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ABSTRACT 

Under investigation are the structural properties of gum arabic, an industrially important 

biopolymer for use as a stabiliser or in drug delivery, using Analytical Ultracentrifugation – a 

well-established, matrix-free probe for macromolecular size and shape.  These results are 

combined with chromatographically-coupled methods (multi-angle light scattering, 

differential press imbalance viscometry) to provide a global analysis of its structure in 

varying ionic strength conditions.  This analysis indicates that gum Arabic may have a 

compact, elliptical structure in solution, the significance of which for biotechnological use is 

indicated.  This modelling method can be applied to other biopolymers and synthetic 

polymers. 
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INTRODUCTION 

Gum Arabic (GA), or acacia gum, is a glycoprotein which has applications in the food and 

pharmaceutical industries ranging from its emulsion-forming properties, its ability to form 

viscous solutions and its ability to bind with other macromolecules (1,2).  It has also been 

reported to have multiple health benefits such as an anti-oxidant and a nephroprotectant (3). 

 

The primary structures of both the sugar and protein fragments have been studied in detail 

(4).  The polysaccharide component represents approximately 95% of the macromolecule and 

consists of a very complex, heavily branched β(1�3)D-galactopyranose backbone with a 

high proportion of arabinofuranose and rhamnopyranose residues (5) and terminal glucuronic 

acids.  The protein component consists of a 250 amino acid chain, with regions of 

polysaccharide covalently O-linked to hydroxyproline and serine residues (6).  This is often 

referred to as the wattle blossom model (3).  In many ways, this model is similar in structure 

to mucous glycoproteins, which is also composed of a protein backbone with O-linked 

glycosylation to serine and threonine residues – a major difference between them being the 

saccharide chemical composition affecting the viscoelastic properties. 

 

The overall hydrodynamic structure has previously been studied principally using light 

scattering and chromatographic based methods (6).  From these, the “wattle blossom” model 

appears to have become favoured, with the overall conformation of the molecule being close 

to spherical.  An alternative is the ‘hairy rope’ model (7) based on TEM imaging.  It is also 
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 3

tightly bound with Stokes radii between 5-30nm (9,10) and an intrinsic viscosity between 10-

30ml/g.  It is generally agreed that the weight average molar mass lies between 0.3- 2 MDa 

with a high degree of polydispersity (8), typical for an unfractionated polysaccharide.  We 

now take a fresh look at the hydrodynamic structure of GA based around the powerful 

separation and analysis technique of sedimentation velocity in the analytical ultracentrifuge. 

 

Analytical Ultracentrifugation (AUC) has the benefit of being ‘matrix-free’, requiring no 

columns or membranes which, particularly for charged polysaccharides such as GA (11), may 

cause complications with column-solute interaction.  This study uses sedimentation velocity 

AUC (AUC-SV) in conjunction with size exclusion chromatography coupled to multi-angle 

(static) light scattering and differential viscometry (SEC-MALS-IV) to probe the 

hydrodynamic characteristics of GA from three different sources and solubilised under 

different ionic strengths. 

 

MATERIALS 

Gum Arabic was obtained from two suppliers: Branwell (Essex, UK) and Glycomix 

(Reading, UK) assigned GAB and GAG accordingly.  Both samples were purified from the 

Acacia senegal crop and prepared into buffered solutions from spray-dried powder.   

 

Samples were dissolved in phosphate buffered saline (pH 7.0).  0.05M of the buffer was 

disodium hydrogen orthophosphate dodecahydrate and potassium dihydrogen orthophosphate 

(Fisher Scientific, UK).  Sodium chloride (Fisher Scientific, UK) was added to the buffer to 

increase ionic strengths to 0.1, 0.3 and 0.5M.  0.145ml/g was the refractive index increment 

used at 0.1M (12) and 0.150ml/g was assumed for 0.3 and 0.5M.  These values are consistent 

with other recent publications (9,13). 
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 4

 

METHODS 

Density measurement 

The concentration dependence of GA solution density was used to find the partial specific 

volume (v̄), and provide supplementary density information for viscometry. 

 

Sedimentation velocity in the Analytical Ultracentrifuge 

Sedimentation velocity (AUC-SV) experiments were performed in a Beckman Optima XL-I 

Analytical Ultracentrifuge (Palo Alto, CA).  Ultracentrifuge cells were assembled from 

12mm, 2 channel aluminium epoxy resin centrepieces and sapphire windows in aluminium 

window holders.  400µl of sample (1-7mg/ml loading concentration) and corresponding 

buffer were injected into the cells, sealed and balanced.  The rotor speed was set to 30 000 

rev/min (~69 000 g), with Rayleigh Interference scans taken every minute. 

 

Data analysis was performed using least squares g*(s) vs. s fitting in SEDFIT v14 (14).  

Apparent sedimentation coefficients (s), fringe concentration, and percentage content were 

taken by integrating the main peak.  Sedimentation coefficients obtained in the buffer were 

normalised to standard solvent conditions (density and viscosity of water at 20.0oC) to yield 

s20,w.  Concentration in fringe displacement units were converted to mass concentration, 

corrected for radial dilution (15). 

 

SEC-MALS-IV 

The system consisted of two columns (TOSOH Biosciences TSK 3000 and 4000) and a 

guard column (TSK Guard TWH) and 3 Wyatt Technology (Santa Barbara, USA) detectors: 

multi angle light scattering (MALS - Dawn Helios II), differential pressure imbalance 
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 5

viscometry (ViscoStar) and refractive index concentration measurement (OptiLab rEX).  The 

apparatus was equilibrated with the appropriate buffer for at least 10 hours prior to injection 

of 100µl of sample.  Three GA samples were injected at three concentrations at three ionic 

strengths.  Data were collected and analysed using ASTRA v4 (Wyatt) software.  Intrinsic 

viscosity [η] was evaluated from the relative viscosity ηr yielded by the ViscoStar detector 

and the mass concentration (c), evaluated from the OptiLab rEX detector, using the Solomon 

Ciuta (16) equation: 

 

[ ] ( ) ( )( ) 5.0
ln2121 rrc ηηη −−≅  (1) 

 

Statistical analysis 

Linear regression analyses for partial specific volume and sedimentation coefficient 

evaluations were tested for significance using Analysis of CoVariance (ANCOVA) in 

GenStat v15 (VSN International).  F values are the ratio of regression sum of squares over 

mean square error.  The critical level of significance was set to p ≤ 0.05. 

 

RESULTS AND DISCUSSION 

Density measurement 

Partial specific volumes (v̄) were calculated using linear regressions of density (ρ) against 

concentration (c), as described in the following relation (17). 

 

( ) 01 ρρ cv ∂∂−=  (2) 

 

and the results are included in Table 1. 

<TABLE 1> 
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 6

 

The partial specific volume of the two GA samples ranged between 0.60-0.65ml/g.  

ANCOVA did not show a significant correlation between the partial specific volume and 

ionic strength for GAB or GAG (F2,26=0.94, P=0.403; F2,21=1.01, P=0.382, respectively). 

 

The average value for the partial specific volume was 0.631ml/g, with a standard deviation 

of 0.013.  Typical values for partial specific volume are approximately 0.6ml/g for 

polysaccharides and 0.73ml/g for proteins.  Results in between these two values correlate 

with the protein content of GA. 

 

Sedimentation velocity 

AUC-SV scans were analysed using a ls-g*(s) fit, as shown in Figure 1(a,b).  Both showed 

similar behaviour - the distributions show single peaks at approximately 8S apex, distributed 

between ~2 and ~30S, and there is a difference between the 0.1M and higher ionic strengths, 

although not between 0.3 and 0.5M. 

 

Concentration dependence of sedimentation coefficients 

Concentration dependence was measured using a linear regression of Equation (3), results 

of which are shown in Figure 1(c,d) and Table 1.  A similar regression, in the form of the 

reciprocal of sedimentation coefficients plotted against concentration, is more commonly 

used for other polysaccharides but for near-spherical particles, as posited for GA, the direct 

plot is preferable (18). 

 

( )ckss sww −= 10
,20,20  (3) 
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 7

The statistical analysis (ANCOVA) showed a significant difference between the 

concentration dependence of sedimentation coefficients and ionic strength for GAB 

(F2,14=5.57, P=0.017).  There was also a significant difference between s0
20,w for 0.3 and 

0.5M ionic strength (F1,10=11.50, p=0.007). For GAG, although there was a significant 

dependence between extrapolated sedimentation coefficients for different ionic strengths 

(F2,15=669, p<0.001), there was no significant difference on the concentration dependence 

(F2,15=1.54, p=0.246).  There was also a significant difference between s0
20,w values for 0.3 

and 0.5M (F1,10=18, p=0.002). 

 

<FIGURE 1> 

 

Although for GAB the concentration dependence seems to be dependent on ionic strength, 

this is not the case for GAG. 

 

SEC-MALS-IV 

Figure 2 shows elution times for the three GA samples.  The data has been normalised for 

detector voltage to aid comparison.  The molar mass values (principally the weight average 

but also the number average) obtained are shown in Table 2, along with intrinsic viscosity 

and hydrated radius (rH) calculated using Equation 4 - a combination of information of molar 

mass (M) and intrinsic viscosity [η] (19). 

 

[ ]( ) 31
103 AH NMr πη=  (4) 

 

Where NA is Avogadro’s constant.  The data show that all six samples eluted at 

approximately the same time, at ~8 minutes.  The highlighted section also shows evidence for 
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 8

a secondary peak around 14-18 minutes elution time in 0.1M, not present in 0.3 and 0.5M 

ionic strengths.  A similar result was found from AUC-SV where the higher ionic strength 

preparations were significantly different in distribution to the 0.1M ionic strength.  These 

results suggest that increasing ionic strength decreases the dispersity of size distribution. 

 

<FIGURE 2> 

 

<TABLE 2> 

 

The molecular weight of GAB was determined between 861kDa and 960kDa.  For GAG, 

the weight average molar mass was between 535 and 561kDa.  The polydispersity for GAB 

was higher, at around 1.6, with GAG around 1.3.  The intrinsic viscosity obtained through the 

online pressure imbalance viscometer shows that for GAB, the value ranged between 28.2 

and 31.3ml/g.  For GAG, this range is lower, between 25.1 and 27.9ml/g.  Both GA samples 

consistently show a reduction in intrinsic viscosity with an increase in ionic strength from 

0.1M to 0.3M and above.  This suggests that increasing ionic strength makes the GA 

molecule more compact. 

 

The hydrated radius was calculated as a function of intrinsic viscosity and weight average 

molar mass.  Values for GAB were between 14.7-15.5nm and GAG were between 12.5-

13.2nm.  This is consistent with both the molar mass and intrinsic viscosity measurements 

that GAB is the larger sample in terms of mass and size.  Although the hydrated radius 

decreased with ionic strength, the high standard error, and the lack of trend from intrinsic 

viscosity and molar mass, suggests that this change is not significant.  Since the 
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 9

hydrodynamic radius was a derived value from molar mass and intrinsic viscosity, few 

conclusions can be drawn from these findings. 

 

Conformational analysis 

Wales-van Holde ratio 

Concentration dependence of sedimentation coefficients can be combined with intrinsic 

viscosity data to provide information about the shape/symmetry of the macromolecule.  The 

Wales-van Holde ratio (20) is the ratio between ks and [η] and provides a hydration-

independent shape factor.  Table 3 shows ks/[η] values for the GA samples, with intrinsic 

viscosity values taken from IV results from SEC-MALS.  The mean ks/[η] value was (1.5 

±0.2). 

 

MHKS power law analysis 

Data from SEC-MALS-IV were analysed for the comparison of molar mass and intrinsic 

viscosity; the double logarithmic relationship between them being used as a measure of the 

conformation of the macromolecule.  The gradient is defined as the Mark Houwink Kuhn 

Sakurada (MHKS) shape factor ‘a’.  Figure 3 shows the plots for all six samples, whilst 

regression data is summarised in Table 3.  Dataset ranges were reduced to appropriate ranges 

of molar mass. 

 

The MHKS values obtained were consistent with those found in other GPC studies in 

similar conditions, such as Renard et al. who found a=0.45 (13) and 0.35 (21), Masuelli 

found 0.55 (at 20oC) (22), Sanchez et al. found 0.46 (19) and Idris et al. found a=0.47 (23). 

 

<FIGURE 3> 
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Standard errors of the fitted slopes were ≤10%.  The intercept consistently had poor error 

due to the reverse logarithm required to obtain the constant, but this is consistent with other 

findings (24) and does not greatly affect the reliability of the gradient as the main 

conformational probe. Less data were obtained from GAG 0.1M compared to others, 

explaining the low gradient. 

 

<TABLE 3> 

 

  Molar mass results from MALS-IV suggested that these gradients should have reduced 

with increasing ionic strength, however, there was no reliable trend for the shape factor and 

the ionic strength.  Average values between 0.43 and 0.48 represent a conformation between 

a compact sphere (≈0) and a random coil (≈0.5-0.8), although closer to random coil. 

 

Ellipsoid modelling 

Data from AUC-SV and SEC-MALS-IV were used to estimate the molecular dimension 

and axial ratio of the GA samples using SingleHydFit v3 (25) and shown in Table 3.  The 

swollen specific volume was estimated from the average Wales-van Holde ratio (a hydration-

independent shape factor) of 1.5 converted to axial ratio using the FORTRAN package 

ELLIPS suite (26).  The viscosity increments (ν) were obtained from ELLIPS to estimate the 

swollen volume (Vs) using the following equation (27): 

 

[ ] SV⋅=νη  (5) 
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The time-averaged hydration δ (g water / g macromolecule) was estimated using Eq. 6 (27).  

The hydration ranged between 8.5-10.5g/g, which is a higher estimate than some previous 

findings (4g/g) (28) but consistent with others (9g/g, 20oC) (22). 

 

0ρδ+= vVS  (6) 

 

The graphical outputs from SingleHydFit are displayed in Figure 4.  A summary of the 

fitted parameters is shown in Table 3 including estimations for the error of the model. 

 

From these data, an ellipsoid was plotted using MATLAB R2014a (The MathWorks Inc, 

Mass. USA).  These are depicted in Figure 5.  These estimates are somewhat different to 

previously published results (19), which included a sedimentation coefficient of 0.24S, 

almost two orders of magnitude lower than what we have found in the present study. 

 

<FIGURE 4> 

 

<FIGURE 5> 

 

There appears to be a reduction in axial ratio and decrease in dimension with increasing 

ionic strength from both sources.  This is in agreement with findings from MALS-IV, where 

the intrinsic viscosity decreased with increasing ionic strength. Although Figure 5 depicts a 

single prolate ellipsoid, a more likely scenario is a distribution of axial ratio/dimension as 

seen from the lightest contours in Figure 4, based on the distribution of molar masses.  i.e., 

lower molar mass species of GA will have smaller dimension and a lower axial ratio.  
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Increasing ionic strength will force the entire distribution further down this contour map, as 

observed in Figure 4.  

 

Branwell samples showed a higher axial ratio than Glycomix, possibly because of the 

higher weight average molar mass.  What this would suggest is an arrangement that the 

polysaccharide collapses in on itself as the charge density builds.  Increasing the ionic 

strength suppresses these charges and the macromolecule relaxes into a slightly more 

spherical shape. 

 

Conclusions 

GA is a commercially important non-dietary fibre with applications in the food and 

pharmaceutical industries as a stabiliser and drug delivery vector.  Two sources were 

characterised using complementary hydrodynamic techniques including AUC-SV, 

SEC-MALS-IV and density measurement.  Partial specific volume was measured as 

0.635ml/g, with no dependence on ionic strength.  AUC-SV and SEC-MALS-IV found that 

increasing ionic strength increased the sedimentation coefficient and decreased the intrinsic 

viscosity, respectively. Compiled results obtained through these hydrodynamic techniques 

were able to yield an estimate for the ellipsoid structure of GA using SingleHydFit, in the 

form of a prolate ellipsoid with an average axial ratio of 1.9 with some indication of a 

reduction with increase in ionic strength. This form of hydrodynamic modelling is not just 

applicable for polysaccharides, but other biopolymers and synthetic polymers. 
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FIGURE LEGENDS 

Figure 1 

Comparison of sedimentation velocity behaviour of GAB (a,c) and GAG (b,d).  (a,b) 
normalised sedimentation coefficient distributions (ls-g*(s) vs. s) analysis of GA (lowest 
concentration shown); (c,d) integrated peaks of entire concentration series extrapolating to 
infinite dilution. 

 

Figure 2 

Normalised elution profiles of gum arabic at different ionic strength.  The elution times for 
12-24 minutes have been expanded to highlight secondary smaller peaks.  (a) GAB at 
I=0.1M, (b) GAB at I=0.3M, (c) GAB at I=0.5M, (d) GAG at I=0.1M, (e) GAG at I=0.3M, 
(f) GAG at I=0.5M. 

 

Figure 3 

MHKS analysis of GA at three ionic strengths using linear regression of the logarithms of 
intrinsic viscosity and weight average molar mass.  (a) GAB, (b) GAG. 

 

Figure 4 

Output from SingleHydFit for GA at three ionic strengths with model error reported as 1-3* 
(1* >10% error; 2* 5-10%; 3* <5%).  (a) GAB at I=0.1M, (b) GAB at I=0.3M, (c) GAB at 
I=0.5M, (d) GAG at I=0.1M, (e) GAG at I=0.3M, (f) GAG at I=0.5M. 

 

Figure 5 

Prolate ellipsoid representations for GA at three ionic strengths.  (a) GAB at I=0.1M, (b) 
GAB at I=0.3M, (c) GAB at I=0.5M, (d) GAG at I=0.1M, (e) GAG at I=0.3M, (f) GAG at 
I=0.5M. 
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Normalised elution profiles of gum arabic at different ionic strength.  The elution times for 12-24 minutes 
have been expanded to highlight secondary smaller peaks.  (a) GAB at I=0.1M, (b) GAB at I=0.3M, (c) GAB 

at I=0.5M, (d) GAG at I=0.1M, (e) GAG at I=0.3M, (f) GAG at I=0.5M.  
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MHKS analysis of GA at three ionic strengths using linear regression of the logarithms of intrinsic viscosity 
and weight average molar mass.  (a) GAB, (b) GAG.  
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Output from SingleHydFit for GA at three ionic strengths with model error reported as 1-3* (1* >10% error; 
2* 5-10%; 3* <5%).  (a) GAB at I=0.1M, (b) GAB at I=0.3M, (c) GAB at I=0.5M, (d) GAG at I=0.1M, (e) 

GAG at I=0.3M, (f) GAG at I=0.5M.  
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Prolate ellipsoid representations for GA at three ionic strengths.  (a) GAB at I=0.1M, (b) GAB at I=0.3M, (c) 
GAB at I=0.5M, (d) GAG at I=0.1M, (e) GAG at I=0.3M, (f) GAG at I=0.5M.  
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TABLE LEGENDS 

 

Table 1 

Partial specific volume and sedimentation velocity for preparations of GAB and GAG in 

different ionic strengths. 

 

Table 2 
Molar mass and intrinsic viscosity data from SEC-MALS-IV of gum Arabic at different 

ionic strengths. 

 

Table 3 

Conformational analysis of GA, at three ionic strengths, using three independent 

methods. 
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Table 1: Partial specific volume and sedimentation velocity for preparations of GAB 

and GAG in different ionic strengths. 

Sample 
Ionic Strength 

(M) 
v̄ (ml/g) s0

20,w x1013 (S) ks (ml/g) 

GAB 

0.1 0.633 11.2 ±0.1 42 ±5 

0.3 0.607 14.3 ±0.2 46 ±4 

0.5 0.636 14.4 ± 0.1 40 ±2 

GAG 

0.1 0.629 11.2 ±0.1 45 ±3 

0.3 0.631 13.4 ±0.1 39 ±1 

0.5 0.647 14.0 ±0.2 42 ±4 
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Table 2: Molar mass and intrinsic viscosity data from SEC-MALS-IV of gum 

Arabic at different ionic strengths. 

Sample 
Ionic 

Strength 
(M) 

Mw 

(kDa) 

Mn 

(kDa) 
w/n PDI [η] (ml/g) 

rH 

(nm) 

GAB 

0.1 951 ±12 599 ±5 1.59 ±0.03 31.3 ±0.4 15.5 ±0.1 

0.3 960 ±13 576 ±5 1.60 ±0.03 28.2 ±1.0 15.0 ±0.1 

0.5 861 ±10 548 ±5 1.57 ±0.02 28.4 ±0.8 14.7 ±0.1 

GAG 

0.1 561 ±5 456 ±5 1.23 ±0.02 27.9 ±1.6 13.2 ±0.2 

0.3 547 ±4 421 ±5 1.30 ±0.02 25.1 ±1.4 12.6 ±0.2 

0.5 536 ±4 424 ±4 1.26 ±0.02 25.1 ±4.3 12.5 ±0.6 

PDI: Polydispersity index (ratio of weight over number average molar mass) 
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Table 3: Conformational analysis of GA, at three ionic strengths, using three 

independent methods. 

Sample 
Ionic 

Strength 
(M) 

Wales-van Holde MHKS SingleHydFit 

ks/[η] a d a/b 

GAB 

0.1 1.3 ±0.2 0.54 ±0.01 29 ±2 2.3 ±0.2 

0.3 1.6 ±0.1 0.35 ±0.03 27 ±2 2.2 ±0.3 

0.5 1.4 ±0.1 0.41 ±0.01 21 ±4 1.7 ±0.5 

GAG 

0.1 1.6 ±0.1 0.10 ±0.01 23 ±2 2.3 ±0.3 

0.3 1.6 ±0.1 0.63 ±0.01 17 ±3 1.6 ±0.4 

0.5 1.7 ±0.2 0.34 ±0.03 12 ±1 1.0 ±0.1 
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Table 3: Conformational analysis of GA, at three ionic strengths, using three 

independent methods. 
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