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As expressed in the Gestalt law of good continuation, human perception tends to associate stimuli that
form smooth continuations. Contextual modulation in primary visual cortex, in the form of association
fields, is believed to play an important role in this process. Yet a unified and principled account of the
good continuation law on the neural level is lacking. In this study we introduce a population model of
primary visual cortex. Its contextual interactions depend on the elastica curvature energy of the smooth-
est contour connecting oriented bars. As expected, this model leads to association fields consistent with
data. However, in addition the model displays tilt-illusions for stimulus configurations with grating and
single bars that closely match psychophysics. Furthermore, the model explains not only pop-out of
contours amid a variety of backgrounds, but also pop-out of single targets amid a uniform background.
We thus propose that elastica is a unifying principle of the visual cortical network.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The Gestalt psychologists emphasized that human perception
should be understood as a whole, rather than as the sum of individ-
ual elements. In the context of contour recognition, they proposed
the law of good continuation, in which collinear or curvilinear line
elements are associated together (Koffka, 1935; Wertheimer,
1923). This principle presumably underlies the ease with which
humans extract smooth contours in natural as well as artificial
images. The detection of contours does not necessarily require high
level vision or receptive fields that encompass the complete con-
tour. Instead, Field, Hayes, and Hess (1993) argued that association
fields in early vision boost the response to collinear line elements,
Fig. 1A, and that these local interactions are sufficient for contour
detection. Computational models have used association fields to
explain contour extraction and completion (e.g. Li, 1998, 1999;
Tang, Sang, & Zhang, 2007; Williams & Thornber, 2001).

Evidence for the association field has been found in
psychophysics (Field et al., 1993; Kapadia, Ito, Gilbert, &
Westheimer, 1995; Kapadia, Westheimer, & Gilbert, 2000; Ernst
et al., 2012), neural recordings (Bauer & Heinze, 2002; Kapadia
et al., 1995, 2000; Li, Piëch, & Gilbert, 2006), and in neural
connectivity (Bosking, Zhang, Schofield, & Fitzpatrick, 1997), and
supports the view that contour detection happens as early as pri-
mary visual cortex (V1). Furthermore, association fields have been
linked to image statistics (e.g. Geisler, Perry, Super, & Gallogly,
2001; Sigman, Cecchi, Gilbert, & Magnasco, 2001) and predictive
coding (Spratling, 2012).

From a functional point of view, association fields emphasize
smooth contours. Indeed, in Fig. 1B the red bars are smooth contin-
uations from the black bar, while the blue bars are more tortuous
continuations. Smoothness can be quantified using the elastica
principle, which measures the bending energy needed to connect
two bars with a curve. In computer vision the curve with the low-
est energy is better known as a spline (historically, a thin wooden
rod used by draftsmen to create smooth curves). Line elements that
can be connected with a low energy spline likely belong to the
same object contour and are therefore particularly relevant to
higher level vision. The elastica curve can also be seen as the max-
imum likelihood path of a stochastic contour completion process
based on drifting particles, with the two bars as source and sink
elements (Mumford, 1994; Williams & Jacobs, 1997; Williams &
Thornber, 2001).

In this paper we propose that smoothness, as formalized by
elastica, is the underlying principle for contextual modulations in
V1. We first derive an efficient calculation of the elastica energy
between two oriented line elements. We next assume that the con-
textual modulation in a neural population is determined by this
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Fig. 1. Visual association fields. (A) The basic idea of an association field, as
theorized based on psychophysical experiments in Field et al. (1993). Solid lines
connect collinear elements and correspond to strong associations, while dotted
lines correspond to weak associations. (B) Association fields and the relation to
smooth contours. When trying to connect the center bar to any of the 4 presented
flankers using smooth lines, the connections to the red bars are smoother
continuations and the connecting curve will have lower curvature energy than
for the blue bars.
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Fig. 2. The elastica smoothness and its proposed effect on surround modulation. (A)
Setup of the center and flanker bars, illustrating the various angles used in the
calculation of the curvature energy. (B) The family of minimum energy curves
connecting the flanker to the center bar for various center orientations. (C) The
energy of the curves in panel B, as a function of center orientation hc . The colored
dots correspond to the colored curves in panel B. The cusp occurs when the
minimum energy curve switches sides (between the light blue and green curve). (D)
The population response of neurons with the center bar in A as their receptive field
as a function of the neurons’ preferred orientation. Each neuron receives a feed-
forward drive from the center bar with a strength dependent on the neuron’s
preferred orientation (red). Each neuron also receives contextual modulation from
the flanker (blue) which depends on the curvature energy of the elastica curve
connecting the flanker to a center bar with the neuron’s preferred orientation. The
input drive is multiplied by the modulation to give the resulting population
response (black), which is both deformed and shifted compared to the feed-forward
drive.
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elastica energy. We find that the resulting model has (1) realistic
association fields and neural responses, (2) produces various tilt
illusions for both small sets of bars and grating-like stimuli, and,
(3) leads to robust contour extraction, as well as single target
pop-out from uniform backgrounds.

While links between these phenomena and elastica have been
shown before individually, from contour extraction (Ernst et al.,
2012; Sharon, Brandt, & Basri, 1997) to the tilt illusion (Schwartz,
Sejnowski, & Dayan, 2006), there has been considerably variation
in the precise implementation and biological realism of these stud-
ies. Here we present a unified account that, to our knowledge, is
the first to collect such a wide range of phenomena in a single
model with elastica at its core. Yet, the model is straightforward
and biophysically realistic, relying only on independent contextual
modulation terms. These results suggest that elastica is a core prin-
ciple underlying the contextual interactions in V1.

2. Material and methods

2.1. Elastica

In this section we quantify smoothness according to the elastica
principle. Extending earlier results we derive an accurate approxi-
mation for the smoothness of a curve connecting two line ele-
ments. Consider a scene with two bars, Fig. 2A: a center bar (red)
and a flanker bar (blue). We define the positions and orientations
as follows: The orientation of the center bar relative to the vertical
is hc . The flanker is a distance rf away from the center, and placed
at a position which has an angle uf with the vertical. The orienta-
tion of the flanker is given by hf . The angles of the center and flan-
ker bar relative to the line connecting them, are

bc ¼ uf � hc;

bf ¼ hf �uf ;

where the minus signs signifies circular differences, so that the
angles lie in the interval ½�p;p�.

We would like to know the smoothest curve connecting the two
line elements. This minimization problem, known as elastica, has a
long history dating back several hundred years (Mumford, 1994;
Levien, 2008). In particular in computer vision and computer
graphics this problem has been studied extensively, where the
smooth curves are known as splines. According to the elastica prin-
ciple, the two line elements are imagined to be connected using a
flexible rod. Since most human perception seems to be scale invari-
ant, we use the scale invariant version of the elastica energy
(Bruckstein & Netravali, 1990; Sharon et al., 1997)

Etrue ¼ L
Z L

0

dWðsÞ
ds

� �2

ds; ð1Þ

with s signifying the position along the curve, W the relative angle
of the curve at location s, and L the total length of the curve. The
energy has a minimal value of zero when the curve is straight. As
a curve becomes more tortuous, and thus has more curvature, the
energy increases.

To find the smoothest curve, this energy has to be minimized
w.r.t. WðsÞ and subject to the conditions Wð0Þ ¼ bc and WðLÞ ¼ bf .
The length of the bars is assumed much shorter than rf so that
the curve between two bars goes from the middle of one bar to
the other (see Section 4). The elastica energy can be found using
the minimization method outlined in Sharon et al. (1997).

Typically elastica assumes a start and end direction. However,
in our case, the elements have an orientation only, and we thus
need a direction invariant energy, or the minimal energy across sit-
uations where the center and/or flanker angles can be flipped 180�.
This results in the direction invariant elastica energy

Einvðhc; hf ;uf Þ ¼ mink;l¼f�1;0;1gEðhc þ kp; hf þ lp;uf Þ: ð2Þ

Fig. 2B shows the family of curves that minimize this energy as a
function of the orientation of the center. The corresponding energy



166 S.W. Keemink, M.C.W. van Rossum / Vision Research 126 (2016) 164–173
for the curves is depicted in panel C. Notably, the energy has cusps
where the solution switches from the green to the light blue curve.

Finding the true curvature energy is computationally expensive.
However, the energy of the smoothest curve between a given cen-
ter and flanker pair is approximated by Leung and Malik (2001)
and Sharon et al. (1997)

Esðhc; hf ;uf Þ � 4ðb2
c þ b2

f � bcbf Þ; ð3Þ

While Eq. (3) was derived from the assumption of small angles, it
turned out to be a very good approximation for larger angles
(Sharon et al., 1997). Furthermore, the direction invariant energy
(Eq. (2)) based on this approximation is an exceptionally good
match with the true direction invariant energy. Fig. 3 compares
the approximated and true energies across different center orienta-
tions for several flanker orientations. The error is small – certainly
for our purposes – and free of qualitative differences.

2.2. Neural model

Here we implement how the neural responses in V1 are modu-
lated by the surround using the elastica principle. For each bar, we
assume that there is a population of N ¼ 32 neurons, with pre-
ferred orientations /i in the interval ½� p

2 ;
p
2�. Initially we shall be

mainly interested in the population that encodes the center bar.
The response of a neuron in the absence of flankers is modeled
by a von Mises function

gð/i; hcÞ ¼ Ac expðKc cos 2½/i � hc�Þ; ð4Þ

where Ac is the response amplitude, which we set to 1 Hz without
loss of generality, as we only consider stimuli with identical
contrast (see Section 4 for a possible extension to stimuli with
heterogeneous contrasts). hc is the orientation of the stimulus in
the neuron’s receptive field (the center bar). Kc sets the width of
the neural tuning, with narrower curves for higher values. We use
Kc ¼ 1. The function gðÞ across the population is illustrated in
Fig. 2D by the red curve.

The smoothest curve connecting a flanker to a center bar with a
neuron’s preferred orientation /i has a curvature energy
Eð/i; hf ;uf Þ. We propose that the neural response is modulated
by a flanker through a modulation term

hð/i; hf ;uf ; rf Þ ¼ exp � a
rf

Eð/i; hf ;uf Þ � E0

� �� �
:

This modulation is illustrated across the population (i.e. versus /i)
in Fig. 2D by the blue curve. This formula was arrived at as follows.
The elastica energy is always positive, but, in order to be consistent
with physiology, we want flankers with a low curvature energy (i.e.
high smoothness) to facilitate the response. Since E P 0 for all
cases, we subtract an offset energy E0 from the elastica energy, so
that hðÞ > 1 for smooth contours. In addition, we divide the energy
by rf , the distance to the flanker, so that far away flankers do not
modulate the response, similar to previous elastica studies
(Bruckstein & Netravali, 1990; Sharon et al., 1997). The gain param-
eter a determines the strength of the modulation. In the limit when
a ¼ 0, one has hðÞ ¼ 1 and the response is independent of any
flankers. For all simulations we use a ¼ 0:1, and E0 ¼ 4. The exact
values of these parameters have little qualitative effect, as will be
discussed at the end of the results.

The modulation hðÞ acts multiplicatively, consistent with
physiology (Cavanaugh, Bair, & Movshon, 2002). We assume that
each flanker contributes independently to the modulation, so that
the final response of a neuron to a stimulus with n flankers is

ri ¼ gð/i; hcÞ
Yn

j¼1

hð/i; h
j
f ;u

j
f ; r

j
f Þ:

An example for n ¼ 1 flanker is shown by the black line in Fig. 2D.
2.3. Population vector

We read out the orientation encoded by the population using
the population vector method. The population vector is a 2D vector
given by the sum of the preferred orientation vectors of the neu-
rons weighted by their firing rate (Georgopoulos, Schwartz, &
Kettner, 1986), representing the estimated center orientation
vector v̂c

v̂c ¼
X

i

riui;

where ri is the firing rate, and ui ¼ ðsin 2/i; cos 2/iÞ is the unit vec-
tor pointing in neuron i’s preferred orientation (multiplied by two
to ensure circularity). The estimated center orientation ĥc follows
from the angle of the population vector

ĥc ¼
1
2
\v̂c; ð5Þ

where \ denotes a vector’s angle.

2.4. Computations

All data analysis and models were implemented in Python 2.7.5,
using the Numpy 1.7.1, SciPy 0.12.0 and Matplotlib 1.2.1 toolboxes.
Model code is available at [https://github.com/swkeemink/
elastica].

3. Results

In the context of the Gestalt law of good continuation, we study
a neural network in which the contextual interactions are based on
pairwise optimal smoothness. For clarity we restrict ourselves to
images composed of bars with various orientations all with identi-
cal contrast, and at a single spatial scale. Each bar is assumed to fall
in the classical receptive field of a population of neurons with
preferred orientations /i ¼ �p=2 . . .p=2. We will refer to the bar
under consideration as the center bar, and the other bars as the
flankers. As an example, consider the scene in Fig. 2A, where the
red bar represents the center and the blue bar a single flanker.
We write the neural response of neuron i with preferred orienta-
tion /i as

ri ¼ gð/i; hcÞhð/i; hf ;uf ; rf Þ:

The function gðÞmodels the classical V1 orientation response to the
center stimulus using a von Mises function, where hc is the orienta-
tion of the center stimulus. The function hðÞ models the contextual
modulation from the flanker as follows (Section 2):

hð/i; hf ;uf ; rf Þ ¼ exp � a
rf

Eð/i; hf ;uf Þ � E0

h i� �
;

where hf ;uf an rf are the flanker orientation, angular position, and
distance from the center respectively. EðÞ describes the curvature
energy of the smoothest curve connecting the flanker to a bar of ori-
entation /i in the center. The parameters a and E0 set the strength
and offset of the modulation (see Section 2 and below). The
smoother the curve from the flanker to the center, the more positive
the modulation (for smooth curves for which EðÞ < E0 it become
facilitatory, hðÞ > 1), whereas when the curve is tortuous and thus
has a high elastica energy, the modulation is inhibitory. In Section 2
the functional form of the modulation is derived from the elastica
principle, and an efficient approximation for the curvature energy
is presented. The center drive gðÞ, contextual modulation hðÞ and
resulting population response r are illustrated in Fig. 2D. It can be
observed that due to the modulation the population response is a
deformed version of the center drive.

https://github.com/swkeemink/elastica
https://github.com/swkeemink/elastica
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Fig. 3. The Sharon approximation (blue curve, Eq. (3)) compares well to the true elastica energy (red curve, Eq. (1)). Both energies were made direction invariant (Eq. (2)).
(A–C) The elastica energy across different center orientations, for fixed flanker orientations of 0�, 45� and 90� respectively. For �90�, �45�, 0�, 45� and 90� a situation sketch is
shown, with the gray bar indicating the center orientation, and the black bar the flanker orientation. Note that for a perpendicular flanker, relative to the center, the energy is
minimal at two center orientations resulting in two dips in the energy, panel C.
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3.1. Single flanker association field

We first analyze the association field that the model predicts by
considering the effect of a single flanker on the response of a neu-
ron with preferred orientation /i ¼ 0, as represented by the black
bar in Fig. 4. A flanker in a given surround location will modulate
the response of this neuron by a factor hð/i ¼ 0; hf ;uf ; rf Þ. In
Fig. 4A we indicate at each location which flanker orientation
yields the most positive modulation, argmaxhf

hð/i ¼ 0; hf ;uf ; rf Þ.
The color of a bar indicates excitation (red, hðÞ > 1) or inhibition
(blue, hðÞ < 1), and its opacity is proportional to the modulation
strength. The bars that increase the response (red bars in panel
A), correspond to flankers that form a smooth contour. Flankers
with an inhibitory effect correspond to more tortuous contours.
The parameter E0 determines for which amount of curvature the
modulation become inhibitory (see also Fig. 8).

To get further insight in the model we plot the bar which leads
to the most suppressive modulation, argminhf

hð/i ¼ 0; hf ;uf ; rf Þ,
which can be called the ‘dis-association field’ in panel B. Consistent
with Fig. 3, the strongest suppressing flankers are approximately
rotated 90� from the most facilitating ones. Furthermore, inhibition
exists across a wider range of orientations.

Finally, we plot the effect of flankers oriented the same way as
the preferred orientation to more directly test our association field
against neural measurements, in which the flanker orientation is
usually kept the same as the preferred orientation of the neuron
being measured, panel C.
A B

Fig. 4. Association fields as derived from the elastica principle. (A) The association field fo
flanker orientation that most positively modulates the activity is shown. Red (blue) fla
strength of the modulation. (B) Same as in A, but instead the orientations that most decr
the same orientation as the preferred orientation in the center.
The butterfly shapes in panel A and C corresponds to both psy-
chophysics in the form of the association field (Field et al., 1993), as
well as electrophysiological results in monkeys where, in particular
at low contrast, flankers collinear with the preferred orientation in
the center excite (Kinoshita, Gilbert, & Das, 2009), and flankers
parallel to the center inhibit (Kapadia et al., 1995, 2000).
3.2. The tilt illusion: two flankers

Next we study the case when two flankers are placed oppositely
each other, around the center. To extend the model to this situation
we assume that each flanker independently modulates the
response, thus the response of a neuron in the center population
is ri ¼ gð/i; hcÞhð/i; h

1
f Þhð/i; h

2
f Þ. We decode the center population

response using the population vector (Section 2). Due to deforma-
tion of the population response caused by the modulation, the pop-
ulation vector is no longer aligned with the stimulus orientation.
Psychophysically this presumably leads to a tilt illusion in the
percept of the center bar.

We illustrate several configurations in Fig. 5. In each panel we
show two example rotations in the top row. The elastica curves
connect the flankers to neurons in the center with different pre-
ferred orientations; the curve’s opacity is proportional to that neu-
ron’s response, indicative of the resulting population response.

For parallel flankers rotating around the center, panel A, the
elastica energy is smallest for neurons with preferred orientations
±45� from the flankers’ orientations Fig. 3C, resulting in two
C

r a neuron with preferred orientation indicated by the black bar. In each location, the
nkers correspond to facilitatory (inhibitory) modulation; the opacity indicates the
ease the activity are shown (the ‘‘dis-association field’’). (C) The effect of a flanker of
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D E F

Fig. 5. Tilt illusions from elastica-based contextual modulation by flanker pairs. Negative bias indicates repulsion, positive bias indicates attraction. Top rows: example
configurations, the elastica curves connect the flankers to neurons in the center population with a specific preferred orientation. The opacity is proportional to the response of
the corresponding neuron. (For clarity the modulation strength was increased to a ¼ 0:5.) Bottom rows: tilt bias as a function of flanker orientation. (A) Two parallel lateral
flankers are rotated around the center (at 0� the flankers are on the sides). The illustrated flanker tilts are 30� and 60� from left to right. (B) Same as panel A, but with the
flankers kept in place. The tilts are 30� and 60� left and right. Inset: illusion data extracted from Kapadia et al. (2000), Fig. 4C. (C) Two aligned flankers, rotating around the
center. The examples have a rotation of 0� and 45� respectively. The elastica curves follow the flankers, resulting in an attractive illusion. (D) Keeping the flankers in place and
tilting them in place. The elastica curves follow the flanker tilt and then bend back towards the center. (E) Reproducing the alignment in experiment in Kapadia et al. (2000),
the ends of the flankers were aligned with the center bar. Inset: illusion data extracted from Kapadia et al. (2000), Fig. 4C. (F) Reproducing the setup in Westheimer (1990),
with 6 flankers in a hexagon which are rotated in place. Inset: averaged illusion data extracted from Westheimer’s Fig. 1.
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‘‘valleys’’ in the energy. Accordingly, the elastica curves from these
flankers fan in two directions, Fig. 5A top. The resulting modulation
shifts the population response depending on the flanker orienta-
tion. In the example of a 30� flanker rotation, top left, the modula-
tion is mostly counter-clockwise. However, when the flanker is
rotated to 60�, top right, the same curves pass the vertical before
reaching the center, resulting in the population responses being
shifted clockwise. These effects result in a repulsive illusion for
flanker rotations 0–45� and an attractive tilt for 45–90�, panel A
bottom.

When the lateral flankers are rotated in place, Fig. 5B top, the
effect is always repulsive. With the flankers either at 30� (left) or
60� (right), the most influential elastica curves from the left flanker
always move up first before going down (and vice versa for the
right flanker), ending in an orientation which is repulsed away
from the flanker orientation.

For the aligned flankers rotating around the center, panel C top,
elastica curves connect smoothly to the flankers, with the lowest
energy curve being a straight line. As a result the modulation is
excitatory for neurons with a preferred orientation close to
the flanker orientation (Fig. 4A), and suppressive far away, and
the population response follows the flankers. Across flanker
orientations this generates an attractive illusion. Note that the
attractive effect does not require excitation, it is sufficient that
the modulation from both flankers is least suppressive for the neu-
rons with a preferred orientation equal to the flanker orientation.

Next, we rotate the flankers in place above and below the
center, panel D top. When the flankers are tilted 45� clockwise,
right example, the elastica curves from the top flanker start off
towards the left, then bend back towards to center. The population
response is thus shifted away from the flanker orientation, result-
ing in a repulsive illusion.

The two bar illusions in the model are in close accordance with
known psychophysics. Westheimer (1990) reported repulsion from
tilted flankers on the sides (Fig. 5B), or above and below (panel D).
The orientation dependence of the repulsion from lateral flankers
(panel B) closely matches (Kapadia et al., 2000) who also found
repulsion maximal at around 30� (except for the small attractive
effect they reported for larger flanker orientations), inset panel B.
Kapadia et al. (2000) also placed flankers above and below the
center, and tilted them (as in panel D). But in addition the flankers
were displaced so that the near end of the flankers aligned with the
center bar. In this case they found an attractive effect for small
flanker orientations, and a repulsive effect other orientations, inset
panel E. The attractive effect went away quickly as the flanker
distance was increased.

We reproduced their setup by assuming a finite bar length for
the flanker rotation, and displacing the flanker accordingly, as in
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Fig. 5E top. Since the bar lengths in our model are assumed
infinitesimally short, the curves are drawn from and to the centers
of the bars. This turns out to be key to understanding the attractive
part of this illusion. As long as the flankers are close enough,
smaller orientations will seem aligned as the origin of the elastica
curves is slightly displaced, panel E top left. When the flanker
orientation is larger, this is no longer the case and the curves first
need to pass the vertical before reaching the center, resulting in a
repulsive effect. When the flankers are moved further away (i.e.
displaced in the y direction), the situation becomes more analo-
gous to panel D, as the x-displacement of the flanker becomes
insignificant, and the illusion turns repulsive for all flanker orienta-
tions. Although the precise angular dependence in the model does
not match the data, it is surprising that it can exhibit both tilt
effects.

All illusions and modulations weaken as the flanker distance
was increased, as illustrated by curves of decreasing opacity in
the bias graphs. This is in accordance with most tilt illusion studies
which note that the illusions decreases in strength as the
contextual stimuli are placed further way (Kapadia et al., 2000;
Westheimer, 1990).

In the context of elastica, the illusions in Fig. 5B and D were pre-
viously explained by noting that the lowest energy curve connect-
ing the two flankers is either oriented towards the flankers’
orientation, as in A, or away from them, as in B (Schwartz et al.,
2006). Bayesian estimation then results in an orientation between
this smooth orientation and the presented center orientation,
resulting in the repulsive or attractive illusion. However, an addi-
tional displacement of the center bar was allowed to produce an
attractive solution for small angles in panel C.

3.3. The tilt illusion: full surround

The two flanker stimuli described above, lead to both repulsive
and attractive effects. However when either a hexagon of surround
bars (Westheimer, 1990), or a surround grating (Clifford, 2014) is
used a repulsive tilt illusion occurs for small center-surround ori-
entation differences, while a weak attractive effect occurs for larger
orientation differences (inset Fig. 5F), which has been speculated to
have a different origin (Clifford, 2014). Mechanistically, the repul-
sive tilt illusion has been explained by the fact that a surround
grating results in orientation tuned suppression, with most sup-
pression when the surround is the same as a neuron’s preferred
orientation (e.g. Clifford, Wenderoth, & Spehar, 2000; Schwartz,
Hsu, & Dayan, 2007).

To examine these illusions in our model, we first turn to Wes-
theimer’s experiment, which we can reproduce exactly. There a
hexagon of 6 flankers was placed around a center bar, evenly
spaced so that there are two parallel bars on the sides, as in
Fig. 5F top. The bars were then rotated in place and we measured
the effect on the neural population response at the center location.
As above we assume that each flanker independently modulates
the center responses and the orientation of the center bar was
again decoded from the neural activities using a population vector.
For most orientations, the net effect from the elastica curves to the
center is repulsive. However, when they are close to perpendicular
to the center, the four top and bottom flankers win out with a small
attractive effect (also see Fig. 8). Thus the model explains both the
repulsive illusion, and the attractive effect for larger orientation
differences.

We next approximate a center grating by a single oriented bar,
and a surround grating as a large set of 16 identically oriented bars,
Fig. 6A. At first glance perhaps a weak attractive tilt would be
expected again. However, the net modulation from all flankers is
inhibitory, panel B, and strongest when a neuron’s preferred
orientation is the same as the surround orientation, in close
accordance with known neural responses. As a result, the decoded
orientation is repulsed away from the surround orientation, corre-
sponding to a repulsive tilt illusion, panel C. We also varied the
number of flankers and found much the same effects, with still a
weak attractive effect for 8 bars, but repulsion otherwise (not
shown). In summary, tilt illusions in stimuli with surround
gratings and with pairs of flankers can be unified under the elastica
principle.

3.4. Contour detection

So far we have focused on the effect of flankers on the decoded
orientation of a center bar. We now turn our attention to larger
scenes consisting of several bars, where we find the response to
each bar in succession by taking that bar as the center, and consid-
ering all other bars as the flankers. The principle of elastica and
smooth contours has classically been used to extract contours from
images. These implementations typically explicitly calculate the
curvature energy for all element combinations, rather than incor-
porating the energy in a modulation term as we do here. While
association fields in general have been used to facilitate contour
detection through contextual modulations (e.g. Bauer & Heinze,
2002; Field et al., 1993; Li, 1998, 1999), here we examine if elastica
based modulation also leads to contour extraction.

To study contour extraction in our model we measure the
apparent saliency s of the contour (as in Li, 1999). The apparent sal-
iency of a bar is defined as the maximal response in the population
responding to that bar (i.e. the maximum over their preferred ori-
entations /i), compared to the maximal responses to bars in other
locations

sb ¼
max/i

ðrÞ
hmax/i

ðrÞiimage
;

where the average in the denominator is taken over the whole
image. The saliency of a complete contour is defined as the mean
maximal response to a contour relative to the whole image

s ¼ hmax/i
ðrÞicontour

hmax/i
ðrÞiimage

;

where the average in the nominator is over the bars that constitute
the contour. If s > 1, the responses are higher in the contour and it is
salient. We also implemented a mean based saliency measure,
which uses mean responses instead of maximal responses. This
resulted in weaker saliencies, but no qualitative differences (not
shown).

In the plots that follow, we show the encoded image above its
modeled percept. The opacity of the decoded bars is proportional
to their saliency. Consider, first, a lone target bar amidst a homoge-
neous background, Fig. 7A. While this is not a true contour, from
psychophysics and neural measurements we expect the target to
be salient (Nothdurft, 1993; Shushruth et al., 2013). Indeed, the
neurons in the background are inhibited more than the center
flanker, similar to the effect in Fig. 6B. Due to the resulting higher
neural response of the center bar it jumps out from the back-
ground, as signified by its darker color. As the target is rotated
towards the surrounding orientations, the saliency decreases until
it is no longer salient (not shown).

Next, we embed a simple contour in a homogeneous back-
ground, as in Fig. 7B. Here again, for the decoded image the bars
of the feature of interest are darker than those in the background,
indicating a salient contour. In this case, although actually all bars
in the image experience suppression, those in the background are
suppressed more, since they are surrounded by more bars of
similar orientations. However, bars that are part of the contour



A B C

Fig. 6. Tilt illusion from elastica-based surround modulation by a grating type stimulus. (A) The stimulus consists of the center bar surrounded by a grating consisting of
equally orientated bars. (B) The net modulation from the surrounding flankers across the population, relative to the surround orientation. As the orientation of the
surrounding bars is varied relative the center orientation, the net response varies in a way reminiscent of surround modulation in V1, with strong suppression when the
preferred orientation of a neuron and surround are aligned. (C) The bias is repulsive across all surround orientations.

A B C D

Fig. 7. Saliency effects resulting from elastica and contextual modulations. Top: input stimulus, bottom, perceived stimulus where the opacity represents the bar’s saliency,
sb. To prevent edge effects, all scenes were rendered on a torus. (A) A single target stimulus pops out from the background, and does so more strongly based on how different
the orientations are (now shown). The bars are placed on a grid such that the distance between two neighboring bars is 5. (B) Pop out of a simple contour in a uniform
background. (C) Example of a noisy scene, when the angles between each bar in the contour are 11.25�. The spacing between the centers of each box in which a bar is
randomly placed is 3. (D) How well the extraction works for different angles in the contour: as the angles are increased, contour saliency decreases, corresponding to the
detection effects in Field et al. (1993). Gray error region indicates standard deviation of the mean.
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enhance each others responses, resulting in the high saliency of the
contour. Further note that the decoded bar orientations differ from
the stimulus orientations.

We finally examine saliency of more general contours in ran-
dom backgrounds. We use the method described in Field et al.
(1993) to generate random images containing a random contour
of length 8. Briefly, the contour is generated with a starting orien-
tation and location, after which a set orientation change is made in
a random direction (left or right), and a new bar is placed following
the new orientation. An example stimulus containing a contour
with orientation changes of 11.25�, is shown in Fig. 7C, with the
decoded image in B. In Fig. 7D we quantify the contour saliency
by calculating the average contour saliency over 50 different
contour and background configurations, for different contour angle
changes. As this angle increases, the saliency drops quickly, mirror-
ing psychophysical contour detection probability (Field et al.,
1993).
3.5. Dependency on model parameters

The elastica based contextual modulation has two parameters,
E0 and a, here we show that the essential features of the model
do not depend on them. First, we fix a ¼ 0:1 and vary E0 to be 0,
4, or 8. Due to the fact that both contour extractions and the tilt
illusion rely on only relative changes, they are fully invariant to
changes in E0. However, the association field varies strongly with
the E0 parameter, as would be expected from a parameter which
mainly varies excitation versus inhibition, Fig. 8, top.

Next, we fix E0 ¼ 1, and set a ¼ 0:02, 0.1 and 0.5, Fig. 8, middle.
As the gain parameter a changes the strength of the modulation,
we see no change in the shape of the association field, but quanti-
tative changes of the saliency of features and the decoding biases,
displaying a trade-off between saliency strength and coding biases.

The increased bias with large a can be partially counteracted by
narrowing the neural tuning width Kc (Eq. (4)), as contextual mod-
ulation results in a smaller shift of the population response when
the tuning curves are sharp. Interestingly, the tuning width Kc also
has an effect on the attraction effect in the tilt illusion with 6 flan-
kers, Fig. 8, bottom row. As the tuning curve becomes sharper (i.e.
larger Kc), the total illusion becomes weaker as expected, but the
attractive reduces more. For Kc ¼ 1:5 the attractive illusion com-
pletely disappears. This is because the attractive pull of the flan-
kers is felt most strongly by neurons with a preferred orientation
close to 90�. When the tuning curves are too narrow, these neurons
do not respond, and thus the population response is not shifted.
4. Discussion

We have developed a computational model of V1 that imple-
ments the Gestalt Law of good continuation on a neural level
through contextual modulations that were determined by the elas-
tica energy. More specifically, the modulation by each bar outside a



Fig. 8. Exploring the effect of the a; E0 and Kc parameters in model. Top row: modulation strength a is kept constant, while E0 is varied. The E0 parameter determines the
relative presence of excitation and inhibition in the association field. The illusions and saliency results depend on the relative difference of modulation and are not affected
(not shown). Middle row: modulation offset E0 is kept constant, while a is varied. While the relative presence of excitation and inhibition is not affected by this parameter, the
strength of modulation is changed directly, resulting in larger differences in response. This results in stronger bias and saliency effects. Bottom row: neural tuning width Kc is
varied while both E0 and a are kept constant. While this generally affects the magnitude of the tilt illusions, the attractive illusion in the Westheimer experiment (Fig. 5F)
disappears with large KC .

S.W. Keemink, M.C.W. van Rossum / Vision Research 126 (2016) 164–173 171
neuron’s receptive field is governed by the curvature energy of the
smoothest curves connecting to it. This quite naturally lead to
contour extraction, but more surprisingly also explains saliency
detection, association fields, and various forms of the tilt illusion.

Our work builds on a large body of literature linking these
various aspects of visual processing. Association fields have been
derived from an image statistics perspective (Geisler et al., 2001;
Sigman et al., 2001), and contour detection has been linked to asso-
ciation fields (Hansen & Neumann, 2008; Li, 1998, 1999; Spratling,
2012). Elastica and association fields have been linked before and
used for contour detection and completion (Ernst et al., 2012;
Sharon et al., 1997; Williams & Jacobs, 1997; Williams &
Thornber, 2001). Finally, the tilt illusion for two flankers was
explained from elastica in a Bayesian framework, but using a
different expression for the modulation from us (Schwartz et al.,
2006). Our model proposes a new explanation for several forms
of the tilt illusions as following from individual elastica contour
completions, including some counter-intuitive attractive effects.
However, more importantly our model combines the phenomena
described in earlier studies, both contour and illusion related,
and links them together under the same basic elastica principle.

Not all aspects of the tilt illusion are captured by the model.
Most prominently, the exact shape of the tilt illusion for collinear
flankers as observed in Kapadia et al. (2000) was not reproduced,
Fig. 5E. However, we did find attraction for smaller angles, and
repulsion otherwise, which has not been explained before. The
attraction disappears as the flankers are placed further away, also
in accordance with what was found in Kapadia’s work. An
important factor in producing these effects is calculating the
elastica curves from the centers of the bars. Although the flanker
ends were level with the center bar, this allowed for both the
attractive and repulsive effects dependent on orientation and dis-
tance. This might suggest that neurons with a receptive field of
smaller scale than the flanker bar drive the attractive effect in
humans. However, such an explanation would require assumptions
about how tilt estimates at different spatial scales are combined.

Interestingly, the illusion caused by a hexagon of 6 flankers was
captured by the model, with both a repulsive and attractive effect.
This effect was dependent on the tuning to the center bar.
Although the attraction completely disappeared for very narrow
tuning Kc ¼ 1:5, most neurons have broad tuning corresponding
to Kc � 0:5 (Cavanaugh, Bair, & Movshon, 2002). Next, when in
order to mimic gratings we increased the number of flankers and
rotated the entire surround, the attractive effect disappeared for
more than 8 flankers (for our parameters). However the repulsive
illusion was always present. Existing explanations of the tilt illu-
sion have taken either a mechanistic view, where it is purely a
result of the surround suppression (Clifford et al., 2000), or func-
tional views such as arising from image statistics (Schwartz,
Sejnowski, & Dayan, 2009), Bayesian processing (Schwartz et al.,
2006), or as some form of image normalization (Clifford, 2014).
We propose a new hypothesis: the smoothest continuations of
the surround elements tilts the percept away from the surround
and, in special cases, attracts it.

Despite the model’s simplicity, we consider the model biologi-
cally feasible. The contextual modulations are effected as indepen-
dent contributions from each flanker, as one would expect for
modulation from individual surround neurons. The resulting
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modulation matches electrophysiology; both for individual flanker
contributions in the form of the neural association field, with exci-
tatory effects for collinearity and inhibitory effects for parallel bars
(Kapadia et al., 2000; Kinoshita et al., 2009), and the net effect for
many surrounding bars which leads to suppressive surround mod-
ulation (Cavanaugh et al., 2002; Gilbert & Wiesel, 1990; Seriès,
Lorenceau, & Frégnac, 2003). Because the modulation relies on
pairwise interactions only, it is plausible that some form of
Hebbian learning shapes its tuning (Bednar, 2012). A caveat is that
the statistics of natural images which include both textures and
contours are dominated by parallel structures; an association field
arises only when the statistics are restricted to contours (Geisler
et al., 2001).

Currently we have assumed a single contrast level, which is
clearly unrealistic for most natural images. In particular, associa-
tion fields are known to change with contrast. Low contrast leads
predominantly to excitation, while high contrast leads predomi-
nantly to inhibition (Cavanaugh et al., 2002; Kapadia et al.,
2000). It is possible to extend the model to describe responses to
stimuli with heterogeneous contrasts. The center contrast can be
represented by the Ac parameter (e.g. Sclar, Maunsell, & Lennie,
1990). The contrast of the flanker can be coded in the a and E0

parameters of each modulation term. In particular, changing E0

as in Fig. 8 top row, qualitatively matches the observed contrast
dependence of the association fields in Kapadia et al.

It is perhaps not surprising that elastica models the contextual
interactions of V1 well, if the interactions do indeed exist for the
purpose of detecting contours. Besides the elastica curves being
especially pleasing to the eye, contours of natural objects are often
well described by elastica curves. As an example in this paper, the
shape in Fig. 2B would be a good candidate for a leaf. This is the
very reason it is used in computer vision for contour completion
of partially hidden objects (e.g. Kimia, Frankel, & Popescu, 2003;
Mumford, 1994; Zhou, Zheng, & Yang, 2012).

Apart from the illusions of Fig. 5A, C and D, our model makes
several predictions: first, the inhibitory connections seem to be
broader tuned than excitatory connections. However, which
inhibitory connections are the strongest is strongly dependent on
relative position and orientation, Fig. 4. This could be tested
experimentally. Secondly, our contextual modulations affect a
neuron individually, and lead to contextual interactions both for
small sets of bars and full surrounds. Experimentally, neither
neurophysiologically nor psychophysically, it is known if these
are linked. I.e., it is unknown whether the modulation by a
surround built up with individual elements, can be explained from
its individual contributions.

The neural character of the model allows for a number of
straightforward extensions: (1) it will be interesting to include
more realistic Gabor-type receptive fields at a variety of scales.
(2) Currently the bars are assumed to have zero length. It is
straightforward to find the elastica curves connecting the ends of
the bars, with the only minor complication that bf and bc now
become dependent on hf and hc. However, without a more realistic
receptive field such an extension is rather ad hoc. (3) In the current
implementation flankers modulate the center, but there is no
recurrent feedback in which the modulated response change the
activity of the flankers. In this sense the model performs a
one-step approximation, which is valid as long as the shifts in
the tuning curve are moderate. In a recurrent model, the dynamics
of the illusions presented here would be of interest.
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