
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. XX, NO. XX, MMMM YYYY 1

Elicitation of Strategies in Four Variants of a
Round-robin Tournament: The case of

Goofspiel (Supplementary File)
Moshe Dror and Graham Kendall, Senior Member, IEEE and Amnon Rapoport.

I. PREAMBLE

This is a supplementary file to the paper of the same
name/authors as appears above.

Appendix A provides more details of the strategies
that are briefly presented in the paper. The descriptions
are those handed in by the students, in accordance with
their requirements of their course.

The supplement also contains the 32 tables that were
omitted from the paper for reasons of space.

M. Dror is with The University of Arizona, USA. e-mail:
(mdror@eller.arizona.edu).

G. Kendall with the ASAP Research Group, School of Computer
Science, University of Nottingham, UK and University of Nottingham
Malaysia Campus. e-mail: (graham.kendall@nottingham.ac.uk or gra-
ham.kendall@nottingham.edu.my)

A. Rapoport is with the Graduate School of Management, University
of California, Riverside, USA. e-mail: (amnonr@ucr.edu).

Manuscript received mmm dd, yyyy; revised mmm dd, yyyy.

Appendix A

Strategy Descriptions

Strategy 0201

0201

Goofspiel Strategy

My Goofspiel strategy was to be the best and win everything. Obviously this is not always possible,
but it was a goal worth working towards. At its fundamentals, a good goofspiel strategy needs to be
adaptive, hard to predict, and intelligent in the choices it makes. This is by no means an easy task, and
there are various paths one can take in formulating a goofspiel strategy. Here I outline the path I have
taken.

Before any choices can be made of what card to play, a player should try to calculate some data that
could help them make more informed decisions. The provided information included with the goofspiel
C++ code was not enough to make intelligence decisions. Thus, I built several methods within the code
to capture the following data:

• What cards from the middle deck have been played within a particular round
• What cards I have played during a particular round
• What cards my opponent has played within a particular round
• The total “value” of cards that have been played by my opponent, myself, and the middle

deck. Better cards such as Kings and Queens have more value than low cards like 2 or 3.
• In carry over, I also capture the total value points both players have won from round to

round, as well as the last middle card played. I can check if there was a tie in a particular
round by observing whether or not there was a change in the points won by either player. I
can use the knowledge of the last middle card to make a more intelligent decision in the
event of a carryover.

Data extrapolated from these methods could help me better predict what cards my opponent may have,
my position in a round relative to the middle deck and my opponent, and what strategy might maximize
my chance of winning a particular hand.

After methods to collect the aforementioned data were built, I began to develop an algorithm that
would make use of such data to play cards. The goal of my strategy is to identify the relative position of
the total value of cards I possess against the value of the middle deck and my opponent’s deck; this is
identified in every hand. Essentially, during every hand, I count the value of every card I have, what is
left in the middle deck, and what my opponent has left. Then I will have a general sense of every decks
position and strength, letting me make a basic prediction about what my opponent might play and what
might be left in the middle deck. For example, if the opponent has used up more valuable cards than
both me and the middle deck, I know it is most likely safe to pursue a more aggressive strategy in
obtaining high value middle cards. Conversely, if the value of my deck is less than my opponent’s but
more than the middle deck, I may just continuously play my lowest cards and save my highest for the
one or two high cards left in the middle deck.

 I then created some arbitrary rules that adjust the value of my bets by a few cards solely to throw
off predictive algorithms used by my opponent that may try to learn how much I over- or under-bet

0201

each middle card. For example, every four rounds, I will draw all random cards for the entire round.
While this may cause me to lose that round against someone with a simple deterministic strategy, it
could help me greatly against those using a long-term data collection and prediction algorithm. Other
times, I may substitute what is normally a calculated decision with a random one. For example, I may
normally play conservatively if the value of my cards is less than my opponents, but I may randomly play
a high card in these scenarios to try and obfuscate my decision making. My code has functionality for
occasional randomness as another defense against pattern-seeking strategies.

Before turning in this assignment, I had the opportunity to run this against the strategies developed
by Xiao Liu and Justin Williams. Justin Williams employed a more predictive strategy, and I tuned my
arbitrary randomness rules to what gave me the best performance against him. I was able to beat him
consistently, about every 4 out of 5 times. My defenses against predictive algorithms appeared to work
as I caused his strategy to make bad predictions. Xiao Liu used a more deterministic strategy that played
by some simple rules. As I did not use any sort of long-term learning and prediction, I was not able to
overcome her simple strategy. Her strategy always made more precise decisions based on card value,
rather than my more general value approach that has randomness. However, when she ran her strategy
against Justin Williams, he was able to quickly predict her strategy and beat it consistently. In a sense,
our different strategies almost resembled a form of rock-paper-scissors.

Overall, this was an interesting problem to work on and I appreciate how difficult it is to create an
optimal goofspiel strategy. It appears that every strategy can be effectively countered with another
strategy, and that there is no one type of strategy that can consistently win; there is no optimal solution
for goofspiel. This was a very memorable project, and now I will live the rest of my life as a self-
proclaimed goofspiel expert.

Strategy 0202

0202

Goofspiel Description

I will summarize my strategy by first describing what I consider to be the base strategy (no carryover,
maximizing points), then explaining how I modify that base strategy to account for the different
scenarios of the game.

Base Strategy

The base strategy is based on a set of comparison ratios calculated repeatedly throughout the game.
During each turn, I assess the state of the game by calculating a measure of the following four key
values:

1. Value at stake: in most cases, this value is simply the value of the up card.
2. Value of my remaining cards: the value of the cards I have remaining in my hand, i.e., my

remaining spending power.
3. Value of the opponent’s remaining cards: the value of the cards the opponent still has in his or

her hand, i.e., the opponent’s remaining spending power.
4. Value remaining in the deck: the value of all cards in the middle deck which have not yet been

played.

These values are combined and compared each round in a series of ratios intended to establish how
“daring” I can be during the current turn, given all of the values at stake. These ratios include:

1. Up card to the remaining value in the deck: compares the value at stake to the value still
available in later turns. The calculation of this value is weighted such that higher values will
eventually lead to greater risk in the card I choose to play.

2. My spending power to the remaining value in the deck: compares my spending power to the
value still available in later turns.

3. Opponent’s spending power to the remaining value in the deck: compares the opponent’s
spending power to the value still available in later turns.

4. My spending power to the opponent’s spending power: compares my spending power to that of
the opponent.

These ratios are combined in a weighted average to produce a “daringness” score, which is value from 0
to 1 that rates how daring I should be with my next card played. This daringness score includes the
following properties:

1. The score is higher if there is much value at stake, and increasingly higher as the value at stake
increases. This means, for example, that when there are many points at stake, the daringness
score is at or near 1, indicating that I should be very aggressive in trying to win the turn. When
the value at stake is lower, other factors have more influence (like whether I or my opponent
have more spending power, for example).

2. The score is specially standardized so that the values from a given turn are considered in the
context of the rest of the potential value, i.e., that if there is a queen lurking in the deck near the

0202

end (which I would know because it hasn’t yet been played), the daringness score will reflect
that and try to hold some higher cards in reserve in order to provide the spending power
necessary to win the lurking card.

3. The score also considers my spending power as compared to that of my opponent so that, for
example, if I see that my opponent has spent several high-value cards near the beginning of the
game, I won’t need to be as aggressive for some cards later in the game because the opponent
has less potential for winning later turns.

This daringness score is used to determine which of my remaining cards I am to play. The decision simply
uses the daringness score as a 100-point scale, applies the scale to an ordered set of my remaining
cards, and selects the card that corresponds to the proper amount of daringness, after rounding to the
nearest available index.

This flexible “daringness” framework allows me to easily adjust the strategy according to the different
scenarios required, which I describe in the following sections.

Carry-over vs. No Carry-over

In games with carryover, my daringness score adapts to account for the potential of much more value at
stake (in the case of a previous tie). It adds all of the carryover value (allowing for multiple sequential
ties) to the value of the up card, and this additional value at stake weighs heavier in the calculation of
daringness. Usually carryover produces a rather aggressive daringness score, since many more points
are at stake.

Points vs. Wins

Assuming that the base case is maximizing points, I had to adjust my algorithm to allow for maximizing
wins regardless of points. Again, since my “daringness” framework was flexible, I was able to add in a
weighting factor to strategically account for the maximizing of wins. This consisted of establishing a
“critical value” needed for the win (equal to half of the available points, plus one), and then keeping
track of how close my cumulative score was to that critical value. (In the case of no carryover,
maximizing wins, the value of any ties is subtracted from the critical value.) Until my score reaches the
critical value, my weighting structure applies a heavier weight to the daringness score, encouraging
more aggressive play until the critical value is reached. This usually means that the first half of the game
is more aggressive and includes more gambles, since my daringness score is trying to get my cumulative
points to the critical value.

Strategy 0203

 0203

1 Overview
In this report, I’ll show the flow of my mind on solving Goofspiel, the game of pure strategy.

Main contribution of this report includes: (a) a reasonable good strategy; (b) a general way to refine any given
strategy.

I am not going to explain rules of the Game, as you can always find better explanation online when searching for
“Goofspiel”.

Theoretical approach of solving the problem will be explored first. Then followed empirical approach based on the
concept of “doing the best you can” and “If you find something is good to do, do it now”.

If you are not interested in my thought flow but only the final solution, please jump to the last page directly and read the
conclusion.

To narrow down my topic, a bunch of assumptions are states as follow.

2 Assumptions
1. Try to win at the end of all rounds is equal to try to win at each round. In another word, I treat opponent in each

round as a new one, and delete all memory from round I played before, so I am not going to consider how to
guess opponent’s strategies across all rounds.

2. There are only two players in each round, me and the opponent.
3. Since my strategies do not make any difference on carryover or nocarryover case, I’ll just discuss my strategies

and attach simulation results on both cases.

3 Theoretical Approaches
In the approach, I am not going to guess or crack the strategy my opponent chooses, but try to find a better
strategy that beats most strategies known with theoretical proof as support.

A. antiRandom
To start with, let’s first assume that the opponent is play in a random way as given in the software.

Ross proved that one can win with a expect value of 28 point against opponent playing randomly by play card equal to
every upcard (Ross, 1971).

This algorithm is implemented in my software with source file antiRandom.cpp. To call it, set the strategy name as
“antiRandom”.

Let Alice use random, and Bob use antiRandom strategy, run 100 rounds, we got the results:

Figure 1: carryover case Figure 2: nocarryovercase

As we can see, Bob won an average of around 28 points in each round on both cases, which verifies Ross’s proof.

 1 / 7

 0203
B. antiRandomKiller
An easy way to against antiRandom is play (upcard+1) if upcard is not equal to 13 and play 1 when the upcard is equal to
13. So you’ll only lose 13 and win 1 to 12, which sum up to 78. Thus the expect value of win is 65 points.

This algorithm is implemented in my software with source file antiRandomKiller.cpp. To call it, set the strategy name as
“antiRandomKiller”.

Let Alice use antiRandom while Bob uses antiRandomKiller, we got the following result for 100 rounds:

Figure 3: carryover case Figure 4: nocarryover case

As we can see Bob won 65 points on average of each round on both cases.

Addtionally, I am also interested the performance of antiRandomKiller against random players. So Iet Alice use random
and Bob use antiRandomKiller, we got the following result for 100 rounds:

Figure 5: carryover case Figure 6: nocarryover case

As we can see, antiRandomKiller is also far way better than random strategy.

In all, we can say that theoretically, antiRandomKiller is better than random and antiRandom Strategy.

C. antiRandomKillerKiller
Same way as how I against antiRandom by antiRandomKiller, I can also win antiRandomKiller by
antiRandomKillerKiller, which play (upcard+2)mod 13 when upcard is not equal to 11 and play 13 when upcard is equal
to 13.

Let Alice use antiRandomKiller and Bob use antiRandomKillerKiller, we got the result for 100 rounds:

Figure 7: carryover case Figure 8: nocarryover case

We can see that antiRandomKillerKiller won an average of 67 points each round, this is because antiRandomKillerKiller
only loses when upcard is equal to 12.

 2 / 7

 0203
Remember that antiRandomKillerKiller should beat all strategies before to be a better strategy.

Let Alice use antiRandom and Bob use antiRandomKillerKiller, we got the following results for 100 rounds:

Figure 9: carryover case Figure 10: nocarryover case

We can see that antiRandomKillerKiller won an average of 41 points each round since it only loses when upcard=12 and
upcard=13.

Let Alice use random strategy and Bob use antiRandomKillerKiller, we got the following results for 100 rounds:

Figure 11: carryover case Figure 12: nocarryover case

We can see antiRandomKillerKiller is still better than random strategy.

So we can say that so far antiRandomKillerKiller is better than all strategies ahead.

D. A worse case: antiRandomKillerKillerKiller
Similarly, I consider strategy antiRandomKillerKillerKiller, which play (upcard+3)mod 13 when upcard is not equal to 10
and play 13 when the upcard is equal to 10.

To save the length of report, let’s do some math instead of take a picture of the results.

antiRandomKillerKillerKiller win antiRandomKillerKiller at expect value of 69 points since it loses only when upcard=11.

antiRandomKillerKillerKiller win antiRandomKiller at expect value of 45 points since it loses only when upcard=11 and
upcard=12.

antiRandomKillerKillerKiller win antiRandom at expect value of 19 points since it loses only when upcard=11, 12 or 13.

But how does antiRandomKillerKillerKiller against random strategy?

Let Alice use random strategy and Bob use antiRandomKillerKillerKiller, we got the result for 100 rounds:

Figure 13: carryover case Figure 14: nocarryover case

As we can see, win is not guarantee now. So we can’t say antiRandomKillerKillerKiller is better.

 3 / 7

 0203
E. Conclusion
For theoretical approach, antiRandomKillerKiller is the best.

4 Empirical Approaches
In this approach, I am going to somehow crack the strategy my opponent chosen and react accordingly.

A. antiTheoretical
To crack all theoretical strategies above, one should notice that, given a short sequence (say sequence length equal to 3 or
4), it’s hard to find if it is random, but it’s reasonable easy to find it is correlate to some other known sequence.

Let playedCardOpp donates the card my opponent played given an upcard, and playedCardMe donates the card I play
given a upcard. To beat any strategy mentioned in “Theoretical way”, just play

If (playedCardOpp+1) is not equal to 13

playedCardMe = (playedCardOpp+1)mod 13

Else

 playedCardMe=13

 Algorithm 1

In order to guess what card the opponent will play given a certain upcard, we need to guess the strategy the opponent uses.

To guess the strategy of the opponent, when the opponent only take strategies among those in “theoretical way”, just
calculate the correlation between the played cards sequence of opponent and should played cards sequence corresponding
to each strategies.

In all, the antiTheoretical strategy plays like this, play 1, 2, 3 regardless of the value of first 3 upcards.

Use algorithm 1 to play after find the strategy of the opponent. If calculated playedCardMe is equal to some card already
been played, choose the closet but large unplayed card instead.

Further, to beat random strategy, just let antiTheoretical play upcard when no correlation has been found between
opponent played cards sequence and any antiRandom strategies should have played cards.

While the longer the sequence I choose to calculate correlation the accurate my calculation will be, but the reason to
choose only first 3 is because I'll lose 11+12+13=36 points at first in the worst case. But I’ll still win in the end. If I
choose first 4, then I’ll lose 10+11+12+13=46 point at first in the worst case, then I got no chance to win afterwards.

Let Alice use antiRandom, antiRandomKiller, antiRandomKillerKiller, and random strategy, and Bob use antiTheoretical,
we got following results for 100 rounds:

Figure 15: carryover case Figure 16: nocarryover case

 4 / 7

 0203

Figure 17: carryover case Figure 18: nocarryover case

Figure 19: carryover case Figure 20: nocarryover case

Figure 21: carryover case Figure 22: nocarryover case

So far, we can see that antiTheoretical is better than random strategy, antiRandom, antiRandomKiller and
antiRandomKillerKiller.

B. probabilityTransferMatrix
When searching on the internet, I found Glenn and Laurent claims that the solved the Goofspiel by some
probablityTransferMatrix.

The matrix is listed below (The entry in row i column j is the probability with which you should play card i when card j is
the initial upturned card.):

 5 / 7

 0203
What strategy probabilityTransferMatrix does is playing the unplayed card with highest probability according to the
matrix when given an upcard.

However, simulation shows this strategy is not so good or not even close.

Let Alice use random strategy, and Bob use probabilityTransferMatrix. We got the results for 100 rounds:

Figure 23: carryover case Figure 24: nocarryover case

As shown in the figure above, probabilityTransferMatrix slightly won random strategy.

Let Alice use antiRandom and Bob use probabilityTransferMatrix. We got the results for 100 rounds:

Figure 25: carryover case Figure 26: nocarryover case

As shown in the figure above, probabilityTransferMatrix can’t beat antiRandom, which clarifies that
probabilityTransferMatrix is not a better strategy.

C. furtherRefined
So far, the best strategy is antiTheoretical. But how do we further refine it?

Notice that there are some conditions that we should win some cards.

For example, if the current upcard is larger than any remained upcard, while your unplayed card is no less than opponent’s
unplayed card, you should play your largest unplayed card to win the current upcard.

Now, an intuitive way of refining antiTheoretical is to add some detectors, which detects if some conditions meet, then do
corresponding actions. Example above is one of these conditions.

Add this condition and reaction to antiTheoretical and name the new strategy furtherRefined.

Let Alice use furtherRefined and Bob use antiTheoretical. We got the result for 100 rounds:

Figure 27: carryover case Figure 28: nocarryover case

The result demonstrates that furtherRefined is better than antiTheoretical.

 6 / 7

 0203
To ensure that furtherRefined is so far the best one, run it against random, antiRandom, antiRandomKiller,
antiRandomKillerKiller and probabilityTransferMatrix. We found furtherRefined beat all other. Thus, furtherRefined is
the best strategy I know so far.

5 Conclusion
Strategy furtherRefined is the best.

6 Further work
The way I refined antiTheoretical to furtherRefined, is a general method to refine any given strategy, including strategy
furtherRefined.

Thus, the further work could be discover more qualified conditions, similar to the example, and add it the existing best
strategy, then a better strategy is developed.

Reference

ROSS, S. M. (1971). Goofspiel: The Game of Pure Strategy. Journal of Applied Probability. 8,.

GLENN C. RHOADS AND LAURENT BARTHOLDI (2012), http://arxiv.org/pdf/1202.0695.pdf

 7 / 7

http://arxiv.org/pdf/1202.0695.pdf

Strategy 0204

0204

Games of Pure Strategy: Goofspiel

Goofspiel, or the games of pure strategy, refers to a type of card games in which two

players are involved. In the standard version of Goofspiel, two players are each

endowed with a deck of cards (13 standard cards for each deck), together with an

additional deck as the prizes. In each round of the game, a card from the prize deck

is upturned (randomly drawn from the prize deck); after reading this prize card,

two players are bidding simultaneously by showing one card from the remaining

cards at hand. The player with the higher bid wins the prize in the current round,

and then the other cards in the current round are discarded. When the players’ bids

tie each other, the prize card is also discarded in this standard version of Goofspiel.

One variation is a Goofspiel with carryover, in which case the prize cards in tied

rounds are carried over to the following rounds until one player successfully beats

the other player.

 To fix idea, suppose two players 𝐴 and 𝐵, with deck 𝑎 and 𝑏 at hand respectively,

are competing to win cards in deck 𝑐, with 𝑎, 𝑏, 𝑐 ∈ {1, 2, 3, … , 13}. In round 𝑖, prize

card 𝑐𝑖 is upturned; and after observing this prize card, players 𝐴 and 𝐵 are bidding

with 𝑎𝑖 and 𝑏𝑖 respectively. Comparing 𝑎𝑖 and 𝑏𝑖 and according to the rule stated

above, the players’ payoffs are determined. In the standard version of Goofspiel, the

player with higher total payoff (calculated as the sum of payoffs from all rounds)

wins the whole game. Again, one revision of it might be to maximize the total

number of rounds in which player wins the prize card, irrespective of card values.

To summarize a bit, there are four variations to consider here:

1) To maximize the total payoff without carryover;

2) To maximize the total payoff with carryover;

3) To maximize the number of rounds won without carryover;

4) To maximize the number of rounds won with carryover.

 1

0204

In this report I am going to discuss the “good” strategy in each of these cases, as

there is no “best” strategy (or pure strategy Nash equilibrium).

1. To maximize the total payoff without carryover

For the first variant, in which case the players are aiming to maximize the total

payoff and prize cards are discarded in tied rounds, it is not hard to see that when

the opponent is playing in a random fashion, the best response to this naïve strategy

is to match the prize cards, i.e., 𝑎𝑖 = 𝑐𝑖 suppose you are player 𝐴. However, upon

rational players predicting this strategic interaction, tit-for-tat strategy is inevitable

then. For example, if your opponent has the expectation that you play matching the

prize cards, then his or her best response will be to play 𝑏𝑖 = 𝑐𝑖 + 1. Similar analysis

can be conducted in this fashion. So one possible strategy is to identify your

opponent’s strategy in the beginning few rounds, then playing the best-response

strategy to win over. One drawback of this identification strategy is that suppose the

opponent’s strategy does not follow this trail, then you will identify nothing in the

first few rounds. Then there will be no ex ante good strategy in the sense of

prisoners dilemma, where there is no pure strategy equilibrium.

 However, Rhoads and Bartholdi (2012) show that we can use computer to help

with solving the “best” strategies. The Goofspiel game in their setting is slightly

different from the standard version. Not discarding the prize cards in tied rounds,

the authors allow the two players to evenly split the value displayed in the prize

cards. However, we can see that these two versions should be equivalent in terms of

“best” strategies. I am going to proceed without proof, but the intuition is that when

we are choosing the best strategies we care about the difference in total points won.

In tied rounds the difference in the points won between the two players are the

same in the standard version and in the variant discussed in Rhoads and Bartholdi

(2012). Thus, with high probability we will end up with the same choices of “best”

strategies. So, I will use the strategy simulated from the computer, which is showed

to win most of the time in the paper. The strategy is as follows: we have the

following matrix, each entry 𝑝𝑖𝑗 is the probability of playing card 𝑖 when the prize

 2

0204

card is 𝑗, where 𝑖 is index of the row and 𝑗 the index of column. For example, when

the prize card is shown to be 1, then a player should play card 2 with probability

0.4144.

Table 1 Matrix of Bidding Probabilities

 * It is clear that probabilities in a column add up to 1, but not necessarily true for a row.

 There might potentially be a problem with bidding according to Table 1, which is

that there are some overlapping in each row of the matrix. For example, if in the first

round card 2 is upturned, then according to the matrix you will play card 4 with

probability 0.2991. Then if you indeed played card 4 in the first round and in the

second round card 1 is upturned, then card 4 will not be in your hand now

(discarded in the previous round). To overcome this difficulty, we can simply

renormalize the probability distribution. In the example, now we simply

renormalize the probability of choosing card 2 to be 0.4144 (0.4144 + 0.0897)⁄ =

0.8221, and choosing card 3 to be 1 − 0.8221 = 0.1779.

2. To maximize the total payoff with carryover

If the prize cards are carried over in those tied rounds, then there will be a high

accumulated points in some rounds with strictly positive probability. As an example,

in the first round the probability of drawing the king card from the prize deck is

 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0* 0 .0519 .0309 0 0 0 0 0 0 .0145 0 .0100

2 .4144 .2266 0 .0204 .0558 .0727 0 .0338 .0473 .0361 0 .0304 0

3 .0897 .0216 .1784 .0952 .0357 .0025 .0694 .0215 .0015 0 .0410 0 .0370

4 .4959 .2991 .0340 .0610 .0873 .0985 0 .0536 .0648 .0673 0 .0561 0

5 0 .0976 .2301 .1343 .0667 0 .1237 .0395 0 0 .0803 0 .0655

6 0 .3551 .0929 .1073 .1242 .1846 0 .0767 .1198 .0985 0 .0819 0

7 0 0 .2740 .1754 .1014 .0018 .1675 .0602 .0012 0 .1016 .0080 .0875

8 0 0 .1386 .1544 .1654 .2184 .0209 .1028 .1422 .1384 .0156 .0987 0

9 0 0 0 .2210 .1481 .0451 .2021 .0917 .0295 .0151 .1229 .0280 .1262

10 0 0 0 0 .2155 .2664 0 .1436 .1766 .1696 0 .1243 .1288

11 0 0 0 0 0 .1100 .3967 .1506 0 .0635 .2530 .0646 0

12 0 0 0 0 0 0 0 .2262 .4171 .2410 .0228 0 0

13 0 0 0 0 0 0 0 0 0 .1704 .3482 .5081 .6610

 3

0204

1 13⁄ , and the probability of tied in the first round is 1 13⁄ = 13 132⁄ ; then the

probability of having greater than 13 points in the second round is 1 169⁄ = 1 13⁄ ∙

1 13⁄ , which is strictly positive although quite small in this case.

 Under this situation, in order to maximize the total points won, a player is

expected to play aggressively in those rounds with high cumulative prize1. As in the

above example, if we happen to have a draw and the king card is upturned in the

first round, then a rational player would probably wish to bid as much as he has, i.e.,

to bid the highest card at hand in the second round. Based on this idea, I propose a

strategy as follows:

1) Start with playing according to Table 1 in the first round;

2) In the later rounds, if the previous round is tied and the cumulative point is

bigger than your highest card at hand, then bid the highest card; if the

cumulative point is less than your highest card value at hand, then bid as if

this cumulative point is the value of the upturned card in Table 1.

Here we are facing the same issue as in part 1, which is discussed right under Table

1, the overlapping issue. We adopt the same solution to that issue here.

3. To maximize the number of rounds won without carryover

In this case, the value of prize card is not as important as in the previous cases. It is

possible that the player, whose total payoff earned is higher, might lose more

rounds than his or her opponent. Then what would be the key consideration here? I

would argue that the rankings of remaining cards at hand (both mine and

opponent’s) play key roles in determining who would win more rounds. As a simple

example, in a certain round if it is true that my highest card is greater than the

opponent’s highest card, then I am going to win for sure by bidding my highest card

irrespective of the prize card. I am proposing the following the strategy in this case:

1) Start with playing according to Table 1 in the first round;

1 To calculate the cumulative prize, we simply add up the points carried over from the previous
round and the upturned card value in the current round.

 4

0204

2) After bidding in each round, recording the opponent’s bidding card so that I

will be able to figure out the remaining cards at the opponent’s hand before

next round bidding;

3) In the remaining rounds, first comparing the highest card at my hand with

the opponent’s highest card. If mine is greater than the opponent’s, then I bid

my highest card; if my highest card is lower than his or hers, then I bid the

card which has a value just above the expectation of the opponent’s

remaining cards, from my remaining cards of course.

For the last part in the last bulletin, let us consider the following hypothetic numeric

example. Suppose in round 10, the opponent’s remaining cards are {1, 4, 10, 11} and

my remaining cards are {2, 6, 7, 10}, then mean value of the opponent’s remaining

cards is 6.5. In this case, I will bid 7 in this round.

 The justification of the last bulletin in this situation is purely probabilistic.

Bidding higher than the expectation value of the opponent’s remaining cards yields,

on average, higher winning probability in the current round. The opponent might

predict this strategy, and bid aggressively. For example, the opponent might be able

to bid always the card with a value greater than the mean of remaining cards. But

the apparent drawback of this response is that bidding aggressively in this way in

the current round sacrifices with higher probability of losing in the future rounds.

However, the strategy proposed above for this situation (maximizing number of

rounds won without carryover) is not quite clear whether it will yield higher

probability of winning or not, because as analyzed above the opponent’s response is

not quite clear either. But this strategy definitely beats the opponent’s strategy of

randomizing over the remaining cards.

4. To maximize the number of rounds won with carryover

As discussed in last section, the value of prize cards does not play such important

role as in maximizing the total points won situation. Although in the tied rounds the

prize card is carried over to the following rounds, the analysis of game strategy is

not quite different from that in last section. So I will use the same strategy here as in

the last section.

 5

0204

Reference

[1]. Dror, M., T. Chan, and (Ed.) M. Hazewinkel (2012) Goofspiel, Encyclopedia of

Mathematics, Supplement IV, Springer (in press).

[2]. Rhoads, G. C., and L. Bartholdi (2012), Computer Solution to the Game of Pure

Strategy, Games, 3: 150-156.

 6

Strategy 0205

0205

At first glance, Goofspiel is a very simple game. Each player has 13 cards worth 1 to 13 points which they
use to bid on randomly ordered cards valued at 1 to 13 points. Nothing is hidden – you know what cards
you have, what cards your opponent has, and what cards remain in the deck. When trying to decide
which card to play, however, the complexity rises quickly.

One sensible strategy is to play a card equal to the value of the up card – winning an ace has very little
value so you should not wager many points on it, and winning a king is very valuable so it is seemingly
worth it to risk more points. Using this thinking to consider how to beat your opponent, however,
quickly leads to an arms race. If you think your opponent will match the up card – a 10 for example – it
makes sense to attempt to beat your opponent by one by playing a Jack. However, your opponent may
realize this and decide to beat your Jack with a Queen. As the values continue to rise, at some point you
may assume that your opponent will not want to waste such a high card and will instead “throw away”
the hand with a low card such as a 2. This gives the nice opportunity to win a valuable card with little
expenditure by playing a 3. This circular logic could continue ad nauseam.

 As described in this this scenario, naïve strategies that only consider the value of the up card can easily
become overwhelmed. For this reason, my strategy involves a number of more sophisticated elements
described in this paper, including:

• Tiered valuation of cards
• A learning algorithm based on monitoring of historical play
• Bounded random play
• Mitigations against learning algorithms

Four versions of my goofspiel algorithm were created: maximize points (carryover), maximize points (no
carryover), maximize wins (carryover), and maximize points (no carryover). Each version uses the same
basic set of strategies with a few unique features as discussed later in this report.

Starting the Game
To clarify the terminology as I will be using it in this report:

• Hand – When a new up card is revealed and each player bids. There are 13 hands per round
• Round – A series of 13 hands, during which each card A-K is randomly revealed as the up card
• Game – A series of several rounds played in succession

In a normal game of Goofspiel (no carryover, maximize wins), the goal is to win one more than half of
the available points in a given round. At the start of each round, there is a total of 91 available points in
the deck, so the goal is to win 46 points. As the game progresses, however, ties may occur causing
points to be discarded and thus lowering the total number of points needed to win. Therefore at the
start of each hand we first calculate the number of points needed to win:

Winning Score = (My Score + Opponent Score + Points remaining in deck)/2

0205

For convenience, we then determine the number of outstanding points needed to win the game:

Points I need = My Score – Winning Score

Tiered Valuation
Once we have determined how many points are
needed to win, we want to find out how to get as
quickly as possible. To do this, calculate the value
of winning each card in the deck (Figure 1). At the
start of each round the number of points needed
is always 46, and these values are always the
same:

K: 0.28 Q: 0.26 J: 0.24 T: 0.22
9: 0.20 8: 0.17 7: 0.15 6: 0.13
5: 0.11 4: 0.09 3: 0.07 2: 0.04 A: 0.02

To find the shortest path to the winning score, the
values of each card are added to find

Figure 1

combinations that have a sum greater than or equal to 1. In the first round, we need 46 points to win,
which is most quickly accomplished with four cards: K, Q, J, 10. Using a tiered valuation system, these
cards are stored in a winners array, because they are the cards that can win the game in the minimum
number of plays. Once the winners have been determined, a second valuation tier called helpers is
created. Any two helper cards may be used to replace any one winner card up to the highest winner. In
the first hand of a round, the helpers are 9, 8, 7, and 6. The sum of any two helpers must be greater
than or equal to the highest winner – e.g. five is not a helper because despite 9 + 5 >= 13 being true, 6 +
5 >= 13 is not true. The final tier of the valuation system is tossers, which are cards that would require
three or more to be useful. Unless the learning algorithm determines we can easily win them (as
described later), the bounded random algorithm will dispose of these by playing the lowest available
card. Ultimately we wind up with three arrays configured as shown in Figure 2.

As the game progresses, however, the number of points needed to win
changes for three reasons:

• Ties reduce the number of points needed to win
• You may lose some of the cards you need for the shortest path

to victory
• You may win smaller cards, which expand your options for

shortest path to victory

Figure 2

0205

Figure 3

In Figure 3, we show a situation where three cards
have been turned up: 8, 9 and K. Ties occurred on
8 and K, thereby reducing the total points available
in the game to 70, and the winning score to 36.
We won the 9, so the total points we need to win
is 27.

Starting with the remaining cards of the highest
value and working down, we find that the shortest
path to 27 is Q, J, 10 (34 points) using three cards.
Now we look for other solutions using three cards,
and find another: 7, 10, J (28 points).

Of course there are other three card solutions such
as 6, J, Q (29 points), however, the winner cards
should be such that any combination using the
minimum number of cards to win is greater than
or equal to the winning score. In this example, if
six were included, we see that some of the three
card combinations (such as 6, 7, 10 = 23 points)
would not win, so 6 is demoted to “helper” status.

These tiered values are recreated at the start of each hand and provide a reasoned baseline for
decisions for the learning algorithm and bounded random strategies described below.

Monitoring Historical Play
This strategy uses a learning algorithm which monitors what the opponent has played against each up
card. Of course this information becomes more valuable as more history is recorded and can be
dangerously inaccurate when little historical data is known, so we wait for a set number of games (10%
or 10 games, whichever is smaller) before starting to use this information. Until this threshold is
reached, and again if historical data is insufficient to make an informed decision, we used the bounded
random strategy described in the next section. For games with very few rounds we may start using the
historical data pre-maturely (with as few as one previous observation), but we attempt to offset this by
checking (described in the “sanity check” section) to ensure that the played card is not significantly
higher than the card that would have been played were we not using the learning algorithm.

Figure 4 shows the state of the
learning algorithm after 35
rounds. We see that with a 10 as
the up card, the opponent has
played ace 16% of the time, three
25% of the time, and ten 58% of
the time. The algorithm takes
only cards currently in the
opponent’s hand into
consideration, so if the opponent

Figure 4

0205

typically plays a jack against a ten, but does not currently hold the jack, it will be excluded from the
calculation since they obviously could not play that card. If we have seen a single card played 50% of
more of the time, we assume this is the card they will play thus will play that card +1 (in this case, we
would play an 11). If we do not have the desired card to play, we try the next highest card until we find
one that is available. Of course this can lead to situations of overbidding, which are mitigated by the
sanity check process described later in this report.

Often our opponent will not
have played a single card
consistently. For this reason we
also look at the cumulative
likelihood of each card. In Figure
5 we show the historical play
with nine as the up card. In this
case, the opponent has played
ace 26% of the time, two 3% of
the time, three 7% of the

Figure 5
time, ten 23% of the time, jack 20% of the time, and queen 20% of the time. No single card stands out
as the single most likely play. By looking at the cumulative history, I see that if I really want to win this
nine, I have a very good chance of winning with a king, about 80% chance of winning with a queen, 60%
chance of winning with a jack, and so on.

Sanity Check
One problem with using the historical play percentage is that it may lead you to play far too high of a
card. This is especially prevalent in later rounds when the opponent might have fewer appropriate cards
to play against a given up card, which can dangerously skew the results. For this reason, at the end of
card selection, a sanity check occurs. If the card you are playing is more than three higher than the
value of the up card and the up
card is not in the winner array,
the recommendation is
discarded and the bounded
random strategy takes over. For
example, in Figure 6 the up card
is a five and there is no value the
opponent has consistently
played against a five (they are
pretty evenly split between 3, 6,

Figure 6

8, and 10). In this case we look at the cumulative score, which indicates we should play a jack to win the
five. In most cases the jack in our hand is much more valuable than a five, so the sanity check will
discard this recommendation. If, however, the five is in my “winner” array, I will play whatever is
necessary to win the card - for example, if I only need four more points, I will gladly play the jack to win
the five.

Bounded Random Play
At the start of the game, the learning algorithm has no data to act on, so we use a strategy of bounded
random play. Additionally, if the sanity check determines the learning algorithm as picked a seemingly

0205

bad card (i.e. bidding Jack for 5), the bounded random strategy is used. Using the tiered valuation of
each card to determine upper and lower bounds, we pick a random card from a reasonable subset of
options. The bounds used are:

• If the card is in the winners array, play one of the highest available cards, pseudo randomly
selected with the up card as the lower bound and the highest available card as the upper bound.
However, if my opponent has cards higher than all of the cards in my bounded subset, I will play
my lowest available card rather than playing a valuable card when defeat is likely. For example:

o K – Play King or Lowest Available Card
o Q – Play Queen, King or Lowest Available Card
o J – Play Jack, Queen, King or Lowest Available Card
o T – Play Ten, Jack, Queen, King or Lowest Available Card

• If the card is in the helpers array, randomly play up card, up card + 1, or up card + 2.
• If the card is in the tossers array, play lowest available card

This bounded random play strategy ensures that the card played is reasonable considering the value of
the up card, but introduces enough randomness into the play to make it difficult for learning algorithms
to predict my play. It also takes into account likely losses so we do not play a high card when a loss is
very likely.

Finally, on the first up card of the games before the learning algorithm is trained, there is very little
information available to make a rational choice. Since we have no good data to make a decision on, we
build on the work of Rhoads and Bartholdi (2012) in picking a statistically reasonable card (Figure 1).
This strategy is only used on the first card of the round, and only on rounds before the learning
algorithm is trained, so this strategy is employed between one and ten times.

Figure 7: Rhoads and Bartholdi optimal strategy for first move, N=13

Mitigation Against Learning Algorithms
In additional to using a bounded random strategy to thwart learning algorithms, in games where we are
not trying to maximize points, we initiate a “suicide mode” once we have definitely won or lost the

0205

game. With this strategy, once we have won or lost, we play our lowest available card on every hand. In
this way we attempt to corrupt the data of the opponent’s learning algorithm.

Special Cases
There are two special cases of the game we consider: carryover and points maximization.

Carryover
When playing with carryover instead of discarding the up card when a tie occurs, the up card “carries
over” to the next round, increasing the size of the pot. For example, if a two carries over onto a three,
the total value of the pot is five, which is not terribly exciting. However, if a medium size card such as a
seven carries over only a medium size card such as an eight, the pot size is increased to fifteen, which is
a very valuable pot.

Carryover can create significant changes in scorekeeping because not only are values much higher than
13 feasible, but values may also be repeated during a round (for example, you may have a 5 up card, but
also a 2/3 carryover with a value of 5). When playing carryover games, I always consider the total value
of the pot as the up card. I think this is the most reasonable strategy overall, and while some opponent
strategies may consider either the combined value or the latest up card value, I believe it would be
counterproductive to attempt to accommodate these individually. For pots that are over 13, we play
just as if the value was 13 since there is unfortunately no way to play more aggressively to win a pot
with 18 points than how the normal strategy plays to win a pot with 13 points.

One very interesting characteristic of carryover is the value of ties. When ties occur, two lower value
cards are combined to potentially make a high value pot – for example turning a 7 and 9 into 16 points.
With this in mind, my algorithm attempts to actively create ties if the following three criteria are met:

• The first up card is not already in the winner array
• We have a card that is higher than my opponents highest card
• The learning algorithm believes there is at least an 70% chance of being able to tie

The first point is important because if we win the cards in the winners array, getting the big tie values
don’t really matter. If we can win a winner, we should just go ahead and do it instead of being greedy.
The second point is important because if we do not know for certain that the opponent can be beat, we
do not want to intentionally create a big pot for them to win. The third point is important because we
want to be reasonably sure we will be able to create a tie if that is what we intend to do.

As I write this, I realize one strategy that might have worked well would be to play less aggressively in
the early hands of carryover games in order to increase the probability of having strong cards when
large carryover pots are created. Unfortunately I realized this very late and was not able to modify my
strategy in time for the competition.

Max Points
At first glance the best strategy for maximizing points would seem to be winning as many hands as

0205

possible; however, I believe this will ultimately lead to big problems. Instead, I propose a similar
strategy to what is used for maximizing wins, but
with a higher point target. The reason for this is
that even when playing for max points, if you are
playing against a reasonable opponent you will still
have to sacrifice hands occasionally to get the big
wins. Therefore, we keep my same
winners/helpers/tossers scheme, but instead of
going for half+1 of the available points, we go for
about 2/3 of the available points. Since it is not
reasonable to attempt to win 90/91 points, we
instead shoot for 63/91 points. As shown in Figure
8, this changes the winner array on the first hand
to K, Q, J, T, 9, 8.

One other difference in max point games vs.
regular games is that we do not go into the
“suicide mode” described earlier as we do in a

Figure 8

max wins game. While this does reduce our defense against AI opponents, it is sensible to not
unnecessarily give up points.

Conclusion
While goofspiel seems to be a simple game at first, constructing a strategy that can win against a variety
of opponents is a significant undertaking. The strategy described in this paper uses a number of
approaches including learning algorithms, bounded random play, strategies to disrupt other AI
strategies, strategies to increase value of carryover games, and more. The more you think about a game
such as this, the more you think about special cases that can make a big difference such as the value of
ties in carryover games and how valuable machine learning techniques can be. It also helps illustrate
that machine learning algorithms can sometimes go awry and create big problems (for example, bidding
large cards on low value up cards) – for this reason it is important to build in checks and balances to
account for deviations such as this.

References
Rhoads, Glenn C., and Laurent Bartholdi. "The Game of Pure Strategy is solved!." Retrieved from
http://arxiv.org/pdf/1202.0695.pdf November 12, 2012.

http://arxiv.org/pdf/1202.0695.pdf

Strategy 0206

 0206

Goofspiel Competition

Introduction
Goofspiel, also called Game of Pure Strategy (GOPS) is a two-person game. A bet consists
of turning up the next card from the middle pile and then the two players 'bet' on the
upturned card, each player choosing one card and then simultaneously displaying it to the
other player. The player showing the highest card wins the value of the upturned card.
These three cards are then discarded. The game ends after 13 bets and the winner is the
person who obtained the most points (46 points or better are in need to win).

Goofspiel also varies according to the rules when two players bet the same cards for an
upcard.

If two players bet the same card for up card, the up card remains on the table and add up
to the points of next card till two players have different bets. This is goofspiel with carryover.
On the other hand, if two players bet the same card for the middle deck, neither of them
get the points and three cards are discarded. This is goofspiel with no carryover.

The different rules in goofspiel games make the strategy to bet on card different. Also
strategies are different when players want to gain maximum points and maximum wins.

We will explore the strategies for goofspiel with carryover and goofspiel with no carryover to
maximize the points gained and to maximize the number of wins.

Goofspiel with carryover

Maximize the points
Goofspiel game with carryover to maximize the point aims to gain as many points as
possible.

A measure called “Point Quality” is used to evaluate how efficient past cards in one round
are spent. Both my point quality and opponent’s points quality are calculated each bet.
Every new card I play is aiming to enhance the difference of two players’ point quality.

Point Quality (Ai) refers to the Point Quality of player A after the ith bet.

 0206

Eg. The table below shows how Point Quality is computed in 1 round.

Upcoming Card 10 7 2 11 6 12 3 4 9 13 1 5 8
Player A 's bet 12 9 1 13 8 2 3 4 11 10 5 6 7
Player B's bet 11 7 2 12 9 13 4 5 10 8 1 6 3
Point quality (A) 10/12 17/21 17/22 28/35 28/43 28/45 28/48 28/52 37/63 50/73 51/78 51/84 64/91
Point quality(B) 0/11 0/18 2/20 2/32 8/41 20/54 23/58 27/63 27/73 27/81 27/82 27/88 27/91

CarryOver points are recorded in order to adjust the number of points (bet reward) I can
get for this bet.

I arbitrarily set up the boundary that for bet reward smaller than 5 I give my smallest card
in my deck.

For bet reward larger than five and smaller than 10, I will compare my points quality
measure with my opponent’s. If my quality measure is better, I can bet more aggressively,
which means I can pay 2 points more than the bet reward if the card is not played yet.
Otherwise, I will play at most 1 point more than the bet reward.

For rewards larger than 10, I will check the largest card in hand of both my opponent and
me. If my opponent has the larger card, I will bet conservatively. If I have the larger card, I
will bet one more than my opponent’s largest card.

The result shows that having a measure of point quality is helpful to adjust the
aggressiveness of the strategy in terms of maximizing the points I can get.

Maximize the number of wins
Goofspiel with no carryover to maximize the wins aims to gain as many wins as possible.

CarryOver points are recorded in order to adjust the number of points I bet for (bet reward).
I set up the goal to get 46 points initially.

When I am close to the target, I will play more aggressively in order to win this round,
which means I will bet 2 points more than the bet reward and even sometimes I will use my
largest card in order to get the points to win the game.

When a carryover happens, I check my largest card and my opponent’s largest card to see if
I can get the points of this round by using my largest card. If my opponent is about to win,
I use my largest card anyway. If not, I will bet a conservative number.

Since the goal of each round is just to win, as long as I can get enough points to win, it
doesn’t matter how many points my opponent gets. The measure of “Points in Need to win”
helps me adjust the aggressiveness of my strategy to approach the wins.

 0206

Here I also arbitrarily set up the boundary that for bet reward smaller than 5, I will just give
my smallest card.

Goofspiel with no carryover

Maximize the points
Goofspiel game with no carryover to maximize the point aims to gain as many points as
possible.

A measure called “points Quality” is used to evaluate how efficient my cards are spent.
Every new card I play is aiming to enhance the value of this measure.

Point Quality (Ai) refers to the Point Quality of player A after the ith bet.

Eg. The table below shows how Point Quality is computed in 1 round.

Upcoming Card 10 7 2 11 6 12 3 4 9 13 1 5 8
Player A 's bet 12 9 1 13 8 2 3 4 11 10 5 6(Tie) 7
Player B's bet 11 7 2 12 9 13 4 5 10 8 1 6(Tie) 3
Point quality (A) 10/12 17/21 17/22 28/35 28/43 28/45 28/48 28/52 37/63 50/73 51/78 51/84 59/91
Point quality(B) 0/11 0/18 2/20 2/32 8/41 20/54 23/58 27/63 27/73 27/81 27/82 27/88 27/91

I arbitrarily set up the boundary that for upcard smaller than 5, I will just give my smallest
card.

For cards larger than five and smaller than 10, I will compare Points Quality measure with
my opponent. If my quality measure is better, I can play more aggressively, which means I
can pay 2 points more than the upcard if the card is not used yet. Otherwise, I will play at
most 1 point more than the up card.

For cards larger than 10, I will check the largest card in hand of both my opponent and me.
If my opponent has the larger card, I will play less aggressively which means I at most bet
1 point more than the up card. If I have the larger card, I will bet one more than my
opponent’s largest card.

The result shows that having a measure of points quality is helpful to adjust the
aggressiveness of the strategy in terms of maximizing the points I can get.

 0206

Maximize the number of wins
Goofspiel with no carryover to maximize the wins aims to gain as many wins as possible.

Discarded points are recorded in order to adjust the number of points I need to win and
monitor my opponent’s progress. I set up the goal to get 46 points initially.

When I am close to the target, I will play more aggressively in order to win this round,
which means I will bet 2 points more than the up card and even sometimes I will use my
largest card in order to get the points to win the game.

Since the goal of each round is just to win, as long as I can get enough points to win, it
doesn’t matter how many points my opponent gets. The measure of “Points in Need to win”
helps me adjust the aggressiveness of my strategy to approach the wins.

Here I also arbitrarily set up the boundary that for upcards smaller than 5 I will just give my
smallest card.

Conclusion

We did a small experiment with 3 people.

My strategy is easier to predict because in most situation, my upper bound for a card is 2
points more than the upcard. This can be adjusted in the future to increase ambiguity in
opponent’s prediction.

When compared to strategies without prediction on my upper bound, my strategy performs
better.

Strategy 0207

0207

Goofspiel, the name given to The Game of Pure Strategy (GOPS), is a popular tool for game theorists.
Here is a quick summary of the game rules:

• Suits of cards are separated and one of the four suits are set aside
• Two players are then given a complete suit each and the third remaining suit is placed in a

central common pile
• Each player can see and choose from any of their own cards, but can’t see their opponents cards

until they are played.
• The common pile is placed face down and the top card is flipped up one at a time.
• That card is determines a point value of that round, with A=1 point and K=13 points.
• Each player plays one card each simultaneously and the player with the higher score wins the

value of that central card.
• The first player to 46 points wins the hand.

For this project, I have implemented a strategy that brings together 4 separate and linked strategies. I
will outline each of the four below.

Strategy 1: Low Early

This simple strategy sorts through and tracks which are the highest unplayed UpCard, MyCard and
OpCard. Then it looks to see if the highest MyCard is greater than higest OpHand card. Only then does
it play the high card. In all other cases it plays the low card.

This is based on the idea that if you can gain a systematic advantage over the opponent, you will be able
to win routinely. By throwing low hands early, you are hoping to catch the opponent throwing out their
K. After that card is played, you will have the higher card on all of the remaining hands, and thus an
advantage.

Strategy 2: Plus 3

This strategy begins with the idea that a player would want to play their best card (King) only when they
would win the most points (upCard = King). However, this incentive applies to both players, and thus
could result is no points being awarded when both players play a King. So instead of playing the
Upcard, this strategy plays the upcard+3. This means that when the upcard is a 10, you will play your
king. When it’s a 9 you will pay the Queen. This means that you are likely to be giving up the Jack,
Queen and King because when those are the upcard, you will be playing you’re A, 2 or 3.

In addition to this basic rule, the strategy also implements a random card being thrown if you are over
46 points. So than any learning efforts made by the opponent are confused a bit.

Strategy 3: Random

This strategy is very simple. Play a random, unplayed card.

Strategy 4: UpCard +/- 1

0207

This strategy is quite simple and similar to Strategy #2 above. In this case, the it looks to play the
UpCard, but if that isn’t available, it looks to play UpCard+1. And if that’s not available, it plays UpCard-
1. And if that’s not available, it throws an available random card.

Linkage between Strategies

Each of these 4 strategies is linked together with a simple learning algorithm. The default strategy is #2
above. This strategy is played all of the time to start. However, if after 40% of the rounds are played,
the strategy is losing, the system moves to the first alternate strategy. In this case, it trys the UpCard +/-
1 strategy. If that trend hasn’t reversed by the time 50% of the cards are played, then the system
switches to the alternate strategy, lowest cards early followed by highest cards later. And if by the time
75% of the cards have been played the system is still behind it switches to a random available cards the
rest of the time.

Testing

This strategy has been quite successful. When testing against basic strategies like play = upcard and or
play = randomcard this strategy wins. It didn’t matter when using carry over or no carry over, keeping
score of points or wins.

When tested against various editions of other student strategies, it was either routine the winning
strategy in all cases or it was very close and competitive in all cases.

One Single strategy

The project was developed with the idea that several different strategies will be used to applied across
each of the different game conditions (carry over, no carry over, keeping score of points or wins).
However during testing it was determined that a single comprehensive strategy was very effective in all
conditions. As such this same integrated strategy is submitted to be played in all game testing
conditions.

Strategy 0208

0208

1. Overview
I have two major algorithms designed for Goofspiel without considering carryover at the first
place. One is for maximizing the number of winning (denoted as Algorithm.1), and another
one is for maximizing the total points of earning (denoted as Algorithm.2). Then I am going to
discuss how modified version of both algorithms is still applicable when carryover is allowed.

I will present my both algorithms in section 3 and section 4 as the manner below:
First, I will start with talking about my interpretation of Goofspiel and the motive of my
design.
Second, specific concepts and methods used by the algorithm will be introduced in this part.
Third, the breakdown of algorithm with detailed description, flowchart and pseudocode.
Last, weakness of the algorithm and further work will be discussed

At the last part of this report, you can find the competition results I obtained from running my
algorithms against other existent Goofspiel algorithms and corresponding analysis.

2. Methodology and Definition
Before we go to the next section, let me introduce the methodologies and definitions I have
kept using in my algorithms.

2.1 Ideas

The ideas I use are summarized as below:
a) Performance evaluation: take into account only my own performance during the game and

ignore how my opponent behaves; (used by Algorithm.1)
b) Countermeasure: keep track of opponent’s behavior during the game and react accordingly;

(used by Algorithm.2)
c) Randomness: integrate randomness into the algorithm to make it difficult for my opponent

to predict; (used by Algorithm.1 and Algorithm.2)

2.2 Definition

For convenience, I have following definitions:
 value cards: denotes the cards used by two player in the game;
 point cards: denotes the cards from the third suit to turn up.

There is some calculation in my algorithms. Here are the notations:
Sets:

{1,2,...,13}I ∈ : Standard deck of card for two players (value cards or point cards);

}{1,2,3,....,13k∈ : There are 13 rounds to play for each game;

}{1,2,....,n N∈ : There are N games to play for both players before one quits.

Variables:

1

0208

iv : Value of card (value cards) for a player to play (1 1v = , 2 2v = , …, 13 13v =);

ip Point of card (point cards) from the third suit (1 1p = , 2 2p = , …, 13 13p =);

n
kowntotal : My total points granted at nth game till round k;

n
kopptotal : My opponent’s total points granted at nth game till round k;

n
kownravg : Average value of my remaining hands at nth game till round k;

n
koppravg : Average value of my opponent’s remaining hands at nth game till round k.

3. Maximizing number of winning (Algorithm.1):
If the setting is to maximize total number of winning, one is just trying to beat his/her opponent
in a game but he/she does not care about the differential (could be 1, 2, 10, …or any positive
number). Hence, his/her strategy might not necessarily be very aggressive as long as he/she is
still leading at the end of each round. In other words, the user has no utility for extra points,
which is:

() 0u lose = , () 1u win = ;

So I propose the following algorithm in order to get the optimal number of winning:

3.1 Utility function

First and foremost, I come up with this utility function to calculate the utilities for the value
cards available to play at each round.

Regardless of anything, it should always be true that the higher value card I uses, the better
chance will I have to collect the points at a round. On the other hand, I do not want to waste my
“good” value card for a “bad” point card, say I don’t want to use my King for a measly 1 or 2
points. So the utility has something to do with both the value card to play and point card
upturned,

1(,)
1i i

i i

u v p
v p

=
− +� �

, if i iv p≠ ; otherwise 1. (1)

 ip

It should make sense as utility is decreasing at both sides when value card is getting bigger and
lesser, and biggest utility is attained when value card matches point card [1].

Clearly, I didn’t use any dynamic data from the game in this utility function. In order to make it
specific to different situation, I need to incorporate more data generated from the game to revise
the function. Consider several scenarios decomposition below for revision:

0 13
utility decreasing utility decreasing

2

0208

3.2 Scenario decomposition

First scenario: when I am falling behind in terms of total points gathered but I hold better
remaining hands, i.e.

n n
k kowntotal opptotal< , n n

k kownravg oppravg> ;

Then it is logical that I may be willing to play a higher value card to beat my opponent for the
upturned point card. So, I make the revision:

1
1(,) () ()s n n n n

i i k k k k
i i

f v p opptotal owntotal ownravg oppravg
v p

= × − × −
−

, if i iv p>

Second scenario: when I am falling behind by total points and unfortunately at the same time
my remaining hands is worse than my opponent’s, i.e.

n n
k kowntotal opptotal< , n n

k kownravg oppravg<

This time, I should be very careful and manage to make a good use of my value cards as the
value cards I own are not as good as my opponent’s. The revision here is:

2
()1(,)
()

n n
s k k

i i n n
i i k k

opptotal owntotalf v p
v p oppravg ownravg

−
= ×

− −
, if i iv p>

Third scenario: when I am both leading and happen to have better remaining hands at the same
time, i.e.

n n
k kowntotal opptotal> , n n

k kownravg oppravg> ;

Then I am even able to squander! And,

3
()1(,)
()

n n
s k k

i i n n
i i k k

ownravg oppravgf v p
p v owntotal opptotal

−
= ×

− −
, if i iv p<

Fourth scenario: when I am leading but my remaining hands are not as good as my opponent’s
i.e.

n n
k kowntotal opptotal> , n n

k kownravg oppravg<

Since I am still leading, I maybe become a little conservative, as there is no urgency for
catching up points score.

4
1(,) () ()s n n n n

i i k k k k
i i

f v p owntotal opptotal oppravg ownravg
p v

= × − × −
−

, if i iv p<

I will just eliminate the item(s) when any of them is equal to 0 because it makes the function
meaningless (0, or infinity) and the utility function follows the same pattern as above.

3

0208

3.3 Monte Carlo simulation

Monte Carlo simulation here follows the ideas of “I want to know the effect for the next
round if I play this value card at the current round”.

As the utility function created can be used for any round to assess the utilities of the value cards
at hand, it is possible that I look at multiple rounds instead of just the current round. In order to
do this, I have to simulate the descendant rounds and calculate the utilities of the value cards.
However, due to the intricate dynamics of Goofspiel, I here only consider two rounds in a row
to for simple calculation.

When I am still at the current round with the outcome not yet revealed, I need to know more for
calculating the utility of each value card for the next round. Therefore, some assumptions
would be necessary (please notice that these assumptions are only valid for the calculation
during Monte Carlo simulation):
 My opponent wins the current round for whatever value card I play at the current round;
 My opponent’s remaining hands stay the same (it doesn’t get either better or worse off).

We can think of these assumptions like a recourse process, which should be plausible where I
stay pessimistic and do not relax when I am in the middle of the game.

Another mystery is that I don’t know which point card is going to appear at the next round, and
here is where Monte Carlo comes to play. It is always true that each of the remaining point
cards shows up with the same probability at the next round. Hence we can use uniform (0~1)
distribution to determine which in each iteration during Monte Carlo simulation. In other words,
one iteration is one realization of the next round with different possible point cards.

In each iteration, summation of the utilities at the next round is calculated for each value card
available at the current round (eliminate one value card one time from hands when its
corresponding summation of the next round is being calculated).

1 1

. ,
(, | ,)ws k k k k

i i j j
i cur hds i j

f v p v p− −

∈ ≠
∑

Easily, we can get the average utility at the next round for each value card available at the
current round in each iteration. Then after many times of iterations (say 10000 times), we will
be able to acquire many (10000) average utilities for each value card available at the current
round. Summing them up and averaging them by iterations (10000), I obtain the “future
utility” of a currently available value card (which means if I play this value card I will have that
much “future utility” for the next round).

As the calculation is nested and quite cumbersome so I will create a numerical example to
make it clearer to the reads. Consider when it is the 9th round of a game:

i. The upturned point card is “8” and four hidden point cards are “2”, “6”, “9”, “Q”, and each of
four could be turned up with equal probability .25 at the next round (10th round);

ii. My current value cards (current hands) at this round (9th round) are “1”, “7”, “8”, “10”, “J”.

4

0208

I can play any of them at the current round, and the other four will be left for the next round.

In one iteration: a uniform (0~1) random number generated is .61 then “9” is the point card at
10th round. I am going to calculate the “future utilities” for my each current value card “1”, “7”,
“8”, “10”, “J”.

Calculating the “future utility” of “1” implies that “1” is played at 9th round and “7”, “8”, “10”,
“J” are left available to play at 10th round. It shouldn’t be difficult to calculate the total utilities
of “7”, “8”, “10”, “J” for 10th round. Then the average is the “future utility” of “1” at 10th
round when the point card is “9”. Similarly, I can calculate the “future utilities” for “7”, “8”,
“10”, “J” at the 10th round when point card is “9” by doing the same thing in this iteration.

Assume there are 10000 iterations. In each iteration, the “future utilities” for “1”, “7”, “8”, “10”,
“J” are computed. Finally after 10000 iterations, there are 10000 “future utilities” for each.
Then we calculate the averages as their ultimate “future utilities” for “1”, “7”, “8”, “10”, “J”.

Pseudocode:
for (i=1; i<= iterations; i++)
{

decide point card of next round applying uniform(0~1);
for (all the value cards available at the current round)
{
 delete the value card played at the current round from hands;
 calculate the summation of the utilities of the value cards for the next round;

calculate the average of the summation of the utilities;
adds up the average.

}
}
obtain “future utility” for each value card available at the current round;

3.4 Algorithm

Step.1: Initialize random number generator, set the number of iterations for Monte Carlo
simulation;
Step.2: Update my hands, upturned point card Pi and obtain the total points, average value of
my remaining hands as well as my opponent’s for the current round, then decide the scenario
accordingly;
Step.3: Calculate the utility fs(Vi, Pi) of each value card of the current round, and run Monte
Carlo simulation to obtain the “future utility” for each value card available at the current round.
Plus these two utilities, then Vi with the highest total gets to play;
Step.4: If it is round 13 in a game, then the game is over, otherwise come back to Step.2 and
repeat;

5

0208

“vi” “utility”

Figure 1 Monte Carlo demonstration

3.5 With carryover

I am borrowing the algorithm from above. When carryover is allowed, we expect no big
different algorithm as the utility function I come up with in the last section is still capable to
represent the player behavior patterns under this circumstance:
 If points for one round are greater than 13, both players will high likely fight for this round;

multiplier function (1) is decreasing from “13” to “1”, which is the same idea.
 Otherwise, points for one round are less than 13, and then it is just like a regular round.

Besides, it is worth mentioning that the probability that one round is tied is not going to be high
unless both player are using the same algorithm. I concern the stability if I drastically alter my
strategy. So basically what I do is keep the algorithm.

3.6 Weakness of this algorithm

Notice that this utility function is made up personally under strong assumptions and lacks of
scientific proof. Hence, it may not be well-defined. Besides, I am only simulating two rounds in
row, which makes decision a bit “short-sighted”. If I could simulate the game covering more
rounds (longer future) the decision should then be better and more reliable.

4. Maximizing points of earning(Algorithm.2)

4.1 Statistical behavior database

In order to maximize points of earning, my goal has been tightened from just winning as many
games as possible to earning as many points as I can. Since the context here is a lot more
distinct than the previous one, something must be paid attention to as one is trying to develop
his/her algorithm.

I will treat as a long series of rounds instead of game by game different from the previous
algorithm where it is more based on two rounds in a row. Consequently I will look at the game
“globally”.

Actually, I am doing so by learning my opponent’s behavior in a long run through constructing

Current
Round

Next
Round

6

0208

a statistical database which record the average of my opponent’s value card played for each
upturned card (here 1, 2, 3…, 13). This may take a while to build up a reliable database, say 10
or more games. The structure of database consists of different averages:

{ }1 2 13, ,...A A A A= ;

Let’s assume I have an A={1.4, 2.6, 4.9, 5.3, 1.1, 6.4, 7.6, 9, 7.4, 12, 11.1, 9.3, 13} after 10
games. Then for the next game I know which value card to play for a particular point card, say
point card is Queen, I can try to play 10 > 9.3 to beat my opponent according to the history data.
Or if point card is 5, I can try to play 2 > 1.1 to win this round.

4.2 Stochastic model

As long as my database is successfully created, every time a card is turned up from the third suit
(pile). I can try to find a card to play which “matches” my opponent’s play. However, it would
be too easy to predict if my opponent has the similar algorithm. So in order to disturb my
opponent, it’d be better to incorporate some randomness into my algorithm.

Step.1: look up the database and get the corresponding entry Api in terms of Pi, find the value
cards at hand which are not played yet and separate them into two class G, L: class G is greater
Api and Class L is less Api.
Step.2: if class G is not empty, then generate a random number from uniform(0~1), if it is less
than .5 we take the first value card in class G. Otherwise we generate another random number
from uniform(0~1), return the second value card if it is less than .5. Repeat until we obtain a
value card to return. Come back to Step.1.
Step.3: if class G is empty, the algorithm returns the least value card from Class L as I don’t
want to waste my value cards in a point card which I can barely win.
This can be viewed as a Markov chain with a single sink node.

Figure 2 Markov Chain

Pseudocode (stochastic part):

while(1)
{

Ap

Ap+i
Absorbing State W.P. 0.5 at each state

Ap+1

Ap+2

13

......

.

.

.

.

7

0208

for (Class G)
{

 generate a random number from Unifor(0~1);
 if rand()<0.5
 return the corresponding value card;

}
}

4.3 With carryover

I can easily adjust my algorithm from above by doing only two things to Algorithm.2.

First, I expand my database from containing 13 entries to 25 entries, so I am keeping track of
my opponent’s value card for one round when the point card is from 1 to 25.

{ }1 2 13,... 25, ,... ,A A A A A=

Then, we follow the same stochastic algorithm to find a value card to return. However, if point
of one round is greater than 25 resulting from at least three tying rounds in a row, I am going to
return my biggest value card.

4.4 Weakness of this algorithm

A might sometimes not be a good indicator of my opponent’s response behavior as it’s possible
that one average is high just because for some rounds my opponents accidentally played some
great value cards but most of the time he play small value cards. A possible improvement is to
use dominance which keeps track more detailed information of my opponent’s play style.

5. Performance test
I run my algorithms against two typical strategies and the result is listed in the table below.
Table 1

 Matching Upturned Card Random strategy
maximizing # of winning (NCO) even Better
maximizing # of winning (WCO) even Better

maximizing points of earning (NCO) better little better
maximizing points of earning (WCO) NA Even

The results shall be very self-reflected, as it is obvious that “Matching Upturned Card” will be
beaten by my algorithm if my algorithm tries to respond its playing behavior. And “Random
strategy” is worse when my algorithm tries to aggressive and conservative at the same time.

6. Conclusion
Algorithm.1 is better when my opponent uses stochastic strategy (anti-randomness) and
Algorithm.2 is better when my opponent uses deterministic strategy (anti-deterministic).

8

0208

7. References
[1] Ross, S.M. (1971). Goofspiel: The Game of Pure Strategy. Journal of Applied Probability. 8,.
[2] Moshe Dror, Timothy Chan. (2004) Goofspiel
[3] Thomas S. Ferguson, Costis Melodidakis, Games with Finite Resources

9

Strategy 0209

0209

Goofspiel Strategies
Introduction

Goofspiel, the game of pure strategies , is two player card game. Each player takes a complete
suit of cards. Another suit is shuffled and placed face down in the middle of table (deck), the last
suit is discarded. The basic rules of this game are as follow:

• The cards in the middle of the table are turned up one at a time.
• Both players make secret bids and show one card at the same time.
• The player showing the highest value of card wins the value of upturned card.
• Once a card has been played from a player's hand it is discarded
• If both players select the same card from their hand, nobody wins the face up card,

there are two ways to deal with the upturned card in our game
o It is discarded.
o Its value is carried over to next rounds till one player wins

• The winner is the player who has the most points once all the cards on the table have
been played.

• The cards are valued from low to high as ace=1, 2, 3, ..., 10, jack=11, queen=12, and
king=13

In our project, we will need different strategies to maximize either the total winning points or
total number of winning.

Analysis

Goofspiel is described in Luce and Raiffa (1957) and also studied by other researchers, such as
Ross (1971), Dror, M. (1989), Rhoads and Bartholdi(2012) and etc. There are no optimal
strategies for this game when both players aim to optimize their winning due to the
unpredictable strategies of each player. However, as stated by Ross (1971), the best strategy is
to play card that matches the upturned card when opponent chooses card randomly.

To analyze this game, the number of distinct ways that the middle cards could be ordered and
the number of distinct betting sequences for each player are all N factorial. Therefore, the
number of possible ways of playing this game is f(N) = (N!)3 , which exceeds the computational
possibilities. Assuming both players adopted an optimal solution that could maximize the
winning profits, Rhoads and Bartholdi(2012) described a method to break the game down to
small games and use recursive rule to express the value of a game as a function of the values of
smaller games, they also proposed to solve the computational complexity issue by using a
bottom-up approach storing the values of the smaller game and use these stored values when
computing the larger games. However, the memory requirement still hindered the replication of
such method on our local machine.

To come up with optimal strategies, we need to anticipate how our components will play and
take the appropriate responses. To make it more clear, the notions involved in my strategies
are listed below:

• X- the set of cards in my hand
• Xi- the card played by player in play i
• Y- the set of cards in opponent hand
• Yi- the card played by opponent in play i
• P- the set of cards in the deck
• Pi- the card upturned in the deck in play i
• Vx,Vy,Vp –the value of my card, opponent card and upturned card respectively
• m==m%13 means that m is remains when m is divided by 13

Assuming my opponents do not have the computational power to derive optimal strategies by
implementing the method proposed above, I consider the possible strategies played by my
opponents might consist of following options:

1. opponents might choose cards randomly disregarding to the upturned card (rarely)
2. opponents might choose cards in a sequence that matches the upturned card (Vy==Vp)

(he or she will consider I select my cards randomly)
3. opponents might give up the first card and choose cards in a sequence that the value of

each card will be 1 greater than the value of upturned card (Vy=Vp+1)(he or she will
consider that I define my strategies based on option 2)

4. opponents might choose shifting strategies. This strategy might show the value of
selected cards is certain less or more than the value of upturned card in the middle.
Vy=Vp+k, kϵ{2..13}, if Vk≥13, Vk==Vk%13 (remains after Vk is divided by 13)

5. My opponents might choose cards based on the recommendation by Rhoads and
Bartholdi(2012)

Corresponding Strategies

The corresponding strategies are very straightforward. First, to identify what options opponent
is chosen. Second, a strategy will be chosen to respond to opponent.

Operational Details

Stage 1.

In the first and second card play, the cards are chosen randomly. The purpose of this stage is to
identify what possible strategy opponents are implemented.

Stage 2

Decision is made about what strategy is played by opponent by observing the first two
rounds.

1. If Y1-P1==Y2-P2=m (m==m%13),

From play 3, a card Xi=Pi+m+1 will be played

• In case that required cards were played in play 1 and/or 2, cards that should
have been played will be selected instead.

• In case Xi>13, value of Xi will be redefined as the mode of 13 by using
following equation: Xi= Xi%13

2. If Y1-P1≠Y2-P2,
From play 3, assuming that opponents are using random strategy, cards chosen
will match the upturned card from the middle of deck.
• In case that required cards were played in play 1 and/or 2, cards that should

have been played will be selected instead.
3. Different checking processes are employed based on different requirement

(Maximizing # of Winning or Maximizing Winning Points) and different situations
(carryover or non-carryover)

Checking Process

There are four different checking processes that are implemented for different
strategies.

1. During the process, a checking activity is performed during every play.
If sum(upturned card + player’s points at this round) ≥46,
and the largest card in player hand is larger than any of card in opponent hand,
player will play his largest card.

2. During the process, a checking activity is performed during every play.
First, cards in both players and deck are ranked. If half of cards in player hand are
larger than corresponding ranked cards in opponent hand, when cards in deck is
upturned, the player will play corresponding ranked card. For example,

Ranking Player Opponent Comparison Deck
2 X2 Y2 X2>Y2 P2 is upturned, X2 is played

3. During the process, a checking activity is performed during every play. If
combined value of upturned card and carried over is larger than the total
remaining deck card, and the largest card in player hand is larger than any card in
opponent card, the player will play the largest card.

4. During the process, a checking activity similar as the one in checking process 2 is
performed for every play. The difference is that when ranking the cards in deck, if
there is a carryover value, this value will be added into current upturned card.

Strategies Implementations

Without Carried Over

Maximizing Winning Points

Corresponding strategy and Checking process 1 will be implemented

Maximizing # of Winning

Corresponding strategy and Checking process 2 will be implemented

With Carried Over

Maximizing Winning Points

Corresponding strategy and Checking process 3 will be implemented

Maximizing # of Winning

Corresponding strategy and Checking process 4 will be implemented

Testing and Results

Simulations were run to test corresponding strategies (C) , comparing to random selection
strategy(R). The result is shown in following table.

Table 1 Simulation Testing Against Random Selection

Round #

Player Performance (comparing random selection)
Maximizing # of Winning (Points) Maximizing Winning Points (Points)
Carried Over Non Carried Over Carried Over Non Carried Over

C R C R C R C R
1 44 47 59 32 70 21 59 14
3 151 122 173 80 174 83 151 81
5 296 183 286 149 314 125 316 94
7 425 259 373 200 452 167 385 146
9 476 373 464 262 559 224 532 177
10 546 394 540 277 646 224 594 202
15 915 450 766 421 932 407 846 356
20 1198 615 1135 524 1292 465 1168 475
Average 59.9 30.75 56.75 26.2 64.6 23.25 58.4 23.75

Discussion

Table 1 shows that all strategies outperformed random strategy. As expected, Maximizing
Winning Points with carryover won with the highest average points(64.6) after 20 rounds games.

In both Maximizing # of Winning and Maximizing Winning Points categories, any strategy with
carryover gained more points than corresponding strategy without carryover, as shown in Fig 1.
In addition, Maximizing # of Winning obtained more points than Maximizing Winning Points
under both carryover and noncarryover conditions, an example is shown in Fig 2.

Fig 1. Maximizing Winning Points(carryover Vs non-carryover)

Fig 2. Maximizing # of Winning Vs Maximizing Winning Points

0
200
400
600
800

1000
1200
1400

1 3 5 7 9 10 15 20

of

 P
oi

nt
s

of Rounds

Maximizing Winning Points
(Carryover Vs non-carryover

Maximizing winning Points (Carryover)

Maximizing winning Points (nonCarryover)

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 10 15 20

of

 P
oi

nt
s

of Rounds

Max Winning Points Vs Max # of Winning

Maximizing # of Winning (Carryover)

Maximizing winning Points (Carryover)

From all simulations , we can conclude that all proposed strategies performed much better
than random strategy , and Maximizing Winning Points strategies do gain more points than
Maximizing # of Winning strategies .

Reference

Luce RD, Raiffa H (1957) Games and Decisions, Reprinted (1989) by Dover Publications,
Inc., New York.

Rhoads, Glenn C., and Laurent Bartholdi. "The Game of Pure Strategy is solved!." arXiv
preprint arXiv:1202.0695 (2012).

Rhoads ,Glenn C.(2011). Goofspiel. http://mysite.verizon.net/vze16nctz/gops.html

Dror, M. (1989). Simple proof for Goofspiel: the game of pure strategy. Advances in
applied probability, 21(3), 711-712.

Ross SM (1971) Goofspiel—The game of pure strategy. Journal of Applied Probability
8:621-625.

Strategy 0210

0210

Goofspiel Strategy

General Offensive Strategy
I believe that the heart of the Goofspiel problem is predicting what card the opponent will play. If this
information were known, it would be trivial to play cards that beat the opponent’s cards by one. The
challenge of an offensive strategy is to build an algorithm that can predict what the opponent will play,
and play a card just high enough to win.

In general, my offensive strategy assumes that my opponent is a rational player who is trying to win
through use of some strategy. My strategies perform better against simple strategies (such as an
opponent playing the up card + 1) than they do against completely random card selection.

General Defensive Strategy
I employ defensive strategies in order to guard against artificial intelligence algorithms that might be
employed by my opponent. Any single deterministic strategy could theoretically be analyzed to discover
patterns. A strategy that is predictable is easiest for a complex algorithm to beat because the played
cards can be known with some degree of certainty. To guard against predictability of my own plays, I
used two main defensive strategies:

1. Incorporate non-deterministic elements into the card selection. For example, if the up card is
less than 7, 30% of the time I will play a low card to try to induce my opponent into beating me
by several points, thereby giving me an advantage in later rounds. Because this is random, the
opponent will never know when I will play a low card.

2. Use multiple strategies. I have several strategies to choose from. The strategies can play
different cards for the same scenario, thereby making it harder for my opponent to find patterns
in my plays. This would also help to throw off any artificial intelligence algorithms run by
opponents since they would not immediately know which strategy I was using in a given round.

The end result of my defensive strategies is that the cards I play for specific up cards is not consistent
from round to round, which either renders learning algorithms useless, or less useful at a minimum.

Base Algorithms Run Before Specific Strategies
I used a layered approach to strategies. My base algorithms are universal in that they look for an easy
advantage. They work whether the goal is to maximize points or wins, and whether it is carryover or not.
I gave each of my algorithms a code name to help keep track of them. After the base strategies run,
more specific strategies are run depending on whether it is carryover or not, or if the goal is to maximize
points or wins.

0210

• Guaranteed Good Play. This algorithm decides whether it is a good idea to play my highest card,
lowest card, or if no guaranteed optimal play can be found.

o If my highest card can be my opponent’s highest card, the following situations are
analyzed:
 If the current play value is greater than 13, I play my highest card. This would

only happen in a carryover situation.
 If the current play value is greater than half of the total remaining points, I play

my highest card. This is a good strategy because if I only win one more hand in
the rest of the round, I would earn the most points by winning the current hand.
For example, if 10 points are carried over, consider the following set of
remaining up cards:

𝐶𝑎𝑟𝑟𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 = 10
𝑈𝑝 𝐶𝑎𝑟𝑑𝑠 = {4,5}

If either the 4 or 5 were the current up card, it would be good to win the hand
since the total value is larger than the total remaining points in the round.

 If the up card is the highest left, I play my highest card. It would not be smart to
save my highest card in order to win more points since, in this situation, the up
card has the single most points that I can win.
For example, consider a given set of remaining up cards:

𝑈𝑝 𝐶𝑎𝑟𝑑𝑠 = {1,2,3,10}
If I could win the 10, that single hand is worth more than the sum of the
remaining up cards.

 If my opponent’s highest card is less than the up card, and my highest is greater
than or equal than my opponent’s, I play my highest card. This prevents me
from dumping a low card and letting my opponent win more points than the
value of the card he plays. Consider the following cards:

𝑈𝑝 𝐶𝑎𝑟𝑑𝑠 = {4,8,𝟏𝟑}
𝑀𝑦 𝐶𝑎𝑟𝑑𝑠 = {3,9,𝟏𝟏}
𝐻𝑖𝑠 𝐶𝑎𝑟𝑑𝑠 = {4,9,10}

If the 13 up card were played and I were to dumb a low card, my opponent
would win 13 points by only playing 10 points. This strategy ensures that my
opponent does not get an easy victory in a hand.

o If my highest card is lower than my opponent’s highest card, the following situations are
analyzed:
 If the current up card is the highest up card left in the deck, I play my lowest

card. In this situation, a rational opponent would play his highest card. It is in my
best interest not to waste my highest card in a situation where I am very likely
to lose. For example, consider the following hands:

𝑈𝑝 𝐶𝑎𝑟𝑑𝑠 = {5,10,𝟏𝟐}
𝑀𝑦 𝐶𝑎𝑟𝑑𝑠 = {𝟒, 9,11}
𝐻𝑖𝑠 𝐶𝑎𝑟𝑑𝑠 = {3,10,𝟏𝟐}

If the 12 up card were played, my strategy would play a 4, and I would expect

0210

my opponent to play his 12. This would allow me to play my 11 and win the 10
up card in a future round.

• Carryover to the Death. This algorithm checks to see if the current play is in a high carryover
situation (> 13 points). Next, it determines if my opponent and I keep playing our highest cards if
I eventually win. In this situation, my I will keep playing my highest card until I beat my
opponent, hopefully causing him to waste several cards.

o For example consider the two hands:
𝑀𝑦 𝐶𝑎𝑟𝑑𝑠 = {1,3,𝟕, 8,9}
𝐻𝑖𝑠 𝐶𝑎𝑟𝑑𝑠 = {1,3,𝟔, 8,9}

In this situation, if we both played our highest cards, we would tie on the 9, tie on the 8,
and then I would win on the 7.

• Opponent Can Beat Me In Carryover At Will. This strategy is the opposite of Carryover to the
Death. It checks to see if my opponent can keep playing his highest card and eventually beat me.
If we are in a high value carryover situation and this is true, I will play my lowest card to cut my
losses and try to win future hands.

• Beat the Dump. This strategy predicts when the opponent is likely to play his lowest card
because a victory seemed infeasible. For example, consider the following cards:

𝑀𝑦 𝐶𝑎𝑟𝑑𝑠 = {1,3,5,10}
𝐻𝑖𝑠 𝐶𝑎𝑟𝑑𝑠 = {2,4,7,9}

If the up card was a King, I would clearly have an advantage because I have the highest card.
Knowing this, my opponent would likely want to play his 2 rather than waste his 9. With this in
mind, it might be beneficial for me to anticipate this dump card. So, rather than playing my
highest card, I would play my 3—one card higher than my opponents probably dump card. This
would help me save my high cards while still winning points. One danger is that this strategy is
too sophisticated, and it might backfire against more naïve players.

Strategy – No Carryover for Points
These strategies are run after the base strategies. Strategy 1 is played most of the time. Strategies 2 and
3 exist partially to throw off opponents that attempt to use learning algorithms to predict my cards. I
found that if I played Strategy 2 or 3 alone, I would lose terribly against learning opponents. However, if
I played them sparingly while relying on Strategy 1 for most rounds, I would win more points overall.

Strategy 1
This strategy is played 80% of the time. This strategy tries to predict the card that the opponent will
play, and either try to beat it by a little bit, or lose by a lot by playing my lowest card.

• Opponent Card Prediction. This algorithm assumes a rational decision making process that a
human might use. Initially, I assumed that opponents would play the up card if they had it.
However, testing revealed that most computer opponents play much higher. Therefore, I ended
up with the following logic:

0210

o If the opponent has a card 2 greater than the up card in his hand, he will play it. If it is
the king or queen, the algorithm will assume that the opponent will play those cards
since there are no cards 2 points higher than the king or queen.

o If the opponent does not have a card 2 higher than the up card in his hand, he will play
the next highest, but not more than 4 points greater than the up card.

o If the opponent does not have the up card or a card within 4 points of it, he will play his
lowest card

• My Card Selection.
o For up cards > 7, my algorithm will play the lowest card in my hand 10% of the time. This

should allow many future wins by sacrificing a single card while throwing off round to
round card tracking employed by an opponent.

o For up cards < 7, my algorithm will play the lowest card in my hand 30% of the time.
Again, the purpose of doing this is to win more future cards while throwing off round to
round card tracking employed by an opponent.

o I then try to find a card in my hand to play that is 1 more than my opponent’s predicted
play. If I have to look more than 4 points higher than the up card to find a card to play,
instead of overbidding for the card, I just play my lowest card.

Strategy 2
This strategy is played 10% of the time. It simply returns the up card + 1. In the case of the king, it
returns 1. This is a deterministic strategy that would play the same cards each time for the same order
of up cards. This strategy does not analyze the opponent’s card in order to predict his play.

Strategy 3
This strategy is played 10% of the time. It returns a random card between 0 and 2 cards higher than the
up card. If all three of those cards have already been played, it will play the lowest card in the hand. This
should create reasonable plays while defending against artificial intelligence algorithms that try to
predict what I will play. This strategy sacrifices the king and the queen in order to win more future plays.

Strategy – Carryover for Points
These strategies are run after the base strategies. My strategies build off of my strategies without
carryover. If there was no tie in the last play, the strategies are carried out exactly the same. However, if
there is a tie, I modified the strategies in the following ways:

Strategy 1
• Opponent Card Prediction. If the value of the current play plus the amount of carryover is

greater than 13, the opponent is predicted to bid 3 points higher than the up card (unless that
puts the opponent over 13, in which case 13 becomes the predicted play).

• My Card Selection. If the opponent and I are in a high value carryover situation (> 13 points),
and I can eventually win a future play if we continue to play our highest cards, I will play my
highest card.

0210

Strategy 2
No change was made to this algorithm. Any efficiencies that could be gained due to carryover should be
gained in the base strategies. Keeping my algorithm consistent is also a defensive measure in that it
allows my Strategy 1 to gain more points against learning algorithms.

Strategy 3
No change was made to this algorithm. Any efficiencies that could be gained due to carryover should be
gained in the base strategies. Keeping my algorithm consistent is also a defensive measure in that it
allows my Strategy 1 to gain more points against learning algorithms.

Strategy – No Carryover for Wins
Initially, I tried creating new strategies just to maximize wins. However, these strategies were not
successful. Instead, I made the following modifications to my existing strategies to maximize points.

Strategy 1
My algorithm checks for certain conditions and plays the corresponding card.

• I check to see how many more points are needed for me to win. If the current up card is less
than what I need to win, and I have the highest card, I play my highest card.

Strategy 2
This strategy completely replaces the strategy for maximizing points. This strategy is played 10% of the
time. It is included to try to throw off any artificial intelligence by the opponent. This strategy tries to
win the cards 1-10 by bidding 3 more than the up card value for these cards. This strategy plays 1, 2, and
3 for the up cards 11, 12, and 13. Winning the cards 1-10 earns 55 points, which secures the win. The
hope is that other players will try to win the high value cards and end up allowing the low value cards to
be captured. This is a simple strategy, but it worked well when I played it against real human beings.

Strategy – Carryover for Wins
These strategies are run after the base strategies.

Strategy 1
My strategy is similar to the no carryover game with the following additions:

• If I can eventually beat my opponent in carryover if we both play our highest cards, and the
current play value is greater than 13 or more than half of the remaining points, I will always
return my highest card.

• In a carryover situation, I am willing to play up to four points higher in order to win.

Strategy 2
No change was made to this algorithm. In my estimation, overbidding for each up card by 3 points would
be enough to win by a decisive margin in most situations. In the case of a tie, I could sacrifice any single

0210

card and still have enough points left to win due to the reduction in the total points needed to win the
round. Also, any easy wins that might exist due to a carryover situation would be captured in my base
strategies.

Appendix B

Tables

Table 1: Score(P1-P2) - Carryover maximizing points - 10 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 307 - - - - - - - - - -

0205 102 188 - - - - - - - - -

0203 42 -126 -134 - - - - - - - -

0210 68 -136 -27 10 - - - - - - -

0207 -20 154 24 -244 2 - - - - - -

0206 186 -254 -2 66 -247 198 - - - - -

0202 136 83 -223 -17 -2 16 72 - - - -

0204 212 -207 -207 -55 -142 15 -144 -86 - - -

0208 195 190 -19 -54 65 -22 243 204 302 - -

0201 260 358 51 136 166 -49 256 132 213 93 -

Table 2: Wins(P1-P2) - Carryover maximizing points - 10 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 10 - - - - - - - - - -

0205 4 6 - - - - - - - - -

0203 0 -4 -10 - - - - - - - -

0210 2 -6 0 0 - - - - - - -

0207 -2 10 0 -6 2 - - - - - -

0206 10 -10 0 2 -6 8 - - - - -

0202 4 5 -4 -2 -2 2 3 - - - -

0204 8 -8 -6 -2 -8 0 -8 -6 - - -

0208 6 8 2 -6 0 -4 8 8 10 - -

0201 10 10 2 8 6 -6 10 6 8 6 -

Table 3: Score(P1-P2) - Carryover maximizing points - 20 rounds
H

HHHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 405 - - - - - - - - - -

0205 346 326 - - - - - - - - -

0203 162 120 -12 - - - - - - - -

0210 280 -156 -228 37 - - - - - - -

0207 16 268 -113 -446 -151 - - - - - -

0206 474 -221 66 67 -398 358 - - - - -

0202 425 218 -65 -182 -15 -34 268 - - - -

0204 382 -445 -216 -22 -272 64 -255 457 - - -

0208 399 58 -36 148 176 -245 531 185 367 - -

0201 305 725 56 193 389 -70 404 182 299 -42 -

1

Table 4: Wins(P1-P2) - Carryover maximizing points - 20 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 12 - - - - - - - - - -

0205 16 10 - - - - - - - - -

0203 6 2 -2 - - - - - - - -

0210 8 -2 -10 0 - - - - - - -

0207 -2 20 -6 -16 -10 - - - - - -

0206 14 -8 2 4 -10 20 - - - - -

0202 12 12 -5 -10 -2 -4 10 - - - -

0204 16 -18 -12 0 -10 4 -6 12 - - -

0208 14 6 -3 6 8 -14 13 8 14 - -

0201 10 20 4 12 18 -10 12 10 18 0 -

Table 5: Score(P1-P2) - Carryover maximizing points - 30 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 794 - - - - - - - - - -

0205 442 580 - - - - - - - - -

0203 241 -150 -6 - - - - - - - -

0210 483 -239 -200 180 - - - - - - -

0207 -175 494 -345 -268 -83 - - - - - -

0206 356 -510 -343 221 -608 265 - - - - -

0202 617 172 -110 -239 -86 -58 684 - - - -

0204 1009 -713 -427 -223 -391 121 -338 -397 - - -

0208 448 59 -347 132 332 -303 783 295 531 - -

0201 653 1120 -99 354 477 -266 684 170 552 -224 -

Table 6: Wins(P1-P2) - Carryover maximizing points - 30 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 28 - - - - - - - - - -

0205 20 16 - - - - - - - - -

0203 10 -6 -6 - - - - - - - -

0210 20 -6 -6 7 - - - - - - -

0207 -10 30 -10 -16 -10 - - - - - -

0206 14 -22 -6 10 -16 13 - - - - -

0202 16 10 2 -8 -4 -4 17 - - - -

0204 28 -28 -20 -10 -18 10 -14 -12 - - -

0208 14 -4 -10 4 14 -20 24 11 18 - -

0201 26 30 -2 18 16 -12 28 10 20 -12 -

Table 7: Score(P1-P2) - Carryover maximizing points - 50 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 1240 - - - - - - - - - -

0205 799 894 - - - - - - - - -

0203 414 -350 -85 - - - - - - - -

0210 426 -520 -187 154 - - - - - - -

0207 12 827 -687 -833 -96 - - - - - -

0206 522 -733 -718 -11 -973 651 - - - - -

0202 1138 375 -522 -418 46 7 691 - - - -

0204 1431 -1226 -520 -290 -655 373 -808 -1094 - - -

0208 958 412 -134 262 426 -548 819 437 1014 - -

0201 916 1545 -194 347 860 -433 1125 377 804 28 -

2

Table 8: Wins(P1-P2) - Carryover maximizing points - 50 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 38 - - - - - - - - - -

0205 24 28 - - - - - - - - -

0203 12 -20 -4 - - - - - - - -

0210 22 -10 -5 4 - - - - - - -

0207 -9 50 -28 -24 -6 - - - - - -

0206 14 -32 -20 6 -24 36 - - - - -

0202 38 23 -17 -18 0 1 19 - - - -

0204 46 -44 -26 -10 -22 16 -28 -38 - - -

0208 30 14 -2 12 14 -28 26 15 30 - -

0201 34 48 -10 20 32 -34 40 20 38 0 -

Table 9: Score(P1-P2) - Carryover maximizing wins - 10 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 224 - - - - - - - - - -

0205 112 116 - - - - - - - - -

0203 -90 -109 -33 - - - - - - - -

0210 140 -71 -34 130 - - - - - - -

0207 -22 153 -29 -140 -54 - - - - - -

0206 106 -94 -59 171 -177 101 - - - - -

0202 208 61 -199 -154 48 -10 150 - - - -

0204 196 -246 -298 -34 -236 157 -118 -144 - - -

0208 135 106 41 116 82 -170 244 224 238 - -

0201 164 348 -29 84 269 57 300 71 170 -32 -

Table 10: Wins(P1-P2) - Carryover maximizing wins - 10 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 10 - - - - - - - - - -

0205 4 4 - - - - - - - - -

0203 0 -6 -2 - - - - - - - -

0210 0 -2 2 8 - - - - - - -

0207 -2 10 0 -8 -4 - - - - - -

0206 4 -2 -3 4 -6 2 - - - - -

0202 8 2 -8 -9 0 0 3 - - - -

0204 6 -8 -10 -2 -8 8 -4 -6 - - -

0208 6 4 1 4 4 -10 7 9 10 - -

0201 6 10 -4 6 8 -2 10 4 6 0 -

Table 11: Score(P1-P2) - Carryover maximizing wins - 20 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 478 - - - - - - - - - -

0205 388 155 - - - - - - - - -

0203 43 -209 -402 - - - - - - - -

0210 374 -189 -136 168 - - - - - - -

0207 -8 342 -251 -298 -5 - - - - - -

0206 133 -49 -236 158 -396 14 - - - - -

0202 347 128 -162 -260 -48 77 207 - - - -

0204 592 -469 -372 -144 -351 102 -212 -421 - - -

0208 317 239 -213 354 350 -274 66 366 314 - -

0201 298 759 44 114 619 -185 408 75 372 0 -

3

Table 12: Wins(P1-P2) - Carryover maximizing wins - 20 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 12 - - - - - - - - - -

0205 14 4 - - - - - - - - -

0203 0 -12 -14 - - - - - - - -

0210 12 -8 -6 8 - - - - - - -

0207 -2 20 -10 -8 -2 - - - - - -

0206 8 -2 -14 8 -12 -2 - - - - -

0202 12 6 -3 -10 -6 2 5 - - - -

0204 20 -12 -10 -6 -10 6 -2 -14 - - -

0208 12 8 -1 14 14 -20 7 10 12 - -

0201 12 20 0 6 20 -13 16 4 14 0 -

Table 13: Score(P1-P2) - Carryover maximizing wins - 30 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 867 - - - - - - - - - -

0205 492 74 - - - - - - - - -

0203 216 -311 -429 - - - - - - - -

0210 357 -512 -19 323 - - - - - - -

0207 -94 471 -294 -679 -128 - - - - - -

0206 356 -314 -353 560 -589 166 - - - - -

0202 397 91 -272 -387 188 -161 309 - - - -

0204 149 -812 -553 -167 -314 12 -147 -466 - - -

0208 708 395 -201 472 413 -235 333 161 517 - -

0201 429 1194 -121 504 454 -241 661 129 525 -100 -

Table 14: Wins(P1-P2) - Carryover maximizing wins - 30 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 20 - - - - - - - - - -

0205 16 4 - - - - - - - - -

0203 0 -18 -16 - - - - - - - -

0210 16 -18 2 18 - - - - - - -

0207 -6 30 -12 -23 -6 - - - - - -

0206 14 -8 -8 20 -20 10 - - - - -

0202 16 2 -12 -21 4 -10 6 - - - -

0204 6 -30 -20 -6 -10 14 -10 -14 - - -

0208 24 12 -10 16 18 -10 16 8 14 - -

0201 14 28 -8 20 16 -18 24 10 20 -2 -

Table 15: Score(P1-P2) - Carryover maximizing wins - 50 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 1269 - - - - - - - - - -

0205 860 366 - - - - - - - - -

0203 209 -363 -801 - - - - - - - -

0210 434 -470 -102 338 - - - - - - -

0207 -115 850 -326 -992 -162 - - - - - -

0206 394 -479 38 684 -955 452 - - - - -

0202 762 231 -614 -725 -161 129 138 - - - -

0204 1341 -1210 -866 -80 -352 302 -464 -881 - - -

0208 931 512 252 720 731 -608 813 860 937 - -

0201 504 1739 -138 688 695 -392 1066 253 1118 -276 -

4

Table 16: Wins(P1-P2) - Carryover maximizing wins - 50 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 42 - - - - - - - - - -

0205 32 7 - - - - - - - - -

0203 8 -16 -34 - - - - - - - -

0210 8 -16 -8 8 - - - - - - -

0207 -2 50 -14 -36 -6 - - - - - -

0206 20 -30 7 25 -24 12 - - - - -

0202 28 14 -21 -32 -4 4 4 - - - -

0204 42 -40 -42 -2 -14 22 -16 -25 - - -

0208 26 19 7 24 26 -30 27 21 38 - -

0201 20 48 -10 32 28 -32 36 8 42 -10 -

Table 17: Score(P1-P2) - No carryover maximizing points - 10 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 192 - - - - - - - - - -

0205 104 477 - - - - - - - - -

0203 29 131 -34 - - - - - - - -

0210 85 -145 -20 8 - - - - - - -

0207 -60 147 -153 46 -62 - - - - - -

0206 297 13 -22 44 -33 -169 - - - - -

0202 239 108 -141 -104 76 -57 10 - - - -

0204 305 -238 -129 -53 -203 49 -248 -70 - - -

0208 163 93 -147 -5 167 -139 16 -22 230 - -

0201 195 297 -97 122 215 -164 97 44 225 -5 -

Table 18: Wins(P1-P2) - No carryover maximizing points - 10 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 10 - - - - - - - - - -

0205 6 8 - - - - - - - - -

0203 1 2 -2 - - - - - - - -

0210 4 -4 -2 -2 - - - - - - -

0207 -6 10 -3 4 -4 - - - - - -

0206 10 0 0 4 -4 -10 - - - - -

0202 10 7 -8 -10 2 -4 0 - - - -

0204 10 -8 -4 -1 -8 4 -8 -2 - - -

0208 6 6 -6 0 6 -10 -2 -2 10 - -

0201 9 10 -8 8 10 -10 5 2 6 0 -

Table 19: Score(P1-P2) - No carryover maximizing points - 20 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 598 - - - - - - - - - -

0205 348 1005 - - - - - - - - -

0203 20 99 -120 - - - - - - - -

0210 343 -269 43 45 - - - - - - -

0207 76 319 -470 -329 -109 - - - - - -

0206 408 100 -232 78 14 -347 - - - - -

0202 370 107 -226 -214 -81 -84 -92 - - - -

0204 499 -538 -408 -166 -332 48 -392 -331 - - -

0208 146 167 -409 -11 189 -261 118 -33 416 - -

0201 377 578 -161 208 226 38 268 80 371 168 -

5

Table 20: Wins(P1-P2) - No carryover maximizing points - 20 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 16 - - - - - - - - - -

0205 12 20 - - - - - - - - -

0203 -2 -2 -10 - - - - - - - -

0210 14 -14 0 1 - - - - - - -

0207 5 20 -12 -8 -9 - - - - - -

0206 16 6 -10 6 4 -20 - - - - -

0202 11 7 -16 -10 -4 -4 -9 - - - -

0204 16 -18 -13 -8 -10 3 -12 -13 - - -

0208 9 10 -18 -2 10 -11 8 2 12 - -

0201 12 20 -5 12 14 -1 18 2 14 8 -

Table 21: Score(P1-P2) - No carryover maximizing points - 30 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 619 - - - - - - - - - -

0205 587 1605 - - - - - - - - -

0203 246 70 -231 - - - - - - - -

0210 410 -544 -125 175 - - - - - - -

0207 -98 448 -674 -427 -118 - - - - - -

0206 536 91 -299 135 192 -523 - - - - -

0202 589 143 -304 -318 244 -117 -207 - - - -

0204 850 -746 -413 -28 -399 45 -724 -703 - - -

0208 524 273 -421 204 274 -512 160 -8 415 - -

0201 377 709 -443 277 553 -231 268 181 492 41 -

Table 22: Wins(P1-P2) - No carryover maximizing points - 30 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 28 - - - - - - - - - -

0205 22 30 - - - - - - - - -

0203 8 -8 -9 - - - - - - - -

0210 21 -20 -8 3 - - - - - - -

0207 -10 30 -20 -12 -12 - - - - - -

0206 21 2 -8 10 5 -30 - - - - -

0202 21 4 -17 -22 10 -16 -15 - - - -

0204 30 -26 -14 -2 -18 5 -23 -28 - - -

0208 23 11 -19 12 17 -28 12 1 18 - -

0201 20 27 -16 20 19 -24 14 6 23 3 -

Table 23: Score(P1-P2) - No carryover maximizing points - 50 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 1034 - - - - - - - - - -

0205 1028 2580 - - - - - - - - -

0203 251 199 -389 - - - - - - - -

0210 415 -791 -453 272 - - - - - - -

0207 -41 744 -1203 -1150 -152 - - - - - -

0206 1177 65 -909 164 310 -808 - - - - -

0202 861 326 -525 -416 196 -158 -159 - - - -

0204 1500 1319 -987 -239 -599 82 -1034 -969 - - -

0208 901 487 -685 -181 595 -722 250 194 738 - -

0201 830 1505 -571 431 598 -295 516 384 762 68 -

6

Table 24: Wins(P1-P2) - No carryover maximizing points - 50 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 38 - - - - - - - - - -

0205 42 50 - - - - - - - - -

0203 8 -16 -22 - - - - - - - -

0210 19 -39 -23 9 - - - - - - -

0207 1 50 -32 -30 -12 - - - - - -

0206 35 0 -28 15 9 -50 - - - - -

0202 34 20 -34 -30 0 -15 -9 - - - -

0204 48 46 -31 -6 -24 6 -38 -34 - - -

0208 27 28 -25 -7 28 -42 19 12 32 - -

0201 36 50 -21 32 30 -30 28 16 35 8 -

Table 25: Score(P1-P2) - No carryover maximizing wins - 10 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 344 - - - - - - - - - -

0205 146 335 - - - - - - - - -

0203 19 -136 -77 - - - - - - - -

0210 144 -175 -6 87 - - - - - - -

0207 36 151 -67 -239 -111 - - - - - -

0206 138 13 -88 -11 14 -36 - - - - -

0202 95 21 -139 -123 47 -48 -180 - - - -

0204 308 -217 -114 -64 -157 29 -46 -167 - - -

0208 194 48 -135 87 178 -197 62 32 176 - -

0201 183 331 -138 141 120 54 40 80 286 64 -

Table 26: Wins(P1-P2) - No carryover maximizing wins - 10 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 10 - - - - - - - - - -

0205 4 10 - - - - - - - - -

0203 2 -8 -4 - - - - - - - -

0210 6 -6 0 4 - - - - - - -

0207 5 10 -4 -9 -9 - - - - - -

0206 6 0 -3 -3 4 -1 - - - - -

0202 4 -2 -6 -6 1 -2 -8 - - - -

0204 10 -8 -8 -8 -8 4 -4 -4 - - -

0208 6 1 -7 0 8 -8 4 1 7 - -

0201 5 9 -4 8 6 -1 0 6 10 5 -

Table 27: Score(P1-P2) - No carryover maximizing wins - 20 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 658 - - - - - - - - - -

0205 270 592 - - - - - - - - -

0203 184 -163 -243 - - - - - - - -

0210 351 -220 -44 254 - - - - - - -

0207 -71 336 -297 -482 -17 - - - - - -

0206 161 89 130 67 41 -130 - - - - -

0202 231 137 -225 -272 41 -96 -314 - - - -

0204 499 -465 -482 -8 -248 96 -229 -443 - - -

0208 371 113 -234 45 173 -298 -68 110 343 - -

0201 273 537 -191 192 315 -66 175 239 420 117 -

7

Table 28: Wins(P1-P2) - No carryover maximizing wins - 20 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 20 - - - - - - - - - -

0205 8 20 - - - - - - - - -

0203 10 -12 -12 - - - - - - - -

0210 14 -14 -1 10 - - - - - - -

0207 -8 20 -14 -16 -7 - - - - - -

0206 9 8 6 -2 2 -8 - - - - -

0202 8 8 -13 -16 2 -8 -18 - - - -

0204 16 -18 -16 0 -14 9 -16 -20 - - -

0208 19 8 -14 3 7 -19 -4 8 12 - -

0201 13 20 -11 10 10 -10 10 14 18 6 -

Table 29: Score(P1-P2) - No carryover maximizing wins - 30 rounds
HH

HHHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 906 - - - - - - - - - -

0205 558 902 - - - - - - - - -

0203 200 -134 -341 - - - - - - - -

0210 434 -434 -325 210 - - - - - - -

0207 4 461 -295 -776 -64 - - - - - -

0206 288 167 192 76 151 -285 - - - - -

0202 452 194 -374 -511 -1 -171 -639 - - - -

0204 77 -918 -575 -84 -540 10 -260 -612 - - -

0208 653 214 -368 193 223 -457 125 149 464 - -

0201 596 799 -327 424 518 -198 140 333 499 -47 -

Table 30: Wins(P1-P2) - No carryover maximizing wins - 30 rounds
HHH

HHHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 28 - - - - - - - - - -

0205 24 30 - - - - - - - - -

0203 4 -6 -16 - - - - - - - -

0210 20 -24 -15 14 - - - - - - -

0207 -7 30 -10 -28 -3 - - - - - -

0206 16 13 11 12 12 -19 - - - - -

0202 15 14 -20 -24 0 -12 -26 - - - -

0204 6 -30 -24 -1 -22 2 -16 -24 - - -

0208 24 17 -19 10 14 -22 8 12 22 - -

0201 26 28 -8 24 19 -11 5 18 20 0 -

Table 31: Score(P1-P2) - No carryover maximizing wins - 50 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 1507 - - - - - - - - - -

0205 708 1626 - - - - - - - - -

0203 216 -420 -591 - - - - - - - -

0210 538 -640 -496 480 - - - - - - -

0207 -27 833 -706 -1333 -149 - - - - - -

0206 480 -95 -25 171 254 -252 - - - - -

0202 778 349 -685 -674 78 -196 -1073 - - - -

0204 1291 -1507 -753 -301 -574 -1 -505 -1068 - - -

0208 781 137 -903 402 773 -867 -39 280 1165 - -

0201 783 1416 -685 743 664 -399 402 227 954 199 -

8

Table 32: Wins(P1-P2) - No carryover maximizing wins - 50 rounds
H

HHH
HHP1
P2

Random 0209 0205 0203 0210 0207 0206 0202 0204 0208 0201

Random - - - - - - - - - - -

0209 48 - - - - - - - - - -

0205 34 50 - - - - - - - - -

0203 7 -35 -30 - - - - - - - -

0210 17 -28 -21 19 - - - - - - -

0207 -5 50 -24 -44 -5 - - - - - -

0206 15 5 7 10 8 -15 - - - - -

0202 34 23 -37 -35 4 -18 -47 - - - -

0204 46 -45 -30 -18 -28 7 -24 -35 - - -

0208 30 -4 -43 17 32 -48 -16 19 42 - -

0201 29 47 -28 37 30 -26 15 21 40 9 -

9

	000 Supplementary
	0100 Appendix A Header
	0201a Strategy Header
	0201b goofspiel strategy-Victor
	0202a Strategy Header
	0202b David Wilson - GoofSpiel Description
	0203a Strategy Header
	0203b LiLi_MIS696D_CourseProjectReport2
	0204a Strategy Header
	0204b Goofspiel_Strategies Report-Yang
	0205a Strategy Header
	0205b Mark Grimes_Goofspiel
	Starting the Game
	Tiered Valuation
	Monitoring Historical Play
	Sanity Check
	Bounded Random Play
	Mitigation Against Learning Algorithms
	Special Cases
	Carryover
	Max Points

	Conclusion
	References

	0206a Strategy Header
	0206b Goofspiel Competition Xiao Liu2
	Introduction
	Goofspiel with carryover
	Maximize the points
	Maximize the number of wins

	Goofspiel with no carryover
	Maximize the points
	Maximize the number of wins
	Conclusion
	We did a small experiment with 3 people.
	My strategy is easier to predict because in most situation, my upper bound for a card is 2 points more than the upcard. This can be adjusted in the future to increase ambiguity in opponent’s prediction.
	When compared to strategies without prediction on my upper bound, my strategy performs better.

	0207a Strategy Header
	0207b Goofspiel Paper.Justin
	0208a Strategy Header
	0208b report 3rd ver.Ben3
	2.1 Ideas
	2.2 Definition
	3.1 Utility function
	3.2 Scenario decomposition
	3.3 Monte Carlo simulation
	3.4 Algorithm
	3.5 With carryover
	3.6 Weakness of this algorithm
	4.1 Statistical behavior database
	4.2 Stochastic model
	4.3 With carryover
	4.4 Weakness of this algorithm

	0209a Strategy Header
	0209b Goofspiel Strategies-David.Gao
	0210a Strategy Header
	0210b Marquardson_Goofspiel
	General Offensive Strategy
	General Defensive Strategy
	Base Algorithms Run Before Specific Strategies
	Strategy – No Carryover for Points
	Strategy 1
	Strategy 2
	Strategy 3

	Strategy – Carryover for Points
	Strategy 1
	Strategy 2
	Strategy 3

	Strategy – No Carryover for Wins
	Strategy 1
	Strategy 2

	Strategy – Carryover for Wins
	Strategy 1
	Strategy 2

	0500 Appendix B Header
	0501 Tables

