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Abstract 

Bioenergy has been proposed as both a problem and a solution for land use conflicts arising at the 

nexus between food security and environmental conservation. But such assessments need to be 

considered in light of differences in the way people value the use of land and the facts that are 

considered or excluded in making such judgements. While technical and policy appraisals of food 

security favour a target-based approach that considers land as a global resource to be managed in 

accordance with universal targets and technological innovation for food production and nature 

conservation, social researchers highlight the need for a context-based approach where considerations 

of the role of land in people’s everyday lives and its historical and cultural attachments ought to shape 

interventions. This Chapter highlights the assumptions and value judgements that underpin different 

visions of how land should be used by opening up conflicting judgements that arise when we position 

bioenergy in the context of current and future agricultural systems. We develop a ‘responsible 

innovation’ framework to highlight the fact that there are multiple pathways for any technological 

intervention. Drawing on research undertaken in the UK, we apply this framework to valuations of 

land use and biomass in agricultural systems. We identify a number of, often conflicting, value 

dimensions related to different uses of land (for food, fuel or fodder), to land quality (should marginal 

land be used for fuel production) and to different uses of biomass (including competition for the use 

of straw, the use of biomass for on-farm energy generation as opposed to national energy targets, and 

biomass for large-scale biorefining to meet multiple objectives at the food/fuel/environment nexus). 

By opening up to scrutiny the assumptions that reinforce particular innovation pathways we were able 

to look beyond technical innovation in agricultural systems and land use choices to consideration of 

social innovations that draw attention to alternative visions of land use in agricultural futures.   
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Introduction 

Bioenergy has been positioned as both a problem and an innovative solution for land-use conflicts 

arising at the nexus between food security and environmental conservation (Murphy et al., 2011; 

Tilman et al., 2010). In this Chapter, we examine different valuations of land-use and biomass that 

need to be considered when assessing bioenergy interventions. Drawing on research into controversies 

around bioenergy, we show that at stake in this debate are different ways of conceptualizing the 

problem definition and innovation pathways. These arise from differences in the way people value the 

use of land for food, fuel or fodder, as well as in differences in the facts that are considered or 

excluded. Is land a global resource to be managed in accordance with universal targets and 

technological innovation for food production or nature conservation, or is it a place of lived 

experience where historical attachments, struggles and local needs ought to shape interventions? 

While much of the technical and policy literature on food security begins from the former position (a 

target-based approach), social researchers have highlighted the need to begin from the latter (a 

context-based approach).  

In a context-based approach, we are interested in both factual and value judgments, but we want to 

know which facts or values are included in planning interventions and which are not, and why these 

choices might be important. As research and innovation systems are being charged with the 

responsibility to reflect on underlying values and taken-for-granted assumptions, cross-disciplinary 

dialogue across these perspectives is becoming more important.  

From a technical perspective, the challenge arising from the global agenda for food security is 

commonly defined as follows - the World Resources Institute highlights that food production will 

need to rise by 70% by 2050 to feed a projected world population of 9.6 billion people (Searchinger et 

al., 2013). The problem then is whether/how such an increase can be achieved sustainably given that it 

is expected to require a significant intensification of agricultural activity, putting more pressure on 

ecosystem services which are already at risk. However, from a social research perspective, 

discussions of sustainable land-use need to first ask how we should frame the problem of food 

security as this will in turn determine how we think about solutions.  

 

So, should the challenge of food security be defined simply as a challenge of increasing total amount 

of food produced at a global level with minimal environmental harm? Framing the question this way 

seems to lend itself to identifying new technologies of intensification as the answer. One problem 

with this framing is that it gives priority to technology development over social, institutional and 

economic factors that fundamentally affect food security. Some, therefore, reject technologies of 

intensification, arguing that these are being developed in a flawed socio-economic system that allows 

people to go hungry despite sufficient availability of food (see McDonagh, 2014 for a review). They 

point to how food security for some is being pursued by creating insecurity for others, for example, 

through agricultural ‘land grabbing’ (Borras et al., 2011) and call for developing alternative agro-

ecological technologies within a farm-system prioritizing local food sovereignty as opposed to 

farming for volatile global markets (de Schutter, 2011).  

 

Others highlight complexity; rather than a choice between two distinct technological systems, they 

emphasise multiple pathways and ways of linking technology and social objectives. For example, 

Jewitt and Baker (2007) note benefits from Green Revolution technologies reported by villagers in an 

Indian district; they agree that increasing food production was indeed valuable here, but that 

interventions must start from an understanding of local needs and perspectives. Harvey and Pilgrim 
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(2011) highlight regional variations in agricultural pathways that the language of ‘global’ security 

tends to miss.   

 

Bioenergy provides an important case for examining the conflicts and possibilities at stake. On the 

one hand, it is feared that bioenergy will exacerbate pressures on food security and agricultural land. 

Rapid growth in first-generation biofuels over the past decade is partly held responsible for a shift 

towards coarse grains and oilseeds to meet competing demands for food, feed and fuel (OECD/FAO, 

2015). On the other hand, bioenergy has been proposed as a solution to the challenge of reconciling 

food and environmental conflicts. First, energy crops are envisioned to reduce agricultural inputs, 

hence reducing pressure on nature. Second, energy crops grown on marginal land might be a way of 

reducing pressure on higher quality agricultural land. Third, there is the possibility of using 

biodegradable ‘wastes’ and residues (e.g., straw) rather than crop material for some forms of 

bioenergy such as biogas (from anaerobic digestion of feedstocks), biomass heat and power or 

lignocellulosic (second-generation) liquid biofuels for transport, again taking pressure off agricultural 

and high nature value land.  

This chapter aims to highlight the assumptions and value judgements that underpin different visions 

of how land and biomass should be used, with particular reference to these visions for bioenergy. 

Rather than frame the discussion simply in terms of options for reducing the food security impacts of 

bioenergy, we open up conflicting judgments that arise when we position bioenergy in the context of 

agricultural systems, as they exist now and as they might in the future (Raman et al., 2015). In order 

to do this, we draw on the concept of responsible innovation which draws attention to the fact that 

there are multiple pathways for any technological interventions.  

 

Responsible innovation in agricultural systems 

The notion of responsible innovation has garnered increasing attention in recent years as research 

funders (e.g., Horizon 2020, Research Councils UK, Innovate UK, US National Science Foundation), 

industry and academia (Owen et al., 2013; Stilgoe et al., 2013) have sought to draw attention to the 

social and value dimensions of the processes and products of research and innovation. Responsible 

innovation builds on a continuum of technology assessment (TA) methods including constructive TA 

(Schot and Rip, 1997) and real-time TA (Guston and Sarewitz, 2002) as well as deliberative 

democratic methods such as upstream engagement (Wilsdon and Willis, 2004), but further aims to 

stimulate reflection on what innovation should do in response to pluralistic societal values and visions 

for future development.  

Looking at agricultural systems through the lens of responsible innovation enables us to draw 

attention to how land and biomass should be used to address the societal challenges at the 

food/fuel/environmental nexus. Asking how land and biomass should be used in light of research and 

innovation (such as in agricultural production methods, pesticides, harvesting technologies, transport 

and logistics, physical infrastructure) and economic growth addresses issues of technical innovation. 

Although technical innovation and economic efficiency in agricultural systems are vital, there is a 

need for a wider systems perspective as innovations are also socially (as well as culturally and 

territorially) embedded (Fløysand and Jacobsen, 2011). It is important to evaluate the social impact of 

innovations as there are generally winners and losers in terms of the distribution of impacts. 

Addressing issues of social innovation in agricultural systems is also necessary to help mitigate the 

uneven distribution of impacts by exploring value-based questions. Who decides how land and 

biomass should be used? Which communities/regions have borne the negative impacts, which ones 

benefitted? What alternative ways might there be of using and managing land to enable a more 
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equitable distribution of impacts? Attending to such matters is important as the issues at stake are 

more often linked to people’s values and beliefs about what agriculture is and how it should progress 

rather than about what is technologically feasible (Thompson, 2012). Social innovation can assist 

progress by facilitating change in the existing evaluative, institutional, cultural, and regulatory 

structures of agriculture systems so that, for example, new land use management practices may 

evolve, new supply chains may be established and existing institutions may innovate to better inform 

land use decision-making. 

Applying a responsible innovation framework allows us to open up the values and assumptions about 

land use on which present-day agricultural systems are based and to ask if there are other ways of 

conceptualising agricultural futures. By making explicit the value judgements involved in selecting 

one pathway over another, a responsible innovation framework opens up the possibility of looking 

beyond technical innovation in agricultural systems and land use choices to consideration of social 

innovations that draw attention to alternative visions of land use in agricultural futures. 

To apply the responsible innovation framework to valuations of land use and biomass in agricultural 

systems, we adopt the above approach to identify key value dimensions related to a selection of 

different uses of land and biomass as well as alternative visions of agricultural futures. We draw on 

research undertaken in the UK and situate it in the global agricultural complex.  

Valuations of land use 

Food, Fuel and Fodder 

Bioenergy draws attention to the value question of how we ought to prioritize different purposes for 

which land may be farmed or conserved. Controversy around the use of food crops such as maize, 

sugarcane, grains and vegetable oils for liquid transport biofuels has been widely interpreted in terms 

of a food versus fuel divide, with land-use for food assumed to have higher value over fuel (Mohr and 

Raman, 2013; Pimentel et al., 2009). Non-food bioenergy feedstocks (dedicated energy crops such as 

miscanthus and SRC willow; agricultural and forestry residues or co-products such as wheat straw), 

are, therefore, assumed to avoid conflicts with food security and other non-agricultural land uses. But 

as we show below, this target-based assessment is too simplistic.  

First, using non-food feedstocks does not in itself avert a food-versus-fuel conflict. It only appears to 

do so if we frame the intervention in terms of overall targets, in this case, of biomass feedstocks and 

their energy value for liquid fuel, or biomass combustion for heat and power. From a context-based 

perspective, food-security concerns remain if non-food energy crops were grown on land having some 

value for food production (Mohr and Raman, 2013). This has added significance for dedicated energy 

crops should these be grown for fuel used by wealthier groups, on land of subsistence value for 

vulnerable populations in the global South. Food-versus-fuel in this respect is partly a matter of whose 

fuel needs are met and whose needs (for food and fuel) are compromised in the process (Raman and 

Mohr, 2013).  

Second, the fact that fuel and food are inter-related systems (Karp and Richter 2011) complicates the 

valuation of land for producing food separately from fuel. For subsistence farmers, land provides a 

source of food as well as fuel, for example, in the form of fuelwood and animal dung. Removing 

animal dung and crop residues from the field for domestic energy use, rather than using these 

materials to improve soil health may have negative implications for future agricultural production. In 

industrial agricultural systems, crop cultivation relies on the use of fuel for fertilizer, machinery, 

distribution of inputs and outputs, etc. Energy footprints are now assessed alongside water use, 
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biodiversity, pollution and other impacts in environmental assessments of agriculture (Khan and 

Hanjra, 2009), hence, technologies to reduce the energy footprint of food production would be of 

value. But this is also where value judgments clash over whether to perpetuate industrial agriculture, 

promote alternative methods or develop a ‘third’ way drawing on both industrial and alternative 

techniques in order to meet food and environmental objectives. 

Third, the valuation implied by food-versus-fuel can be reframed in terms of meat-versus-fuel (de 

Fraiture et al 2008). As grain is not just consumed directly by humans but is also fed first to livestock, 

the question of whether all ‘food’ crops should be valued equally is being opened up. Some now 

advocate biofuels on the basis of reductions in the use of land (and products of land including grain 

and wheat straw) for animal feed, a point prefigured in an early assessment of bioenergy by David O. 

Hall (1991) and echoed in some recent stakeholder assessments (CAT, 2010; Carbon Cycles and 

Sinks Network, 2011). In other words, the concern about food versus fuel (where food is given moral 

priority) has been reframed in terms of a particular kind of food (meat) versus fuel (where fuel is 

given priority).  

A recent study found that the meat versus fuel framing was widely used by key stakeholders in the 

bioenergy sector in Denmark (Shortall, 2014). The dominance of the pig production industry and 

export market in Denmark may explain why this argument was particularly prevalent, and why pig 

meat was framed as an environmentally damaging, luxury product for export that compared 

unfavourably with energy crop production which was seen to be an environmentally benign or 

beneficial necessity for local consumption. Here, a very clear value distinction is being made between 

food and fodder whereby fodder for animal production is not food and as such there is no value 

conflict if fodder production was to be displaced by energy production. The reframing of meat as an 

excessive luxury in the context of a resource-challenged future problematizes the food-versus-fuel 

valuation by highlighting the fact that not all food sources are valued equally and there are other 

important factors at play in considerations of the best use of land (Wassenaar and Kay, 2008). The 

OECD/FAO (2015) projections in Figure 1 lends weight to this contention.  In land-use terms, 

agricultural land (defined as arable land and permanent crops and pastures) accounts for around 38 

percent of global land area, of which about 12 percent is used for crop production (FAO, 2012). 

Cereal production dominates the crop sector and continues to be the most important food source for 

human consumption. However, increasing affluence and urbanisation, particularly in developing 

regions, are causing diets to shift towards animal-based products, such as meat, milk and dairy, which 

use land not only for grazing but also feed production. While global cereal consumption is expected to 

expand by almost 390 Mt by 2024, the production of coarse grains, used primarily for animal feed and 

(first-generation) biofuels (Figure 1), is predicted to constitute more than half of this increase 

(OECD/FAO, 2015). This reflects the fact that livestock production is now the world’s largest 

agricultural land use sector and livestock consume around 60 percent of the global biomass harvest 

(Weindl et al., 2015).  

<FIGURE 1 HERE> 
  

These figures have been used to make a case for intensifying the existing global-industrial agricultural 

system so as to meet (and continue to meet) rising demand. But another vision is predicated on the 

argument that this global agri-food economy does not meet the needs of the poor and the vulnerable 

and indeed, that it has led to the exploitation of subsistence farmers and small-holders; what is 

required is a different system based on local sovereignty and agro-ecological techniques (de Schutter, 

2011). These different value-judgements need to be considered in discussing which interventions to 

adopt.  
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Use of Marginal land for Fuel 

While the food-fuel-fodder debate is about the proper use of arable land, a further complication arises 

when we consider so-called marginal land. Using marginal land to cultivate energy crops has been 

proposed as a way to meet fuel needs without compromising food security (Renewable Fuels Agency, 

2008) or even biodiversity (Karp et al., 2009). But what counts as marginal land – or what is variously 

characterised as idle, degraded, under-used or under-utilised land - remains ambiguous (Shortall, 

2013). As we show here, this is in part due to different ways of valuing land quality and the 

implications for land-use – or, indeed, if, when and/or by whom land should be used for cultivation or 

left in a natural state. Also important is the extent to which factual assumptions - about how much 

marginal land is available and where, and how much such land can yield – hold up to scrutiny. Again, 

we need to look beyond overall targets and attend to context.  

In the UK, a domestic bioenergy system has been proposed as an option where marginal land within 

the country would be used to cultivate energy crops. But a recent review of academic, consultancy, 

NGO, government and industry documents shows that ‘marginal land’ does not have a consistent 

meaning or valuation (Shortall, 2013). In the early 2000s, perennial energy crops such as willow were 

regarded as marginal crops and as such, relegated to the least productive ‘marginal’ land where yields 

were lowest (Royal Commission on Environmental Pollution, 2004). Once food-based biofuels 

became controversial, marginal land and perennial crops came to be valued more highly as a way of 

promoting bioenergy without consequences for food security. But to distinguish marginal land, we 

need more than generic definitions.  

One meaning of marginal land within the UK refers to land judged ‘unsuited’ for food production 

while a second refers to land of ‘lower quality’ where food crop cultivation would be less productive 

though not impossible (Shortall, 2013). The standard Agricultural Land Classification (ALC) system 

is the typical reference point where Grade 1 land is defined as excellent for arable purposes while 

grade 5 is very poor. In theory then, energy crops on grade 5 land might pose no conflict with a high 

value placed on land for food, while grades 4 and 3 might pose some conflict but one that is judged to 

be worthwhile if both fuel and food needs must be met. In practice, however, interventions will need 

to consider how valuations play out in the context of a specific place. The culture endemic to a 

specific place strongly determines values related to the natural environment and how land should be 

used and are likely to vary not only among different users of land but also between local communities 

and visitors who each experience a different sense of place (Slee et al., 2014).   

First, ALC classifications may or may not correspond with farmers’ judgments on the viability of 

using parts of their land for bioenergy. Second, the value of using land for bioenergy will need to be 

compared with values associated with previous uses. In some places, it may benefit biodiversity (for 

example, perennial crops grown on contaminated land) whereas in others, it may not (for example, 

converting land designated as ‘set-aside’ for environmental purposes in the former European 

Commission scheme). Third, it is not clear if perennial crops can be profitably grown on lower quality 

land on the large scale that is envisioned in energy targets. This has also been a matter of concern for 

those looking beyond the UK with some environmental NGOs questioning if energy crop production 

would be economically-feasible on lower quality land and whether production would be limited to 

this type of land alone (The Gaia Foundation et al., 2008). But if we do assume that some lower-

quality land can/will be used, we need to keep in mind that environmental gains may be offset by the 

process of making degraded land viable for large-scale production - notably, some lignocellulosic 

crops have needed additional irrigation (Ribeiro and Quintanilla 2014; Jewitt and Raman, in press). 
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Fourth, and related to the previous point, if energy crops do become financially attractive, it may not 

be possible to restrict cultivation to land that is judged to be marginal in terms of viability for food. 

How the market values land is, therefore, a key issue. Another meaning of marginal land in bioenergy 

discussions is based on market logic (Shortall, 2013). ‘Economically marginal land’ refers to land 

where energy crop production is likely to take place for economic reasons (Committee on Climate 

Change, 2011). But this then opens up the question of how market valuations relate to or diverge from 

social and environmental valuations, and/or from those of people living on land designated as 

marginal. 

These conflicts in valuation of land become more acute when we turn to options proposed for 

bioenergy at a global level with land in various parts of the global South identified in bioenergy 

potential maps as ‘marginal’ or degraded. The idea that energy crops can provide farmers with 

additional income over and above food production is appealing (Schubert et al., 2008), but some have 

contested the idea of marginal land, asking whether it exists in sufficient quantities and observing that 

apparently marginal land may have existing value for subsistence (Franco et al., 2010) environmental 

and nature protection purposes (Borras & Franco, 2010). Experience from history and other national 

developments of bioenergy show that policy or expert designations of ‘wastelands’ have periodically 

clashed with the experience of people relying on such places for their livelihood (Brara, 1992; Jewitt 

and Raman, in press).  

In sum, proposals for using marginal land for bioenergy rely on the assumption that such land has no 

or little (current) value, and that it can be productively transformed for meeting fuel needs without 

compromising food security. It is assumed that this can be done without negative environmental 

consequences and indeed, that impacts of perennial crops on some aspects such as biodiversity can 

actually be positive. Not only do these assumptions need to be tested against alternative expectations 

and valuations as discussed above, they also need to be assessed in light of future impacts of climate 

change on land uses. In Scotland, land use classifications have already begun to evolve to reflect that 

the ‘squeezed middle’ (the classes of land that comprise intermediate quality farmland) is becoming 

more dynamic as land previously considered to be of prime quality or poor quality changes as a 

consequence of climate change (Slee et al, 2014).    

Valuations of biomass use 

In addition to differences in how land might be valued, priorities for biomass also vary. What then are 

the best uses of biomass? In this section we explore this question with reference to competition for the 

use of straw, the use of biomass for on-farm energy generation as opposed to national energy targets, 

and biomass for large-scale biorefining to produce multiple value-added products. 

Agricultural Residues: The case of straw 

The term, agricultural residues, refers to a range of co-products of crop production, notably, seed 

husks and straw. Straw, the more abundant of the two, is a potential feedstock for bioenergy. 

Cultivation of the most widely produced crops in the world, wheat, rice, barley, maize, rye, oats and 

millet, (FAO, 2015), all result in straw production to varying degrees, suggesting a sizable resource 

across countries in both the global North and South. In technical and policy visions for bioenergy, 

straw is valued as a means of overcoming land-use controversies through utilising material produced 

from existing annual crop production methods; similar valuations are also evident in some NGO 

literature (e.g., CAT, 2010). But, contextual aspects of valuation remain important as we now show, 

drawing on literature on a range of different straws and a UK-based wheat straw case study. 
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Straw may be burned, incorporated into the soil or baled for subsequent uses, depending on the 

farming system in question. Each of these practices is informed by implicit or explicit valuations 

which are shaped by statutory regulation (or lack of it), management needs and traditions, farmer 

preferences, and feasibility, and which may also come into conflict (Agriculture & Horticulture 

Development Board, 2014). 

Burning of straw is widely practiced globally as a cheap and quick way of clearing fields, and 

provides non-chemical means for destroying weed seeds and pests such as slugs, reducing disease in 

the following crop and returning some nutrients to the soil in the ash (Williams et al., 2013). 

However, burning of straw is a major source of air pollution, releasing carbon dioxide, carbon 

monoxide, nitrogen and sulphur oxides, particulate matter (Gadde, et al., 2009) and also carcinogenic 

dioxins (Gullett & Touati, 2003; Korenaga & Huang, 2001) that increase the risk of respiratory 

disease (Gadde, et al., 2009; Tipayarom & Oanh, 2007). Therefore, as an alternative means of 

handling straw, bioenergy may be valued as a way of improving health while creating alternative 

income streams for farmers.  

Yet, in an agricultural system in a poor rural region, capacity to process straw for bioenergy may be 

limited as Shuping (2009) notes in the case of China. Baling or incorporation requires labour intensive 

practices, or energy intensive technologies that are difficult for poor rural farmers who have limited 

access to capital, fuel and machinery. In this context, changing straw-burning practices requires more 

than placing a high-value on long-term health outcomes or energy outputs; a more holistic approach is 

needed. 

In the UK, infrastructures, machinery, knowledge and markets have developed to facilitate 

widespread straw baling and trade or incorporation. While environmental health standards led to a 

statutory ban on burning straw in 1989, straw is valued highly for a range of other purposes, making 

availability for bioenergy a challenge. First, a large proportion of straw in the UK is incorporated 

directly into the soil to boost organic matter and nutrients to maintain soil fertility for arable farming 

(Committee on Climate Change, 2011). Where crop residues are routinely removed, this has been 

seen to cause negative environmental impacts on soil health and biodiversity (Franzluebbers, 2002; 

Wilhelm et al., 2004; Lal, 2005). The culture of incorporating crop residues into soil is widely 

practiced in organic agriculture to maintain soil in the absence of inorganic fertilisers with the aim of 

making agriculture self-sufficient in nutrients and energy (Jørgensen, 2007). In industrial farming, the 

high price of Nitrogen and Phosphorus fertilisers creates high value for incorporating straw as a 

means to reduce costs, and agronomists promote it for this reason.  

Second, straw is widely baled and sold onto market or used within mixed farming systems. Straw is 

sold principally to livestock farmers for bedding and silage, but also for carrot production, mushroom 

compost, and equine and small animal bedding. Beyond the agricultural sector, straw has further 

competing uses such as for cooking fuel, basketry/crafts, packaging and construction. These 

competing market valuations may pose constraints on supply through price conditions that mean it is 

uncompetitive as a feedstock in energy markets.  

This picture of standard practice is complicated by a high level of supply and demand uncertainties in 

UK straw availability in any period. One key factor in the UK is the prevailing weather during the 

harvest which determines how willing arable farmers are to bale the straw. Wet weather encourages 

incorporation and quick establishment of the following crop to reduce soil structure damage. The 

prevailing weather during the winter months also dictates the extent to which livestock farmers may 

need to purchase straw as mild weather enables longer outdoor grazing, therefore, reducing demand 
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for straw, whereas a late and wet spring increases demand as the animals must remain inside. 

Livestock farmers have often needed to buy straw on an ad hoc basis from straw merchants. However, 

the diversification of bedding materials now available to livestock farmers (sand, sawdust, paper 

waste) means that demand for straw from this sector may continue to decline, creating opportunities 

for other purchasers. 

Uncertainty also arises from international market valuations. In the UK inter-regional trade in straw 

between arable and livestock regions is common, but this also includes international trade (see 

Agriculture & Horticulture Development Board, 2015 for export figures), which may be volatile. Bad 

weather on the continent and in Ireland means that occasionally farmers from Spain, Germany, 

Netherlands, France and Ireland access the UK straw market to make up any shortfall. International 

buyers are often willing to pay high prices to secure the straw they need, warping local markets. It is 

within this unpredictable and potentially rapidly changing context that bioenergy users are attempting 

to establish a constant and regular supply of straw.  

Finally, straw availability is also influenced by how the value of efficiency is shaping other 

innovations whose unintended consequence is reduced straw production. In the UK, continued up-

scaling of combine harvesters suited to large-scale monoculture production has meant a reduced 

amount of combine header control in uneven fields, meaning more straw is left behind in the stubble. 

Crop breeding has consistently boosted seed yields at the expense of straw yields with modern 

varieties being sometimes significantly shorter than their predecessors. In a global context, 

mechanisation of agriculture, which is an important component for expanding straw use as a baled 

product, reduces labour and, therefore, employment opportunities, and intensifies production methods. 

In the future, adoption of modern crop varieties may, therefore, change what now appears as a 

significant straw surplus. 

Organic Wastes  

Anaerobic digestion (AD) of organic waste generates biogas which can be used for a range of energy 

needs (see Figure 2). In terms of the challenge of producing food and fuel with minimal 

environmental harm, AD appears to be an ideal solution as it relies on food and plant waste and 

slurries and sewage rather than crop material. However, as AD has come to be valued more highly for 

optimal energy outputs, contradictions are emerging with strategies such as the UK’s Anaerobic 

Digestion Strategy and Action Plan (DEFRA 2011) implicitly incentivising new feedstocks other than 

‘waste’ alone. This section draws on a case study of historical change in the UK’s AD sector.  

Farming is energy intensive and the value of an environmentally friendly farm or farming community, 

self-sufficient in energy, has been revived in recent years (Royal Agricultural Society of England, 

2014). In the UK, farm-level AD emerged in the 1970s as a promising multi-functional technology for 

farmers needing to find sustainable ways of managing wet wastes while also meeting some of their 

energy needs (heating farm buildings, stoves, etc). This option flourished at a niche level in a policy 

regime that supported farm-pollution abatement measures.   

<FIGURE 2 HERE> 

As energy output became a value in itself, AD has been recently promoted more heavily in UK policy 

but at the expense of transforming the vision of self-sufficiency. Incentives for using biogas as an off-

grid alternative to fossil-fuel heating on the farm are fewer as maximising energy output has meant 

AD being valued more for electricity generation and heat-and-power (CHP). This means investing in 

new materials such as equipment to connect to the grid (Reno, 2011) and/or looking for added 
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feedstocks beyond slurry waste. Studies have highlighted that dry material to the tune of at least 30 

percent improves the efficiency of conversion of wet wastes from farms (which are low in energy 

density) and maximises biogas yields (NNFCC 2011). This has facilitated a shift away from 

incentivising smaller, predominantly slurry/manure-fed farm-based AD units to larger plants located 

beyond the farm that co-digest multiple materials including slurry, food waste, vegetable wastes and 

crop residues. Increasingly purpose-grown energy crops such as maize and wheat are also promoted to 

boost biogas yields (Redman, 2008; Jones and Salter, 2013).  

Energy crops have been key to the rise of the German AD sector where Britz and Delzeit (2013: 

1268) suggest that the increased use of fodder maize as an AD feedstock has potential to cause 

"sizeable impacts on global agricultural markets in prices and quantities, causing significant land use 

change outside of Germany” while "subsidies for biogas production are passed on to electricity 

consumers”. In the UK, the use of maize for AD plants has been criticized for the fact that it is 

harvested late in the year and leaves fields susceptible to erosion from surface run-off – especially in 

south western England where rainfall is high and often occurs in intense episodes (Palmer and Smith, 

2013). In dairy farming systems where maize is used as both a fodder crop and as an AD feedstock, 

pollution problems are common, especially in nitrate vulnerable zones. This stems from the fact that 

farmers struggle to contain their digestate until the start of the spreading window in mid-January and 

risk damaging the land and causing high levels of nutrient rich runoff by getting digestate back onto 

the land in inappropriate conditions. These problems can be compounded by compaction damage 

which leads to the rapid runoff of rainfall into watercourses instead of infiltration into the soil (Palmer 

and Smith, 2013: 573).  

However, in the case of grass as opposed to purpose-grown maize, a more positive case for dry 

material (not strictly, ‘waste’) for AD is being made in light of value for biodiversity and aesthetics in 

addition to energy per se. Grass-based biogas production is promoted by the Danish government to 

help meet renewable energy targets while providing environmental benefits (Ministry of Food, 

Agriculture and Fisheries of Denmark, 2008). Land under grass cultivation contains high levels of soil 

carbon and houses biodiversity associated with open landscapes which is needed to fulfil Denmark’s 

commitments under the Convention on Biological Diversity (Det Økologiske Råd, 2010). Because 

grass production can be less intensive than arable production, some have suggested grass for energy 

use as a beneficial use of environmentally sensitive land otherwise susceptible to nitrogen leaching 

and long term damage if used intensively (Ministry of Food, Agriculture and Fisheries of Denmark, 

2008). Grass is also seen to have an aesthetic advantage over tall-growing energy crops such as 

willow or miscanthaus, whereby the former is considered a ‘natural’ part of the landscape and the 

latter as potentially invasive species (Shortall, 2014).  

Comparing the valuation of grass with perennial energy crops (willow), we also see a growing case 

for valuing flexibility. Once planted, perennial crops stay in the ground for 20-30 years, whereas grass 

can be established quickly thus enabling it to be part of a crop rotation system. The issue of crop 

flexibility and being able to reverse cropping decisions is valued in small-scale farming as reported in 

a multinational study conducted by Ribeiro and Quintanilla (2014) who noted that some energy crops 

were harder to dislodge because of their root architecture and depth and because energy crop supply 

chains are fundamentally different to those of food crops. Swapping between the two production 

systems thus involves considerable risks beyond just that of investment of time and money. 

The biorefinery concept 
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The biorefinery concept (Figure 3) introduces a potentially novel way of valuing biomass-use to meet 

multiple objectives at the food/fuel/environment nexus. But as we see here, the feasibility of the 

technology has been questioned, and alternative ways of envisioning multi-functional agriculture have 

been put forward.  

Biorefining involves the processing of biomass into different products such as plastics, chemicals and 

building materials in the same way that crude oil is processed and refined into more useful oil-based 

fuels (Taylor, 2008). The concept was promoted in the EU’s 2020 bioeconomy strategy as the 

application of biotechnology innovations to ensure the sustainable use of resources, whilst ensuring 

competitiveness and fostering innovation in Europe (European Commission, 2012). It aims to 

safeguard food and energy security whilst overcoming resource constraints, dependence on non-

renewable resources and tackling climate change.  Because biomass can be processed in the 

biorefinery into many different products, here the food versus fuel conflict is reframed as a win-win 

process that produces food and fuel (Zhang, 2013). In this context, biomass is positioned as the fossil 

fuel of the future that can be decomposed and recomposed to produce the same products as in an oil 

refinery (Gylling et al., 2012). In this way, the distinction between food and fuel crops is no longer 

seen as the most important way to value crops, rather crops will be produced because of their 

efficiency in using nutrients and other resources, their environmental benefits and their suitability for 

processing into multiple products in the biorefinery (Levidow et al., 2013).  

<FIGURE 3 HERE> 

However, some question the idea that biomass can be readily substituted for fossil fuels: i.e. that 

plants are the oil of the future. As highlighted above, use of land for biomass production necessarily 

involves resource trade-offs with food production and environmental services, which cannot be easily 

overcome by strategies such as using marginal land or crop residues. In addition some point out that 

there are important chemical differences between biomass and fossil fuels as an energy source 

(Canakci & Sanli, 2008; Miller and Tillman, 2008). Moreover biomass is significantly less energy 

dense: fossil fuels are biomass that have been condensed in the ground for millions of years, whereas 

biomass converts ‘real time’ solar energy to fuel (Pimentel, 2003). Photosynthesis is seen as a 

relatively inefficient way of converting solar energy to useable energy for human societies (Zhang, 

2013). Thus, some argue that biomass cannot straightforwardly substitute fossil fuels in energy 

generation, a situation further compounded by the high energy demands of industrial societies that 

have been built up around energy dense, relatively abundant fossil fuels (Shortall et al., 2015).  

In sum, the question of what should land be used for raises the question of how we should develop 

bioenergy if we are to transition away from fossil-fuel economies.  Should we think of bioenergy as a 

substitute for maintaining life as it currently organised and as implied in many technical and policy 

visions? Or should a decrease in overall energy use be at the core of a future bioenergy alternative to 

fossil-fuel systems? (CAT, 2010). These questions imply fundamentally different values.  

Conclusions: the responsible innovation of agricultural futures  

A quarter of a century ago, bioenergy pioneer David O Hall (1991) presciently observed the need for 

a realistic assessment of food versus fuel arguments against the background of rising food surpluses in 

some parts of the world and food and fuel shortages in others, linked to increases in the production of 

animal feed and the potential for agricultural productivity. Where biomass energy projects have failed, 

Hall (1991: 733) claimed this had been due to a technocratic approach which first prioritises the need 

for energy rather than a ‘multi-uses’ approach which asks “how land can best be used for sustainable 
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development”. Although its use as a formal tool for democratic governance did not exist back then, 

Hall was in essence advocating a responsible innovation approach to agriculture to take into account 

the reality of food and fuel challenges and to evolve efficient methods of utilising available land to 

produce food and fuel, besides the other products and benefits of biomass.  

One of the aims of responsible innovation is to open up to scrutiny the assumptions that reinforce 

particular innovation pathways and explore alternative visions before technological commitments 

become entrenched. This Chapter has contributed to this by asking how should land be valued, used 

and managed in the wider context of envisioning agricultural futures able to meet the needs of a 

burgeoning global population under challenging climactic conditions with minimum losses to stored 

carbon and biodiversity. A societal grand challenge such as this requires new ways of innovating 

beyond the usual ‘techno-fixes’ to make the best and most efficient use of land and biomass.  

Social innovation is not captured or considered in efforts to model agricultural futures, such as those 

underpinning the scenarios used in OECD-FAO Agricultural Outlook reports (which are based on 

specific assumptions regarding macroeconomic conditions, agriculture and trade policy settings, 

weather conditions, longer term productivity trends, and international market developments (OECD-

FAO, 2015), all of which reinforce technical innovation) and which tend to conceptualise agriculture 

as a singular bioeconomic activity either in terms of individual countries or as a global complex. Only 

when you take a more socially, culturally or territorially sensitive approach to assessing agricultural 

futures do issues signalling the need for social innovation, such as mitigating the uneven distribution 

of agricultural impacts, come to the surface.  
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