 100 Hz, 200 Hz and 300 Hz. Fig. 14
shows the experimental results which have also been reported
in Fig. 11 in [15]. There is a close agreement between the
µ analysis predictions and the experimental results as can be
seen in Fig. 14. It can be noted that an increase in system
frequency causes an improvement in system stability.
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Fig. 14: Experimental and µ analysis-based critical power
under conditions of varying system frequency

B. Bandwidth of the DC-link voltage filter

The DC-link voltage vout is filtered for the computation of
the modulation index in the digital signal processor (DSP) as
shown in Fig. 6 [15]. The critical torque is determined for
different values of the DC-link voltage filter (fcutoff ) ranging
from 0 Hz to 300 Hz. The critical power is then computed
from the critical torque, predicted by µ analysis at the different
values of fcutoff , based on P = Tcrwr. Fig. 15 depicts the
power stability threshold obtained from µ analysis. In addition,
the critical power was measured experimentally at the shaft of
the motor for fcutoff of 10 Hz, 25 Hz, 50 Hz, 200 Hz and 300
Hz. Fig. 15 depicts the experimental results which have also
been reported in Fig. 12 in [15]. These experimental results
agree fairly well with µ analysis predictions as can be noted in
Fig. 15. It can be noted that the effect of the DC-link voltage
filter bandwidth on stability robustness is not monotonic and
is around 75 Hz at the point where the system is the least
robustly stable.
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Fig. 15: Experimental and µ analysis-based critical power with
varying bandwidth of the DC-link voltage filter

C. Natural frequency of the speed loop

µ analysis is applied to determine the destabilising power
for different values of natural frequency of the speed loop
(fn) ranging from 1 Hz to 25 Hz. The DC-link voltage
filter bandwidth is fixed at 50 Hz. Fig. 16 shows the results
from µ analysis. Moreover, the critical power was measured
experimentally at the shaft of the motor when fn was set at 5
Hz, 10 Hz, 15 Hz and 20 Hz. Fig. 16 shows the experimental
results which have also been reported in Fig. 13 in [15].

The experimental results agree closely with the µ analysis
predictions as can be seen in Fig. 16. The system stability
is seen to degrade with an increase in the natural frequency
of the speed loop.
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Fig. 16: Experimental and µ analysis-based critical power with
varying natural frequency of the speed loop

D. Discussion

This section has demonstrated how parameter variations can
affect system stability. The µ analysis results match closely
the experimental results which were reported in [15] and also
shown in Figs. 14 - 16 for the sake of completeness. This
validates the methodology proposed in this paper.

VI. CONCLUSION

The aim of this work was to apply µ analysis to assess
robust small-signal stability of a non-linear system over a
range of operating points and under parameter uncertainties.
To that end, a modelling methodology has been developed
to represent a non-linear system by an equivalent linear
system model that contains all defined system variability. This
approach with respect to classical methods eliminates the need
for exhaustive linearisation and extensive iterations under pa-
rameter variations. In addition, the modelling approach reduces
conservativeness in stability assessment of a non-linear system
as the equivalent linear model preserves all dependencies of
operating points on parameter uncertainties of the system. The
proposed modelling methodology has been verified through
the SSV (µ) analysis of a 4 kW PM machine drive system,
which successfully predicted the critical torque that causes
system instability. The investigation included uncertainties in
load and some system parameters. Further, all µ analysis
predictions have been validated based on experimental results
reported in [15]. Of note is that µ analysis, as compared
to classical methods, can be employed to evaluate the effect
of multiple parameter uncertainties acting simultaneously on
system stability. This topic will be discussed in a future paper.
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